
Fast Evaluation of DNN for Past Dataset in
Incremental Learning

Naoto Sato
Research & Development Group, Hitachi, Ltd.

naoto.sato.je@hitachi.com

Abstract—During the operation of a system including a deep
neural network (DNN), new input values that were not included
in the training dataset are given to the DNN. In such a case, the
DNN may be incrementally trained with the new input values;
however, that training may reduce the accuracy of the DNN in
regard to the dataset that was previously obtained and used
for the past training. It is necessary to evaluate the effect of
the additional training on the accuracy for the past dataset.
However, evaluation by testing all the input values included in the
past dataset takes time. Therefore, we propose a new method to
quickly evaluate the effect on the accuracy for the past dataset. In
the proposed method, the gradient of the parameter values (such
as weight and bias) for the past dataset is extracted by running
the DNN before the training. Then, after the training, its effect on
the accuracy with respect to the past dataset is calculated from
the gradient and update differences of the parameter values.
To show the usefulness of the proposed method, we present
experimental results with several datasets. The results show
that the proposed method can estimate the accuracy change by
additional training in a constant time.

I. INTRODUCTION

The introduction of machine-learning technologies in vari-
ous industrial fields has been advancing. Among those tech-
nologies, deep neural networks (DNNs) are being popularly
applied. In addition to replacing human tasks, in a number
of fields, DNNs are outperforming people. DNNs are trained
with a dataset, which is composed of pairs of input values
and their corresponding expected output values. A part of
the dataset is used for training DNNs, and the rest is used
to evaluate the trained DNNs. In the training, when input
values included in the training dataset are input, values of
parameters such as weights and bias are adjusted so that the
expected output values are more likely to be obtained. After
the training is completed, the test dataset is used to measure the
probability of obtaining the expected output value as expected.
This probability—called accuracy—indicates the validity of
the developed DNNs. However, the accuracy measured during
development is only that with respect to the existing dataset
retained at that time. That is to say, when input values that are
not included in the existing dataset are given, the output values
are not exclusively those expected; consequently, the accuracy
of the DNN during operation is lower than that during its
development.

When the accuracy of DNNs decreases during an operation,
it is useful to apply incremental learning [1] [2] [3] [4] [5] [6],
in which a DNN is trained by using a dataset newly acquired

during the operation. In incremental learning, parameter values
of the DNN (such as weights and biases) are adjusted to
improve the accuracy concerning the newly acquired dataset.
However, the result of the adjustment also affects the accuracy
for the dataset used in the previous trainings. When the
accuracy for the past dataset decreases, the updated DNN is
not easily adopted. If a system operator finds that a concept
drift of input values happens, the decrease in accuracy for
the past dataset can be ignored because the past dataset and
its similar data are not input thereafter. However, since the
operator is not always able to detect changes in the distribution
of input values, they can rarely be confident that the decrease
in the accuracy for the past dataset can be ignored. Even if
the distribution changes due to concept drift, a part of the
input values before the change may still be included after the
change. In such cases, it should maintain a certain level of
accuracy for the past dataset. Therefore, the decision to use
the updated DNN is based on the accuracy for the past dataset
and the results of the concept drift evaluation. In addition,
in a number of application systems, the decision to adopt or
discard the updated DNN should be made as soon as possible
to prevent losing business opportunities. To quickly determine
whether to adopt the updated DNN, a quick evaluation of the
accuracy for the past dataset is necessary.

To grasp the effect of additionally conducted training on the
accuracy for the past dataset, it is sufficient to run the updated
DNN with all the input values included in the past dataset
and acquire its accuracy again. However, when the number of
input values in the past dataset is huge, it takes a long time
to execute that test. In other words, the accuracy of the DNN
cannot be evaluated quickly by the execution.

We propose a method for quickly evaluating the effect of
additional training on the accuracy for the past dataset [7].
In the proposed method, the gradient of the parameter values
is extracted by executing the DNN before updating the input
values in the past dataset. Then, after the additional training, its
effect on the accuracy for the past dataset is evaluated on the
basis of the gradient and the update differences of parameter
values of the DNN. We also leverage a linear regression
analysis to estimate the increase/decrease in accuracy. The
calculation amount to be performed after additional training
does not depend on the number of input values in the past
dataset. Therefore, even if the number of input values in the
past dataset is huge, applying the proposed method makes it
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possible to evaluate the effect of additional training quickly. To
demonstrate the usefulness of the proposed method, we show
the experimental results using the MNIST dataset, Fashion
MNIST, and The German Traffic Sign Recognition Benchmark
dataset.

The rest of this paper is organized as follows. In Section II,
the structure of DNNs and a flow of incremental learning are
defined. The problem that we focus on in incremental learning
is also described. In Section III, the proposed method is
defined on the basis of several calculation formulas. In Section
IV, the results of experiments applying the proposed method
to three datasets are shown. In Section V, the usefulness of the
proposed method is evaluated and discussed on the basis of the
experimental results. In Section VI, related work is described,
and in Section VII, the conclusions drawn from this study are
presented.

II. PRELIMINARIES

A. Deep Neural Networks

For an arbitrary DNN, denoted as N , handling a clas-
sification problem of class c(c > 1), I is taken as the
number of neurons making up N , and each neuron (in any
layer) is denoted as ni(1 ≤ i ≤ I). Also, Ji is taken as
the number of parameters used to calculate the value of ni,
and the parameter itself is denoted as [wi,1, ..., wi,j , ..., wi,Ji

].
Note that if ni1 and ni1 are included in different layers,
Ji1 and Ji2 can be different. Then, a vector obtained by
combining the parameters of all neurons is defined as W =
[w1,1, ..., w1,J1 , w2,1, ..., w2,J2 , ..., wI,1, ..., wI,JI

]. For a mul-
tilayer perceptron, for example, these parameters correspond
to weights and biases. Note that the formula for calculating
the value of each neuron by using these parameters is not
described in this paper.

For an arbitrary input value xm, the expected corresponding
output value is expressed as t(xm). t(xm) represents the
identifier of the classification class to which xm belongs.
When xm is input to N , the output value returned by N is
expressed as y(xm), which corresponds to the c-dimensional
vector [ym1 , ..., ymk , ..., ymc ]. The ymk value for each dimension
represents the probability that the input value xm belongs to
class k. If ymk has the largest value in [ym1 , ..., ymk , ..., ymc ], class
k is denoted as fst(y(xm)). That is, ∀ymk · ymk ≤ ymfst(y(xm))

holds. When fst(y(xm)) = t(xm) holds, it is said that N
can correctly classify xm. Likewise, if ymk has the second-
largest value, class k is denoted as snd(y(xm)). Namely,
∀ymk · ymk ̸= ymfst(y(xm)) ⇒ ymk ≤ ymsnd(y(xm)) holds.

Since the number of layers, neurons, and parameters are
generalized in the definition of DNNs and types of activation
functions are not specified, the proposed method can be
applied to any neural networks in which the gradient of
parameters is computable.

B. Incremental Learning

The flow of incremental learning assumed is shown in Fig.
1.

Fig. 1. Flow of incremental learning

In this flow, an untrained DNN N−1 is trained first by using
the training dataset of dataset #0. The trained DNN N0 is
evaluated by using test dataset of dataset #0. After testing,
N0 starts to be used. During its use, dataset #1 is newly
acquired. Then, N0 is trained again using the training dataset
of dataset #1, and the updated DNN N1 is evaluated in the
same way using the corresponding test dataset. However, N1

does not always maintain sufficient accuracy for dataset #0.
Accordingly, it is necessary to evaluate the effect of training
#1 on the accuracy for dataset #0. That necessity holds for the
following incremental learning.

Incremental learning can be categorized as domain-, task-,
and class-incremental learning [8]. We focus only on domain-
incremental learning [9] [10]. Namely, we assume that the
input distribution may change, but the number of classification
class c is not increased and no other tasks are added through
the incremental learning.

As for a DNN Ns(1 ≤ s), if a dataset for which the effect
should be evaluated is expressed as Xs, Xs is defined as
follows:

Definition 1:

Xs =

{
TD0 (s = 1)

Xs−1 ∪ TDs (otherwise)

where TDs represents the test dataset of dataset #s.

C. Problem Statement

Incremental learning is useful to adjust a DNN to changes
in the distribution of input values, which is known as concept
drift. However, even if the distribution of input values changes
due to concept drift, it does not necessarily mean that the
input values are completely changed to different values. For
example, when the range of input values is expanded, the past
input values are included in the new ones. In such cases,
an operator of the system using the DNN are concerned
about accuracy with respect to the past dataset. In actual
operations, the operator may not be able to determine if
concept drift actually occurs. Therefore, if the operator finds
that the accuracy for the past dataset decreases unexpectedly,
the updated DNN may be rejected. Thus, adjusting to the
new dataset and maintaining performance for the past dataset



Fig. 2. Usage of the proposed method

are required to be partially compatible, while being a trade-
off. Therefore, the decision to operate the updated DNN is
carefully made on the basis of the accuracy on the newly
obtained dataset, the accuracy on the past dataset, and the
results of the concept drift evaluation. When the updated DNN
is not adopted, either the training is retried or a rollback to
the past DNNs is executed.

To evaluate the accuracy of the updated DNNs with respect
to the past dataset, it is sufficient to test the DNNs with all
the data in the past dataset as input. For incremental learning,
the size of the past dataset gradually increases, and the time
required to evaluate the change in accuracy with respect to
the past dataset also increases. Then, until the test execution
on the past dataset is completed, the DNN before or after the
update is tentatively selected and used. If the operator does
not have any information of the change in accuracy for the
past dataset, the worse DNN may be selected. This results in
undesirable business losses. Therefore, we propose a method
to “quickly” estimate the change in accuracy with respect to
the past dataset. It enables the operator to select a tentative
DNN with consideration of the change in accuracy for the
past dataset.

As shown in Fig. 2, by using the proposed method, the
tentative DNN can be selected by referring to the estimated
change in accuracy for the past dataset until the actual change
in accuracy is obtained by testing. This could enable better
DNN operation, and potentially reduce the business losses.

The proposed method is useful for systems with the
following characteristics. First, the external environment of
the system, i.e., the distribution of input values, gradually
changes and there are both micro and macro trends of change.
Secondly, the system is real-time [11] and able to respond
immediately to changes in its external environment. Examples
of such systems are social infrastructure systems, such as
weather prediction, power control, and so on. In the case of
a system that forecasts electricity demand, even if there is a
change in the past several weeks, it may be transient due to
peculiar weather conditions. Therefore, the operator may be
discouraged from updating the DNN if the accuracy for the
past datasets is significantly decreased. Another example is a
stock price forecasting system. Updating the DNN based on
micro trend changes could lead to significant business losses.

III. PROPOSED METHOD

A. Positive and Negative Gradients

It is supposed that DNN Ns is developed by the sth training
on DNN Ns−1. The DNN deals with a classification problem
with class c(c > 1). For any input value xm contained
in Xs, the corresponding expected output value t(xm) is
defined. Since the effect of the DNN update is evaluated for
each classification class in the proposed method, we define
Xk

s ⊆ Xs as a set of input values with the same classification
class k. The purpose of the proposed method is to estimate
the change in accuracy for Xk

s when Ns−1 is updated to Ns.
Consider the case where DNN Ns−1 fails in the inference

of input value xm ∈ Xk
s , i.e., fst(y(xm)) ̸= t(xm). In this

case, xm can be a factor that improves the accuracy of Ns−1.
When Ns−1 is updated to Ns, if Ns succeeds in the inference
of xm, then the accuracy is increased. On the basis of this, we
would like to estimate how much the likelihood of successful
inference of xm increases when updating DNN Ns−1 to Ns.
Therefore, in the proposed method, we focus on value changes
of the c-dimensional vector y(xm) = [ym1 , ..., ymk , ..., ymc ]. To
avoid confusion between y(xm) in Ns−1 and y(xm) in Ns,
the output value of Ns−1 is hereafter described as y(xm) =
[ym1 , ., ymk , ..., ymc ] and the output value of Ns is y′(xm) =
[y′m1 , ..., y′mk , ..., y′mc ].

If Ns−1 fails in the inference, it means that ymt(xm) is not
the largest in y(xm), i.e. ymt(xm) < ymfst(y(xm)). Assume that
updated DNN Ns infers the output value of xm successfully.
In that case, y′mt(xm) has increased or ymfst(y(xm)) has decreased
so that y′mt(xm) ≥ y′mfst(y(xm)) holds. Therefore, we focus on
the value change of ymt(xm) and ymfst(y(xm)) to estimate the
likelihood of successfully inferring the output value of xm

with Ns. The more ymt(xm) increases, the more likely the output
value of xm is successfully inferred. This is also true the more
ymfst(y(xm)) decreases, the more likely the output value of xm

is successfully inferred. Note that fst(y(xm)) is the value with
respect to Ns−1. That is, y′mfst(y(xm)) represents the value after
ymfst(y(xm)), the largest element value of y(xm), is changed by
updating the DNN from Ns−1 to Ns.

Similarly, consider the case where accuracy is decreased by
updating the DNN. When the inference result of xm is changed
from success to failure, i.e., from ymt(xm) = ymfst(y(xm)) to
y′mt(xm) ̸= y′mfst(y′(xm)). The factors that cause the accuracy to
decrease are the values of ymfst(y(xm)) and y′mfst(y′(xm)). Here,
fst(y′(xm)) denotes the class with the largest element value
in y′(xm). Since the aim of this method is to estimate the
effect on Xk

s without running Ns with Xk
s , it is assumed that

fst(y′(xm)) is not known. Therefore, snd(y(xm)) is used
instead of fst(y′(xm)) in the proposed method. This is based
on the assumption that “If the probability corresponding to
class t(xm) in Ns is not the largest, then the class with the
largest probability in Ns is likely to be that with the second
largest probability in Ns−1.” Here, we assume that Ns−1

succeeds in the inference of xm, so the class with the largest
probability in Ns−1 is t(xm). If a class different from t(xm)
has the largest value in Ns, it is natural to believe that the



class is highly likely to be snd(y(xm)), the class with the
second highest probability in Ns−1. Therefore, to estimate the
possibility that xm fails in the inference after updating the
DNN, we focus on changes in ymt(xm) and ymsnd(y(xm)). The
more ymt(xm) decreases, the more likely it is that the inference
of xm fails. This is also true the more ymsnd(y(xm)) increases,
the more likely the inference of xm fails.

In the proposed method, Xk
s is input into Ns−1 and the

output values are inferred before updating from Ns−1 to Ns.
The set of input values that fail or succeed in the inference are
XF ⊆ Xk

s and XT ⊆ Xk
s , respectively. Here, XF ∩XT = ∅.

For the sake of simplicity, XT and XF are not given s and
k as subscripts. For xm ∈ XF , fst(y(xm)) ̸= t(xm) holds.
Similarly, for xm ∈ XT , fst(y(xm)) = t(xm) holds.

For xm ∈ XF , we define the positive loss PL to eval-
uate the change in value of ymt(xm) and ymfst(y(xm)), which
cause an accuracy increase. L is an arbitrary loss function.
The parameters of L are the output value y(xm) and the
supervisory signal. Updating the DNN so that PL decreases
increases the likelihood of a successful inference of xm ∈ XF .
For xm ∈ XT , we evaluate the value change of ymt(xm) and
ymsnd(y(xm)), which cause accuracy decrease. Then, we define
the negative loss NL. If the DNN is updated so that NL
decreases, it is more likely to fail in the inference of xm ∈ XF .

Definition 2:

PL(xm) = L(y(xm), t(xm))− L(y(xm), fst(y(xm)))

NL(xm) = L(y(xm), snd(y(xm)))− L(y(xm), t(xm))

Next, the gradient of parameter Ws−1 =
[w1,1, ..., wi,j , ..., wI,JI

] of Ns−1 with respect to PL(xm)
is calculated. The gradient of PL(xm), called the positive
gradient, is expressed by ∇PL(xm). Similarly, the gradient
of NL(xm), called the negative gradient, is expressed
by ∇NL(xm). ∇PL(xm) and ∇NL(xm) are defined as
follows:

Definition 3:

∇PL(xm) =

[
∂PL(xm)

∂w1,1
, ...,

∂PL(xm)

∂wi,j
, ...,

∂PL(xm)

∂wI,JI

]
∇NL(xm) =

[
∂NL(xm)

∂w1,1
, ...,

∂NL(xm)

∂wi,j
, ...,

∂NL(xm)

∂wI,JI

]
.

B. Effect Estimation

After ∇PL(xm) and ∇NL(xm) are created for Ns−1,
training #s is additionally executed, and DNN Ns is created.
Parameter Ws of Ns is compared with parameter Ws−1 of
Ns−1, and the update difference of parameter ∆Ws = Ws −
Ws−1, is acquired. By using ∆Ws, positive effect PI(xm, Ns)
and negative effect NI(xm, Ns) to xm is calculated as fol-
lows:

Definition 4:

PI(xm, Ns) = −∇PL(xm) ·∆Ws

NI(xm, Ns) = −∇NL(xm) ·∆Ws.

P I(xm, Ns) approximates the amount by which PL(xm)
is decreased by updating parameter Ws−1 to Ws.

Fig. 3. Decrease in PL and its approximate value

Likewise, NI(xm, Ns) corresponds to the approximate
decrease value in NL(xm). If ∆Ws is denoted as
[∆w1,1, ...,∆wi,j , ...,∆wI,JI

], PI(xm, Ns) corresponds
to

∑
i,j

(
−∂PL(xm)

∂wi,j
×∆wi,j

)
. For example, in the case that

loss function L is cross entropy, the relation between the
decrease value in PL(xm) due to updating wi,j by ∆wi,j ,
and its approximate value −∂PL(xm)

∂wi,j
× ∆wi,j is shown in

Fig. 3.
The same loss function is used as L as one used for

training Ns−1 from Ns−2. The training aims to reduce the
loss calculated on the basis of L (hereafter, training loss), in
which the expected output value is the supervisory signal of
the training. In this case, the output value of Ns in regard
to xm is more likely correct. This means that the decrease
value in training loss is a barometer for evaluating the change
in accuracy. It can therefore be assumed that PI(xm, N1),
which is an approximate decrease value in PL(xm), can be
taken as a barometer for evaluating the change of the output
value with respect to xm. This is also true for NL(xm).

The decrease value in PL(xm) indicates the extent to which
the likelihood of successfully inferring the output value of
xm ∈ XF is increased. Therefore, the sum of PL(xm) is
the barometer of the accuracy increase in XF . Similarly, the
decrease value in NL(xm) indicates the extent to which the
likelihood of failing in inferring the correct output value of
xm ∈ XT is increased. Thus, the sum of NL(xm) is a
barometer of the accuracy decrease in XT . On the basis of
the aforementioned considerations, the following EF (Xk

s , Ns)
can be used as a barometer for evaluating the change in
accuracy with respect to Xk

s = XF ∪XT .
Definition 5:

EF (Xk
s , Ns) =

XF∑
xm

PI(xm, Ns)−
XT∑
xm

NI(xm, Ns)

The purpose of the proposed method is to quickly estimate
the change in accuracy for the past dataset immediately after
updating the DNN. To achieve this, calculations that can be



performed before updating the DNN should be performed in
advance, and the amount of calculation after updating the DNN
should be minimized as much as possible. However, only
formulas of Definitions 2 to 3 can be performed before the
DNN is updated. Since parameter ∆Ws appears in Definition
4, subsequent calculations can only be executed after updating
the DNN. Moreover, since the computational complexity of the
formulas in Definitions 4 and 5 depends on the number of input
values contained in Xk

s , the amount of calculations performed
after updating the DNN will increase as incremental learning
progresses. Therefore, the calculations defined by Definitions
4 and 5 are replaced with the following ones defined in
Definitions 6 and 7.

Definition 6:

GradSum(Xk
s ) =

XF∑
xm

(−∇PL(xm))−
XT∑
xm

(−∇NL(xm))

Definition 7:

EF (Xk
s , Ns) = GradSum(Xk

s ) ·∆Ws

The formula in Definition 6 can be executed before the DNN
is updated. On the other hand, the formula in Definition 7 can
only be executed after the update. However, its computation
time is constant and independent of the number of input values
contained in Xk

s .

C. Regression model

EF should be a barometer to evaluate changes in accuracy.
More specifically, EF and accuracy are expected to have
a linear relationship, which means that EF increases and
decreases along with accuracy. This relationship is expected
regardless of the dataset. However, the scale of EF values
and the scale of accuracy values are different for each dataset.
In other words, these scales depend on dataset type (i.e., the
problem solved by the DNN) and DNN structure. Thus, there
is no general way to estimate the change in accuracy from EF .
However, if we target a specific dataset and DNN, we are able
to derive a formula regressionally from the actual calculation
results of the EF and the change in accuracy. Therefore, the
proposed method creates a linear regression model to estimate
the increase/decrease in accuracy from EF .

First, calculate EF for Xk
s from the s − 1th to sth

training, for N0 to Ns−1, respectively. That is, compute
EF (Xk

s , Ni)(1 ≤ i ≤ s − 1). Also, by performing the infer-
ence of N0 to Ns−1 with Xk

s , respectively, the actual increase
or decrease in accuracy with respect to Xk

s is measured. Using
these EF values and the increase/decrease in accuracy as
inputs, a linear regression model is created. In addition, of the
calculations to obtain EF (Xk

s , Ns), those in Definitions 2, 3,
and 6 are performed before training #s. Then, after training
#s, EF (Xk

s , Ns) is obtained in accordance with Definition
7. EF (Xk

s , Ns) is input to the linear regression model to
estimate the value of increase or decrease in accuracy with
respect to Xk

s due to the update from Ns−1 to Ns.
The number of samples to create the linear regression model

depends on the number of trainings s. In the experiment

shown in Section IV, When the number of training is 100
(s = 100), the regression model is created using the results
of 99 past trainings from #1 to #99. When creating the
regression model, the interquartile range is calculated and
outliers are removed from the samples. In more detail, let IQR
denote the interquartile range, Q1 denote the lower quartile,
and Q3 denote the upper quartile, then samples smaller than
Q1 − IQR ∗ 1.5 and larger than Q3 + IQR ∗ 1.5 are removed
as outliers. The samples larger than Q1 − IQR ∗ 1.5, and
Q3 + IQR ∗ 1.5 are also removed.

The amount of calculation of Definition 7 depends on the
number of elements of Ws (not the number of input values
contained in Xk

s ). Accordingly, even if the size of Xk
s is

enormous, a change in accuracy can be evaluated in a short
time. For a multilayer perceptron, the number of elements of
Ws is given as O(I2) for the number of neurons I constituting
Ns. The computational complexity of inference by the linear
regression model is independent of Xk

s and Ws. Therefore,
the calculation order of the proposed method after training #s
is given as O(I2).

D. Mini-batch for PL and NL

The proposed method assumes that there is sufficient time
between training #s − 1 and s. That is, there is sufficient
time to calculate EF (Xk

s , Ni)(1 ≤ i ≤ s − 1), to execute
DNNs N1 to Ns−1 with Xk

s to measure changes in accuracy,
and to execute formulas in Definitions 2, 3, and 6. However,
depending on the number of input values contained in Xk

s ,
these calculation resources may not be sufficient. In particular,
since the formulas in Definition 3 calculate the gradient
for each input value xm, they require much time if Xk

s is
enormous. In such a case, PL and NL are calculated for each
mini-batch as follows:

Definition 8:

PL(Xmb
F )

=
1

|Xmb
F |

Xmb
F∑

xm

(L(y(xm), t(xm))−L(y(xm), fst(y(xm))))

NL(Xmb
T )

=
1

|Xmb
T |

Xmb
T∑

xm

(L(y(xm), snd(y(xm)))−L(y(xm), t(xm)))

where Xmb
F and Xmb

T represents a mini-batch, and Xmb
F ⊆

XF and Xmb
T ⊆ XT hold. |Xmb

F | and |Xmb
T | denote the

number of data contained in Xmb
F and Xmb

T , respectively.
PI(Xmb

F ) and NI(Xmb
T , Ns) are calculated from the gra-

dient of PL(Xmb
F ) and NL(Xmb

T ), and ∆Ws, respectively.
Definition 9:

∇PL(Xmb
F ) =

[
∂PL(xm)

∂w1,1
, ...,

∂PL(xm)

∂wi,j
, ...,

∂PL(xm)

∂wI,JI

]
∇NL(Xmb

T ) =

[
∂NL(xm)

∂w1,1
, ...,

∂NL(xm)

∂wi,j
, ...,

∂NL(xm)

∂wI,JI

]



Definition 10:

PI(Xmb
F , Ns) = −∇PL(xm) ·∆Ws

NI(Xmb
T , Ns) = −∇NL(xm) ·∆Ws

The larger the size of mini-batch Xmb
F , the more its in-

ference results change from failure to success for more input
values. As a result, accuracy is likely to increase. Similarly, if
the size of mini-batch Xmb

T is large, then there are more input
values that may change from success to failure, and accuracy is
likely to decrease. Therefore, we calculate EF by multiplying
PI by |Xmb

F | and NI by |Xmb
T | as described in Definition 11.

Definition 11:

EF (Xk
s , Ns)

= (

XF∑
Xmb

F

PI(Xmb
F , Ns)∗|Xmb

F |)−(

XT∑
Xmb

T

NI(Xmb
T , Ns)∗|Xmb

T |)

Similar to the formulas of Definition 4, ∆Ws appears in
Definition 10. It can only be executed after the DNN is
updated. Since the computational complexities of Definitions
10 and 11 depend on the size of Xk

s , the amount of calculation
after the DNN update will increase as incremental learning
proceeds. Therefore, just as the formulas of Definitions 4
and 5 were rewritten as Definitions 6 and 7, respectively, the
formulas in Definitions 10 and 11 were rewritten as follows:

Definition 12:

GradSummb(Xk
s )

=

XF∑
Xmb

F

(−∇PL(Xmb
F ))−

XT∑
Xmb

T

(−∇NL(Xmb
T ))

Definition 13:

EF (Xk
s , Ns) = GradSummb(Xk

s ) ·∆Ws.

IV. EXPERIMENT

We experimentally applied the proposed method to the
MNIST [12], Fashion MNIST [13], and German Traffic Sign
Recognition Benchmark (GTSRB) [14] datasets. In the follow-
ing sections, arguments of the functions clear from the context
have been ommited.

A. Setup

In this experiment, it is assumed that trainings #0 to #100
are conducted. Two-thirds of the total dataset is used as
Dataset #0 (see Fig. 1). The remaining is divided equally to
create Datasets #1 through #100. For example, for the MNIST
dataset, which contains 70,000 image data, 46,666 data is
designated as Dataset #0, and Dataset #1 through #100 each
consist of approximately 233 data. The ratio of dividing each
dataset into the training and test datasets should be the same as
the ratio of the training to test datasets in the original dataset.
For the MNIST dataset, 60,000 and 10,000 data are provided
for the training and testing datasets, respectively, resulting in
a split ratio of 6:1.

As for the DNN models, we use a multilayer perceptron
with one hidden layer (composed of 1,000 neurons) in ad-
dition to the input and output layers and a CNN with two
convolutional layers with a kernel size of 3x3 and stride size
of 1. As for the GTSRB dataset, we use the mini-batch method
described in Section III-D because the size of the images (color
channels) is too large to calculate the gradient for every input
value in accordance with the formulas in Definition 3. In this
experiment, the size of the mini-batch is set to 50.

In training s = 100, EF (Xk
100, Ni)(1 ≤ i ≤ 99) are

calculated. In addition, the actual increase or decrease in
accuracy for N1 to N99 can be calculated by inputting Xk

100 to
them . Using these data as samples, a linear regression model
is created. Then, by inputting EF (Xk

100, N100) into this linear
regression model, the change in accuracy at training #100 is
estimated. Therefore, to evaluate the proposed method, we
would like to calculate the coefficient of determination for the
created regression model with test data. However, the test data
to evaluate the created regression model cannot be sufficiently
obtained since only the data to evaluate the regression model
is that at training #100. Even if training #101 is performed
subsequently, the target dataset Xk

100 will be updated to Xk
101,

and thus a different regression model will be created at training
#101. This means that only one data is used as input for each
regression model. We therefore calculate the R2 score of the
regression model at training #100 using the data of training
#1 to #99 that are used to create the regression model. If the
R2 score is high, the regression estimation performance for
the data from training #1 to #99 is also high. Furthermore,
we can say that the estimation performance for the data of
training #100 should be high since it is calculated in the same
way as that from training #1 to #99.

In each training, cross entropy is used as the loss function
L. The experiment was performed on an Ubuntu 20.04.4 LTS
machine equipped with two Intel® Xeon® Gold 6132 2.6-
GHz processors with 14 cores, 786-GB memory. It also has
eight NVIDIA® Tesla®V100 NVLink GPUs.

B. Results

For the MNIST dataset, the linear regression model resulting
from the experiment is shown in Fig. 4. The x- and y-axes
show the values of EF and the change in accuracy between
before and after the training, respectively.

The dots in Fig. 4 represent the data from training #1 to
#99 used to create the regression model. However, outliers
excluded on the basis of the interquartile range are not shown.
The triangles represent the accuracy change estimated by the
proposed method in training #100. The rectangles represent
the actual accuracy change in training #100 calculated by
executing the DNN with all input values included in Xk

100.
The results for the other datasets were generally similar with
a few exceptions. Cases where the results were not as expected
are discussed in Section .

The R2 scores of the linear regression models created for
the MNIST, Fashion MNIST, and GTSRB datasets are shown
in Table 5. Only R2 scores for classification classes 0 through



Fig. 4. Regression models of MNIST dataset

9 are shown. For the GTSRB dataset, the column “Average for
all classification classes” shows the average of all 43 classes.

The proposed method can be applied after training #s = 3
because a minimum of two samples are required to create
a linear regression model. For example, in training #s = 3,
EF (Xk

3 , N1), EF (Xk
3 , N2) and these corresponding changes

in accuracy are used to create a regression model. For the
MNIST dataset, the time taken to apply the proposed method
and that to run the multilayer perceptron with all input values
contained in Xs for s = 3, 4, ..., 100 are plotted in Fig. 6.

Fig. 6 indicates that the test execution time increases with
the number of trainings since the number of input values
in Xs increases. In contrast, in the proposed method, it is
confirmed that the evaluation can be performed in almost the
same time regardless of the increase in the number of input
values. Similar results were obtained for the other datasets.
Note that the time of the proposed method includes only
the calculation executed after training #s, that is, that of the
formula in Definition 7 and the inference by the regression
model.

As shown in Fig. 6, the proposed method does not depend
on the number of input values in the past dataset. The larger
the past dataset is, the more useful the proposed method
is to obtain reference information for tentatively selecting a
DNN until the accurate change in accuracy is confirmed by
test execution. It is evident that the calculation order of the
formula in Definition 7 is O(I2) for each classification class
as mentioned in Section III-C. The amount of calculation
corresponding to the formulas in Definitions 2, 3, and 6
increases in accordance with the size of the past dataset.
However, those calculations are carried out before training
#s and are not included in the execution time after the
training. This means that the proposed method can estimate
the change in accuracy in a constant time, even if the number
of data included in the past dataset is enormous. However, the
proposed method is useful only when the past dataset is not
small. For example, in Fig. 6, about 10,000 input values of the
MNIST dataset are inferred in training #100, which takes only
about 11 sec. If the proposed method is used for tentatively
selecting DNNs as described in Section II-C, the shorter the
time until the accurate change in accuracy is confirmed by
testing, the less useful the proposed method will be. Assuming
that the proposed method is effective if it takes more than
one hour to confirm the accurate change in accuracy, the past
dataset should contain more than 3 million input values, as
calculated from the result of Fig. 6.

V. EVALUATION AND DISCUSSION

A. Validity of the evaluation

As mentioned in Section IV-A, the R2 score shown in Fig. 5
is calculated using the data used to create the regression model.
Xk

s is updated each time the number of trainings increases.
Hence, in the proposed method, the regression model is re-
created for each training. That is, in training #s, the regression
model is only used to estimate the change in accuracy for
Xk

s when the DNN is updated from Ns−1 to Ns, and is not
used thereafter. In other words, the only data that can be used
to evaluate the regression model is the data of training #s,
but one data is not sufficient for evaluation. Therefore, the
R2 score calculated from the data of training #1 to #s − 1
is used to evaluate the regression models alternatively, These
data are calculated from a DNN with the same structure and
dataset Xk

s as the data of training #s. Therefore, it can be
used to evaluate the performance of the regression model.
For example, suppose that the residuals between the data of
training #t(1 ≤ t ≤ s−1) and the regression model are small.



Fig. 5. R2 scores of regression models

Fig. 6. Calculation times

This means that the regression model can accurately estimate
the effect of the DNN updates in training #t for the dataset
Xk

s . If the same is generally true for any t, then it is highly
likely that the same regression model can accurately estimate
the effect of DNN updates in training #s for the same dataset
Xk

s . On the basis of the aforementioned consideration, we used
the data of training #1 to #s− 1 for the evaluation.

B. Performance

We were able to confirm that the average R2 score is around
0.6, which indicates that the proposed method can be expected
to perform at a certain level. In particular, if the proposed
method is used for the purpose of providing reference infor-
mation for selecting a tentative DNN, as described in Section
II-C, using the proposed method is preferable. The results of
the experiment also show that the estimation by the proposed
method is not always accurate. As shown in Fig. 5, the R2

scores of the regression models can be around 0.1 if it is low.
The limitations of the proposed method should be taken into
consideration when making use of it.

In a number of cases, especially for the CNN with the
GTSRB dataset, the linear relationship between EF and
accuracy change could not be confirmed. As examples, linear
regression models for the GTSRB dataset with classification
class k = 15 and 25 are shown in Fig. 7.

Fig. 7. Regression models for classification class k = 15 and 25 of GTSRB
dataset

In these cases, it is difficult to estimate the accuracy change
by the proposed method. One common point among these
cases is that the accuracy changes on the y-axis are smaller
than those in Fig. 6. This means that the inference result may
not change for many input values. In this case, the correlation
between EF and the change in accuracy should be low.

When DNN Ns−1 before being updated succeeds in the
inference (i.e., fst(y(xm)) = t(xm)) for many xminXk

s but
there is a large difference between the values of ymfst(y(xm))

and ymsnd(y(xm)), the inference results do not change even
though PI and NI change. In this case, since the num-
ber of input values in XF is small, the sum of PI will
slightly change. For the same reason, it is also unlikely that
accuracy will increase. However, since the number of input
values contained in XT is large, the sum of NI is likely
to increase significantly. According to the definition of NL
(in Definition 2), when ymfst(y(xm)) decreases or ymsnd(y(xm))

increases, NI increases. If there is a large difference between
those values, the value of ymfst(y(xm)) is seldom smaller than
that of ymsnd(y(xm)). That is, even if the value of NI increases,
the relationship ymfst(y(xm)) > ymsnd(y(xm)) is likely to remain
true and then accuracy will not decrease. Thus, the closer
the value of y(xm) is to t(xm) (one-hot representation of
t(xm) in reality) for most input values, the smaller the change
in accuracy becomes. This determines whether the proposed
method can accurately estimate change in accuracy.



C. Application to each classification class

The proposed method is applied to each classification class
k. We realized from experiments other than ones shown in
Section IV that when the proposed method is applied to Xs,
the R2 score of the regression model is lower than in the cases
of Xk

s . In the proposed method, the loss functions PL and NL
are defined on the basis of the probability values of y(xm) that
change the inference result. Then, the gradients of PL and NL
are calculated using the parameters of the DNN, and PI and
NI are the results of evaluating the similarity with the actual
DNN parameter change values ∆Ws. These values represent
the extent to which changes of the parameters cause “changes
in probability values that affect the inference result.” Since
EF is calculated from the PI and NI of all input values, it
represents the sum of the change in the probability values for
each input value that affect the inference result.

Here, we note that input values in the same classification
class are similar not only in the probability value but also
in the amount of change in the probability value that flips
the inference result from failure to success or vice versa. For
example, for a dataset consisting of input values in the same
classification class, the value of EF that flips the inference
result of an input value is assumed to be 5. Let us assume
that the dataset consists of five input values and the value
calculated as the sum of EF values of those input values is
10. There can be three typical cases: EF value of 2 from
all 5 input values, EF values of 10 from only 1 input value,
and EF values of 5 from 2 input values . In each case, the
number of input values whose inference result flips is 0, 1, and
2, respectively. That is, when (the sum of) EF is 10, it can
be estimated that the number of input values whose inference
result flips is from zero to two.

Next, consider the case where input values of different
classification classes are mixed. In this case, the values of EF
that would flip the inference result is different for each input
value. Suppose that if the dataset consists of the five input
values, the values of EF that flip the inference result is 1, 1,
3, 3, 10 for each input values, respectively. It is also supposed
that the value calculated as the sum of EF values of those
input values is 10. In this case, the number of input values
whose inference result flips could be any number from zero
to four. In other words, in this case, we can only narrow down
that the number of input values whose inference result flips
to be any between zero and four when EF is 10. Thus, when
input values of different classification classes are mixed, it is
more difficult to narrow down the number of input values for
which the inference result flips from EF compared with the
case where only input values of the same classification class
are included. This means that the correlation between EF and
accuracy changes will be lower for a mixed dataset. For this
reason, the proposed method is designed to be applied to each
classification class.

We also realized from another experiment that applying
the mini-batch method does not significantly change the R2

score. This can also be explained by the fact that input values

in the same classification class have similar features. If a
mini-batch Xmb was composed of various input values xm

with different characteristics, positive losses PL(xm) were
expected to be diverse. Since PL(Xmb) is calculated as
the average of PL(xm), PL(xm) and PL(Xmb) are not
similar for many xm in this case. However, mini-batches Xmb

consist of input values from the same classification class and
their inference results are the same. Therefore, the PL(xm)
calculated for each xm are all similar functions. Moreover,
their average, PL(Xmb), is also similar to PL(xm). From
these considerations, the value obtained by calculating PI
for each xm and summing them, and the value obtained by
calculating PI for each mini-batch Xmb and multiplying it
by the number of its elements |Xmb| are highly likely to be
similar. In other words, when the proposed method is applied
to each classification class, the mini-batch method is likely to
provide a similar result to the normal method. In fact, when
we experimented with varying the number of input values that
make up the mini-batch, no significant change in R2 scores
was observed.
PL(xm) is calculated for each input value xm included

in the mini-batch Xmb
F and the average value is used as

PL(Xmb
F ). Then, the gradient ∇PL(Xmb

F ) is obtained for
this average value. The gradient indicates how to update the
parameters of the DNN so that it has a good (changing from
failure to success) impact on average on the inference results
of the input values contained in the mini-batch. It is used to
compute the impact (i.e. EF ) on the entire mini-batch by com-
paring it with the update of the DNN parameters. On the other
hand, in the normal method, the gradient ∇PL(xm) indicates
how to update the parameters so that it has a good impact on
that input value. Recalling that the change in accuracy is the
accumulation of the change in inference results for individual
input values, the impact of the DNN update on individual
input values is considered to have a higher correlation with the
change in accuracy than the average impact on the mini-batch.
For example, suppose that ∇PL(x1) = α and ∇PL(x2) =
−α for a mini-batch consisting of x1 and x2. It is also assumed
that the parameters of the DNN are updated in the direction
that PL(x1) decreases. In that case, since PL(x2) increases,
the inference result for x2 remains a failure. On the other
hand, since PL(x1) decreases, the inference result for x1 is
likely to change from failure to success, which may result in
an increase in accuracy. However, if the mini-batch method
is applied, since ∇PL(Xmb

F ) = α − α = 0, the value of
PL(Xmb

F ) does not change, that is, PI(Xmb
F , Ns) = 0 even

though PL(x1) decreases. Thus, the application of the mini-
batch method can be a factor that reduces the correlation
between PI and changes in accuracy. The same is true with
NL. Therefore, the R2 score of the linear regression model is
likely to be lower when the mini-batch method is applied.

In the calculations of PL and NL, not only t(xm) but also
fst(y(xm)) and snd(y(xm)) are used, respectively. This is
because we expect to use cross entropy as loss function L.
Cross entropy uses only the probability value of a particular
classification class given as a supervisory signal. Therefore,



for PL, calculating the loss on the basis of only t(xm) as
the supervisory signal would only consider how much the
value of ymt(xm) increases. This means that the loss does
not include how much the value of ymfst(y(xm)) decreases.
Similarly, for NL, if only t(xm) is given as the supervisory
signal and the loss is calculated on the basis of it, only
by how much the value of ymt(xm) decreases is taken into
account. The loss does not include by how much the value of
ymsnd(y(xm)) increases. Therefore, the proposed method defines
the calculations of PL and NL so that the values of ymt(xm),
ymfst(y(xm)), and ymsnd(y(xm)) are considered as factors affecting
the change in accuracy. The mean squared error is calculated
using probability values other than the class given as the
supervisory signal. Therefore, if it is used as the loss function,
it may be possible to remove terms in which fst(y(xm))
and snd(y(xm)) appear from the formulas of PL and NL,
respectively.

In the experiments shown in Section IV, the original dataset
was randomly split, so the distribution of the data does
not change during incremental learning. This means that the
effectiveness of the proposed method for concept drift was
not evaluated. However, since the objective of the incremental
learning shown in Section II-B is to adapt the DNN to concept
drift as quickly as possible, it is assumed that the DNN is
updated at a higher frequency than the frequency at which
concept drift occurs. Hence, in many cases, the DNN will be
updated even though concept drift has not occurred. Evaluating
the effectiveness of the proposed method even when concept
drift occurs is a future task.

VI. RELATED WORK

To the author’s knowledge, no research on a method
for quickly evaluating incremental learning results has been
published. However, there are several works on incremental
learning that focus on the parameter of DNNs (weights and
biases) and the gradient of a loss function.

Kirkpatrick et al. [15] focused on a decrease in accuracy
in task-incremental learning [16] [17]. For example, when
training for task 2 is carried out after training for task 1,
the performance of the previously trained task (task 1) is
catastrophically reduced. This is called catastrophic forgetting
[18] [19] [20] [21] [22]. In response to this problem, they
proposed a method of identifying the parameters important in
regard to task 1, and training task 2 in a manner that minimize
changes to those parameters (important in regard to task 1).
Our proposed method does not distinguish the parameters of
the DNN. It may be possible to estimate the accuracy change
more accurately by identifying the parameters that contribute
to the accuracy change for the dataset and focusing on the
changes in those parameters as in their method.

In task-incremental learning and class-incremental learning,
distillation loss is used to mitigate catastrophic forgetting
[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]
[31]. Distillation loss represents the difference between the
inference results before and after learning. The more similar
the inference results, the smaller the distillation loss value.

Learning to minimize distillation loss in addition to the normal
loss enables inference results for the past dataset to be pre-
served. Kang et al. proposed a learning method that focuses on
the gradient of the loss function [32]. In this method, learning
is performed so that “the increase in the loss” for the past
dataset when the DNN is updated is minimized. To achieve
this, they focus on the gradient of the loss function for the
past dataset. On the basis of this gradient, the change in loss
for the past dataset is approximated and the DNN is updated
so that it is minimized. In our proposed method, PL and NL
are defined for the past dataset and the impact of DNN update
on the past dataset is estimated on the basis of their gradients.
From a general point of view, our method and Kang et al.’s
method are similar in that they focus on the gradient of the
loss function for the past dataset and estimate the impact of the
DNN update on the basis of the gradient. Unlike this method,
however, our proposed method aims to estimate the change in
accuracy for the past dataset. For this purpose, we propose PL
and NL, which is directly related to the change in accuracy,
rather than the normal loss.

In another approach, Belouadah et al. focused on that the
weights of a DNN before updating represents the past classes
in class-incremental learning [35]. Their method, which uses
weight to prevent catastrophic forgetting, is effective for
memoryless class-incremental learning where the past dataset
cannot be stored entirely. Our proposed method also utilizes
the change in weight before and after DNN update, which
is similar to their approach. However, our method cannot be
applied to memoryless class-incremental learning since we
cannot evaluate the accuracy for a past dataset without it.
Although it is possible to apply the proposed method using part
of the past dataset, the performance of the accuracy estimation
is expected to be lower in that case.

VII. CONCLUSION

We proposed a method for quickly evaluating the effect
of an additional training for the past dataset in incremental
learning. In the proposed method, the gradient of the parameter
values for the past dataset is extracted by running the DNN
before the additional training. After the training, a barometer
of the effect on the accuracy with respect to the past dataset
is calculated from the gradient and update differences of the
parameter values. Finally, the proposed method estimates the
change in accuracy by using a regression model created from
the EF s and actual changes in accuracy in the past trainings.
The computational complexity of the proposed method after
the training depends on the number of DNN parameters, not
on the amount of data in the past dataset. Therefore, even if
the amount of data included in the past dataset is enormous,
applying the proposed method makes it possible to evaluate the
effects of trainings quickly. When a DNN is updated during
operation, the proposed method enables a system operator to
decide whether to use the updated DNN with consideration
of the change in accuracy for the past dataset. The results
of our experiments indicate the usefulness of the proposed
method in terms of computation time and the coefficient



of determination for the regression model used to estimate
changes in accuracy. Even though the expected coefficient of
determination could not be confirmed in a number of cases,
using the proposed method to obtain reference information
for selecting a tentative DNN is preferable until an accurate
change in accuracy is confirmed by test execution?]. As for
future work, the proposed method will be more elaborately
evaluated using other datasets. In particular, the occurrence of
concept drift should be simulated in the evaluation. Moreover,
improving the means of creating EF will help in the search
for a more accurate evaluation of the change in accuracy.
For example, distillation loss discussed in Section VI may be
effective for the improvement.
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