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Abstract

In this paper, we present four general constructions of σ self-orthogonal matrix-product

codes associated with Toeplitz matrices. The first one relies on the σ′ dual of a known σ′

dual-containing matrix-product code; the second one is founded on quasi-σ̂ matrices, where

we provide an efficient algorithm for generating them on the basic of Toeplitz matrices; and

the last two ones are based on the utilization of certain special Toeplitz matrices. Concrete

examples and detailed comparisons are provided. As a byproduct, we also find an application

of Toeplitz matrices in τ̃-optimal defining matrices.
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1 Introduction

Let Fq denote the finite field with q elements, where q= ph is a prime power and let Fn
q denote the

n-dimensional vector space over Fq. Then an [n,k,d]q linear code C is a k-dimensional subspace

of Fn
q with minimum Hamming distance d and we call C a maximum distance separable (MDS)

code if d = n− k+1. For a given linear code C over Fq, we will use C⊥ to denote its dual code

with respect to a certain inner product (namely the Euclidean, Hermitian, Galois, symplectic or

σ inner product). A linear code C is said to be self-orthogonal if C ⊆ C⊥; dual-containing if

C⊥ ⊆ C , and self-dual if C = C⊥.

Since the very beginning of coding theory, the exploration of self-orthogonal codes has gar-

nered significant interest and emerged as a focal point. Extensive research on this topic has

revealed robust connections between self-orthogonal codes and diverse mathematical domains,

*School of Mathematics, Hefei University of Technology, Hefei, 230601, Anhui, China. Email: yangli-

math@163.com
†School of Mathematics, Hefei University of Technology, Hefei, 230601, Anhui, China. Email: zhushixin-

math@hfut.edu.cn (Corresponding author).
‡Institute of Mathematics, University of Valladolid, Spain. Email: Edgar.Martinez@uva.es.

1

http://arxiv.org/abs/2405.06292v1


including combinatorial t-design theory [2], group theory [15], lattice theory [4, 15, 18], modu-

lar forms [47], and quantum coding theory [8, 26]. Specifically speaking, finite groups such as

the Mathieu groups were linked to certain self-orthogonal codes, and the extended binary self-

orthogonal Golay code was associated with the Conway group. Additionally, self-orthogonal

codes have been used to produce many 5-designs [1]. For more details on self-orthogonal codes,

one can refer to the recent papers [3,14,20,27,30,31,35,48,50,52,55] and the references therein.

All these distinguished works have also stimulated the interest in the study of self-orthogonal

codes under various inner products.

On the other hand, matrix-product codes were introduced by Blackmore and Norton as a

generalization of many combinatorial constructions in [6] and hence, they provide efficient ways

to obtain new codes of larger lengths from known codes of short lengths. Note also that efficient

decoding algorithms for matrix-product codes were developed in [21–23]. Nowadays, matrix-

product codes have been widely studied and applied in various fields, such as locally recoverable

codes [37], symbol-pair codes [38], linear complementary pairs of codes [35], and digital nets

[42]. These results have also motivated us to further investigate the topic of matrix-product codes

in order to develop our constructions.

Combining the above two aspects, we had as a broad line of interest to study self-orthogonal

matrix-product codes. Moreover, we have in mind for this research the following two basic

observations.

(1) Since the Euclidean and Hermitian duals of matrix-product codes were determined in

[6, 54], many constructions of Euclidean and Hermitian self-orthogonal matrix-product

codes have been proposed in [9, 16, 24, 39, 53] and the references therein. Note that Cao

et al. recently characterized the σ duals of matrix-product codes in [12]. On this basis,

in the same paper, the authors obtained several constructions of σ dual-containing matrix-

product codes, but none of σ self-orthogonal matrix-product codes. Note also that when

considering the σ self-orthogonality, it seems that only constacyclic codes over rings were

studied in [34, 55]. Motivated by this, it is of particular interest to study σ self-orthogonal

matrix-product codes.

(2) On the other hand, the constructions of Hermitian self-orthogonal matrix-product codes

are closely related to the non-singular by columns (NSC) quasi-unitary matrices as it was

stated by Zhang in [53]. The authors have tried to find such matrices by employing Van-

dermonde matrices [10] and reverse NSC matrices [11]. Note that Toeplitz matrices have

recently gained substantial prominence in coding theory as a generalization of circulant ma-

trices and negacirculant matrices [28, 29, 32, 49] and that these matrices are conveniently

storable and computationally efficient [19, 40, 41, 44]. This leads us to study the matrix-

product codes related to Toeplitz matrices.

Combining the above two observations, we aim to study σ self-orthogonal matrix-product

codes associated with Toeplitz matrices in this paper. Four general constructions of σ self-

orthogonal matrix-product codes are presented, with many explicit examples. The following

are the main results of this paper.
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(1) The first general construction of σ self-orthogonal matrix-product codes, presented in The-

orem 3.1, relies on the σ′ dual of a known σ′ dual-containing matrix-product code. From

it, one can state the relationship between a linear code and its dual code with respect to a

certain inner product, see Remark 3.3.

(2) We introduce NSC quasi-σ̂ matrices in Definition 3.4 and present a concrete construction

for them in Theorem 3.5. An algorithm for generating NSC quasi-σ̂ matrices is further

provided in Algorithm 1 by employing Toeplitz matrices. Some sampling results given in

Table 2 also illustrate that Algorithm 1 is efficient. With the help of these NSC quasi-σ̂

matrices, we obtain the second general construction of σ self-orthogonal matrix-product

codes in Theorem 3.10.

(3) The last two general constructions of σ self-orthogonal matrix-product codes are presented

in Theorems 3.12 and 3.14 using certain special Toeplitz matrices. As a byproduct, we

also find an interesting connection between those Toeplitz matrices and τ̃-optimal defining

matrices in Remark 3.17.

This paper is organized as follows. Section 2 reviews some useful notions and results. Section

3 presents the four general constructions of σ self-orthogonal matrix-product codes as well as

many specific examples and provides detailed comparisons among them. Finally, Section 4

concludes this paper.

2 Preliminaries

In this paper, we will denote by q = ph a prime power and e will be an integer with 0≤ e≤ h−1.

F
n
q will denote the n-dimensional vector space over Fq and M (Fq,n) will denote the Fq-linear

space of n× n matrices over Fq. For two vectors u = (u1,u2, . . . ,un) and v = (v1,v2, . . . ,vn)
in F

n
q, we denote by dH(u,v) = ♯{i | ui 6= vi for 1 ≤ i ≤ n} their Hamming distance. 0 and O

will denote the zero vector and the zero matrix, respectively, whose sizes are unspecified here

and will depend on the context. In the following, we review and give some useful results on σ

inner products, σ duals, Toeplitz matrices, non-singular by columns matrices, and matrix-product

codes.

2.1 σ inner products and σ duals

Let σ be a mapping from F
n
q to F

n
q. The mapping σ is said to be an isometry if dH(σ(u),σ(v)) =

dH(u,v) for any u,v ∈ F
n
q. Moreover, if σ is linear, we call it a linear isometry. The group of all

isometries on F
n
q will be denoted by Aut(Fn

q). Two linear codes C1 and C2 are called isometric if

C2 = σ(C1) for some σ ∈Aut(Fn
q). Let MAut(Fn

q) be the monomial group consisted of the set of

linear maps given by monomial matrices in M (Fq,n). It can be easily checked that MAut(Fn
q)

corresponds to the group of all linear isometries of Fn
q.
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As the authors proved in [5, 46], when n≥ 3, isometries that map subspaces onto subspaces

are exactly the semilinear mappings of the form

σ = (τ,π) : F
n
q→ F

n
q

u 7→ τ(π(u)),

where τ is a linear isometry and π is an automorphism of the finite field Fq, abusing the nota-

tion π(u) = (π(u1),π(u2), . . . ,π(un)). We will denote by SLAut(Fn
q) the group of all semilinear

isometries on F
n
q. Under above definitions, for any σ = (τ,π) ∈ SLAut(Fn

q) and u ∈ F
n
q, there is

a monomial matrix Mτ ∈M (Fq,n) corresponding to τ such that

σ(u) = τ(π(u)) = π(u)Mτ. (1)

Note that each monomial matrix Mτ ∈M (Fq,n) can be decomposed as Mτ = DτPτ, where Dτ ∈
M (Fq,n) is a diagonal matrix and Pτ ∈M (Fq,n) is a permutation matrix for the permutation τ =(

1 2 · · · n

τ1 τ2 · · · τn

)
. Furthermore, Equation (1) can be expressed as σ(u) = π(u)DτPτ. Note

also that monomial and permutation matrices are non-singular matrices.

For σ = (τ,π) ∈ SLAut(Fn
q) with τ corresponding to a monomial matrix Mτ ∈ M (Fq,n),

Carlet et al. in [13] introduced the σ inner product of u and v ∈ F
n
q as

〈u,v〉σ =
n

∑
i=1

uiv
′
i,

where σ(v) = (v′1,v
′
2, . . . ,v

′
n). Then the σ dual of an [n,k]q linear code C is defined by

C⊥σ = {u ∈ F
n
q | 〈u,c〉σ = 0, ∀ c ∈ C}. (2)

As usually, C is called σ self-orthogonal if C ⊆ C⊥σ ; σ dual-containing if C⊥σ ⊆ C ; and σ

self-dual if C = C⊥σ .

For 0 ≤ e ≤ h− 1, let πe denote the Frobenius automorphism over Fq such that πe(u) =

(u
pe

1 ,u
pe

2 , . . . ,u
pe

n ) and πe(A) = (a
pe

i j ) for any u = (u1,u2, . . . ,un) ∈ F
n
q and A = (ai j) ∈M (Fq,n).

Let τid ∈ MAut(Fn
q) be the identity transformation and τsym ∈ MAut(F2n

q ) be the symplectic

transformation, that is, τid corresponds to an identity matrix In and τsym corresponds to a sym-

plectic matrix Ω2n =

(
O In

−In O

)
. Then it is clear that the σ inner product is a generalization

of the Galois (containing the Euclidean and Hermitian) inner product [13,17] and the symplectic

inner product [51]. Specifically speaking, we have the following.

(1) If τ = τid and π = πe, the (τid,πe) inner product coincides with the e-Galois inner product.

Moreover, if e= 0, the (τid,π0) inner product is the Euclidean inner product; and if e= h/2

with even h, the (τid,πh/2) inner product is the Hermitian inner product.

(2) If τ = τsym and π = π0, the (τsym,π0) inner product becomes the symplectic inner product.
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Note that relationships as above also exist for the Euclidean dual code C⊥E , the Hermitian

dual code C⊥H , the e-Galois dual code C⊥e , and the symplectic dual code C⊥S . In addition, we

also have C⊥σ = σ(C )⊥E from [13], where σ(C ) = πe(C )Mτ = {πe(c)Mτ | c ∈ C}. According to

the following lemma, σ(C )⊥E can be further determined.

Lemma 2.1. ([12, Lemma 3.2]) Let q = ph be a prime power and e be an integer with 0 ≤ e ≤
h− 1. Let C be an [n,k]q linear code. If σ = (τ,πe) ∈ SLAut(Fn

q), where τ corresponds to a

monomial matrix Mτ ∈M (Fq,n), then σ(C )⊥E = σ(C⊥E )(MT
τ Mτ)

−1.

2.2 Toeplitz matrices and non-singular by columns matrices

In this subsection, we review some basic results on Toeplitz matrices and non-singular by

columns (NSC) matrices, and then we prove that many NSC matrices can be obtained by known

NSC matrices.

Definition 2.2. Let q = ph be a prime power and A ∈M (Fq,n). We say that A is a Toeplitz

matrix if it has constant entries on all diagonals parallel to the main diagonal.

Definition 2.3. ([6, Definition 3.1]) Let q = ph be a prime power and A ∈M (Fq,n). Let Aℓ be

the ℓ×n matrix consisting of the first ℓ rows of A and A j1, j2,..., jℓ be the ℓ× ℓ matrix consisting of

columns j1, j2, . . . , jℓ of Aℓ. We call A a non-singular by columns (NSC) matrix if A j1, j2,..., jℓ is

non-singular for any 1≤ ℓ≤ n and 1≤ j1 < j2 < .. . < jℓ ≤ n.

The following two lemmas are known.

Lemma 2.4. ([49, Theorem 1]) Let q = ph be a prime power and A ∈M (Fq,n) be any Toeplitz

matrix. Then A = QAT Q, where Q = adiag(1,1, . . . ,1) ∈M (Fq,n) is an anti-diagonal matrix.

Lemma 2.5. ([6, Lemma 4.3]) Let q = ph be a prime power and A ∈M (Fq,n) be NSC. Then

Q(A−1)T ∈M (Fq,n) is NSC.

Theorem 2.6. Let q = ph be a prime power and A ∈M (Fq,n) be NSC. Then for any diagonal

matrix D = diag(d1,d2, . . . ,dn) ∈M (Fq,n) with di 6= 0 for any 1 ≤ i ≤ n, both DA and AD are

NSC.

Proof. Since A is NSC and di 6= 0 for any 1≤ i≤ n, it holds that

det((DA) j1, j2,..., jℓ) = det((AD) j1, j2,..., jℓ) =

(
ℓ

∏
i=1

d ji

)
det(A j1, j2,..., jℓ) 6= 0

for any 1≤ ℓ≤ n and 1≤ j1 < j2 < .. . < jℓ ≤ n. By Definition 2.3, we complete the proof.

With above definitions, it is also easy to check that A ∈M (Fq,n) must be non-singular if A is

NSC, and πe(Q) = Q−1 = QT = Qn = Q for any 0≤ e≤ h−1 and any positive integer n. Based

on Lemmas 2.4 and 2.5, we then deduce that πe(A)
−1Q is also NSC for any 0≤ e≤ h−1 if A is

an NSC Toeplitz matrix as follows.
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Theorem 2.7. Let q = ph be a prime power and A ∈M (Fq,n) be an NSC Toeplitz matrix. Then

for any 0≤ e≤ h−1, πe(A)
−1Q ∈M (Fq,n) is NSC.

Proof. Since A is NSC, then

det(πe(A) j1, j2,..., jℓ) = πe(det(A j1, j2,..., jℓ)) = (det(A j1, j2,..., jℓ))
pe

6= 0

for any 1≤ ℓ≤ n, 1≤ j1 < j2 < .. . < jℓ ≤ n and 0≤ e≤ h−1, which implies that πe(A) is NSC.

Since A is a Toeplitz matrix, it follows from Lemma 2.4 that

πe(A)
T = πe(QAQ) = Qπe(A)Q.

By Lemma 2.5, we immediately get that

Q(πe(A)
−1)T = Q(πe(A)

T )−1 = Q(Qπe(A)Q)−1 = πe(A)
−1Q ∈M (Fq,n)

is NSC. This completes the proof.

2.3 Matrix-product codes and their σ duals

In this subsection, we recall some basic concepts and results on matrix-product codes, involving

their definition, parameters, and dual codes under both the Euclidean and σ inner products.

Definition 2.8. ([6, Definition 2.1]) Let q = ph be a prime power and A ∈M (Fq,s). Let Ci be

an [n,ki,di]q linear code for i = 1,2, . . . ,s. A matrix-product code C (A) = [C1,C2, . . . ,Cs] ·A is

defined as the set of all matrix-products [c1,c2, . . . ,cs] ·A, where ci = (c1i,c2i, . . . ,cni)
T ∈ Ci for

i = 1,2, . . . ,s, A is called the defining matrix of C (A), and C1,C2, . . . ,Cs are called the input codes

of C (A). A classical codeword c = [c1,c2, · · · ,cs] ·A∈ C (A) can be expressed as the n× s matrix

c =




∑
s
i=1 c1iai1 ∑

s
i=1 c1iai2 · · · ∑

s
i=1 c1iais

∑
s
i=1 c2iai1 ∑

s
i=1 c2iai2 · · · ∑

s
i=1 c2iais

...
...

. . .
...

∑
s
i=1 cniai1 ∑

s
i=1 cniai2 · · · ∑

s
i=1 cniais


 .

Moreover, if we regard ci = (c1i,c2i, . . . ,cni) ∈ Ci as a row vector of length n for 1 ≤ i ≤ s, then

any codeword of C (A) can also be viewed as a row vector of length sn, that is,

c =

(
s

∑
i=1

ai1ci,
s

∑
i=1

ai2ci, . . . ,
s

∑
i=1

aisci

)
.

Note that Definition 2.8 is indeed valid for any s× t matrix A over Fq. However, we only

consider the case s = t in this paper. The reason for this convention arises from the following

series of lemmas.
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Lemma 2.9. ([22,43]) Let q = ph be a prime power and A∈M (Fq,s) be non-singular. Let Ci be

an [n,ki,di]q linear code for i = 1,2, . . . ,s. Then C (A) is an [sn,∑s
i=1 ki,≥ d]q linear code, where

d = min{Di(A)di | 1≤ i ≤ s} and Di(A) denotes the minimum distance of the [s, i]q linear code

generated by the first i rows of A.

Lemma 2.10. ([6, Proposition 6.2]) Let q = ph be a prime power and A ∈M (Fq,s) be non-

singular. Let Ci be an [n,ki,di]q linear code for i = 1,2, . . . ,s. Then the Euclidean dual of C (A)
is

C (A)⊥E = [C⊥E

1 ,C⊥E

2 , . . . ,C⊥E
s ] · (A−1)T .

Remark 2.11. From [6], the minimum distance of a matrix-product code shown in Lemma 2.9

may be sharper when the defining matrix is NSC, and in this case one can also obtain a lower

bound on the minimum distance of its Euclidean dual code.

Lemma 2.12. ([6, Theorems 3.7 and 6.6]) Let q= ph be a prime power and A∈M (Fq,s) be NSC.

Let Ci be an [n,ki,di]q linear code with Euclidean dual distance d
⊥E
i for i= 1,2, . . . ,s. Then C (A)

and its Euclidean dual code have respective parameters [sn,∑s
i=1 ki,≥ d]q and [sn,sn−∑

s
i=1 ki,≥

d⊥E ]q, where d = min{(s+1− i)di | 1≤ i≤ s} and d⊥E = min{id⊥E
i | 1≤ i≤ s}.

Next, we recall some basic results on σ duals of matrix-product codes. To this end, we need

to introduce the Kronecker product of two matrices.

Definition 2.13. ([25, Section 11.4]) Let q = ph be a prime power, A = (ai j) ∈M (Fq,s), and

B ∈M (Fq, t). The Kronecker product of A and B is defined by

A⊗B =




a11B a12B · · · a1sB

a21B a22B · · · a2sB
...

...
. . .

...

as1B as2B · · · assB


 ∈M (Fq,st).

Lemma 2.14. ([12, Theorem 4.4 and Remark 4.5 (2)]) Let q = ph be a prime power and e

be an integer with 0 ≤ e ≤ h− 1. Let Ci be an [n,ki,di]q linear code for i = 1,2, . . . ,s and

A ∈M (Fq,s) be non-singular. Set σ = (τ,πe) ∈ SLAut(Fsn
q ) and σ′ = (τ′,πe) ∈ SLAut(Fn

q),
where τ corresponds to a monomial matrix Mτ = DτPτ ∈ M (Fq,sn) and τ′ corresponds to a

monomial matrix Mτ′ = Dτ′Pτ′ ∈M (Fq,n). If there is a monomial matrix Mτ̂ ∈M (Fq,s) such

that Mτ = Mτ̂⊗Mτ′ , then the σ dual of C (A) is

C (A)⊥σ = [C
⊥σ′

1 ,C
⊥σ′

2 , . . . ,C
⊥σ′
s ] ·

(
MT

τ̂
πe(A)

T
)−1

.

Lemma 2.15. ([12, Theorem 4.6 and Remark 4.7 (2)]) Let q = ph be a prime power and e

be an integer with 0 ≤ e ≤ h− 1. Let Ci be an [n,ki,di]q linear code for i = 1,2, . . . ,s and

A∈M (Fq,s). Set σ= (τ,πe)∈ SLAut(Fsn
q ) and σ′= (τ′,πe)∈ SLAut(Fn

q), where τ corresponds

to a monomial matrix Mτ = DτPτ ∈M (Fq,sn) and τ′ corresponds to a monomial matrix Mτ′ =

7



Dτ′Pτ′ ∈M (Fq,n). If there is a monomial matrix Mτ̂ ∈M (Fq,s) such that Mτ = Mτ̂⊗Mτ′ and

AMτ̂
T πe(A)

T = diag(d1,d2, . . . ,ds) ∈M (Fq,s), then the intersection of C (A) and C (A)⊥σ is

C (A)∩C (A)⊥σ = [C ′1,C
′
2, . . . ,C

′
s] ·A with C ′i =

{
Ci, if di = 0,

Ci∩C
⊥σ′

i , if di 6= 0.
(3)

Theorem 2.16. With the notations and conditions as in Lemma 2.15. If di = 0 or Ci is σ′ self-

orthogonal for 1≤ i≤ s, then C (A) is σ self-orthogonal.

Proof. Note that Ci is σ′ self-orthogonal if and only if Ci = Ci∩C
⊥σ′

i . Then combining the given

conditions and Equation (3), we have C ′i = Ci for any 1 ≤ i ≤ s. It follows from Lemma 2.15

that C (A)∩C (A)⊥σ = [C1,C2, . . . ,Cs] ·A = C (A), which implies that C (A)⊆ C (A)⊥σ . Therefore,

C (A) is σ self-orthogonal under the described conditions.

Remark 2.17. Since det(Mτ̂) 6= 0 for any monomial matrix Mτ̂ ∈M (Fq,s), it follows from the

condition AMτ̂
T πe(A)

T = diag(d1,d2, . . . ,ds) that

det(A)det(πe(A)) = (det(A))pe+1 =

(
s

∏
i=1

di

)
det(Mτ̂)

−1 6= 0

if and only if di 6= 0 for any 1≤ i≤ s. In other words, if di = 0 for some 1≤ i≤ s, then det(A)= 0,

and hence, A is not NSC. Combining Remark 2.11, the case di = 0 for some 1≤ i ≤ s, feasible

in Theorem 2.16, may not be interesting in practice. As a result, we will expect to find NSC

matrices A, monomial matrices Mτ̂, and σ′ self-orthogonal codes C1,C2, . . . ,Cs that satisfy the

conditions in Theorem 2.16 to derive σ self-orthogonal matrix-product codes.

3 Four general constructions of σ self-orthogonal matrix-

product codes associated with Toeplitz matrices

In this section, we provide four general constructions of σ self-orthogonal matrix-product codes.

The first one relies on the σ′ dual of a known σ′ dual-containing matrix-product code; the second

one is founded on the so-called quasi-σ̂ matrix (see Definition 3.4); and the last two ones are

based on the utilization of certain special Toeplitz matrices. As a byproduct, we also provide a

connection between these special Toeplitz matrices and the τ̃-optimal defining matrices recently

introduced in [9].

3.1 The first general construction via σ′ duals of known σ′ dual-containing

matrix-product codes

We will begin with two important observations.

(1) On one hand, we notice that several families of q-ary σ′ dual-containing matrix-product

codes have been constructed in [12, Section 5] for some special σ′ ∈ SLAut(Fsn
q ) with

q ∈ {4,5,7,8,9,11,13}.
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(2) On the other hand, it is well-known that for any linear code C , C⊥E (resp. C⊥H , C⊥e , and

C⊥S) is Euclidean (resp. Hermitian, e-Galois, and symplectic) self-orthogonal if and only

if C is Euclidean (resp. Hermitian, (h− e)-Galois, and symplectic) dual-containing.

Motivated by the facts above, the following natural question arises: whether it is possible to

construct σ self-orthogonal matrix-product codes by considering the σ′ dual of a known σ′-dual

containing matrix-product code. The following theorem gives an affirmative answer to this ques-

tion.

Theorem 3.1. (Construction I) Let q = ph be a prime power and e,e′ be two integers with 0≤
e,e′≤ h−1. Let Ci be an [n,ki,di]q linear code with Euclidean dual distance d

⊥E
i for i= 1,2, . . . ,s

and A∈M (Fq,s) be non-singular. Let σ= (τ,πe)∈ SLAut(Fsn
q ) and σ′=(τ′,πe′)∈ SLAut(Fsn

q ),
where τ corresponds to a monomial matrix Mτ ∈M (Fq,sn) and τ′ corresponds to a monomial

matrix Mτ′ ∈M (Fq,sn). Then the following statements hold.

(1) If e′≡ h−e (mod h) and πe(Mτ′) = tMT
τ for some t ∈F∗q, then C (A) is a σ′ dual-containing

matrix-product code if and only if C (A)⊥σ′ is a σ self-orthogonal matrix-product code.

(2) If A is NSC, then C (A) has parameters [sn,∑s
i=1 k1,≥ d]q and C (A)⊥σ′ has parameters

[sn,sn−∑
s
i=1 k1,≥ d⊥σ′ ]q, where d =min{(s+1− i)di | 1≤ i≤ s} and d⊥σ′ =min{id⊥E

i |
1≤ i≤ s}.

Proof. (1) Recall that C⊥σ̃ = σ̃(C )⊥E and σ̃(C ) = πe(C )Mτ̃ for any [n,k]q linear code C and any

σ̃ = (τ̃,πe) ∈ SLAut(Fn
q), where τ̃ corresponds to a monomial matrix Mτ̃ ∈M (Fq,n). It then

follows from the given conditions, Lemma 2.1, and the linearity of C (A) that

(C (A)⊥σ′ )⊥σ = σ

((
C (A)⊥σ′

)⊥E

)(
MT

τ Mτ

)−1

= σ

((
σ′(C (A))⊥E

)⊥E

)
M−1

τ

(
MT

τ

)−1

= πe (πh−e(C (A))Mτ′)MτM−1
τ

(
MT

τ

)−1

= C (A)πe(Mτ′)
(
MT

τ

)−1

= C (A).

(4)

Hence, C (A)⊥σ′ ⊆ C (A) if and only if C (A)⊥σ′ ⊆
(
C (A)⊥σ′

)⊥σ
, that is, C (A) is σ′ dual-containing

if and only if C (A)⊥σ′ is σ self-orthogonal. On the other hand, from [12, Theorem 4.4], C (A)⊥σ′

is still a matrix-product code. Combining these two aspects, we complete the proof of the result

(1).

(2) Using similar calculations as in the proof of the result (1) above, we deduce that

C (A)⊥σ′ = πe′
(
C (A)⊥E

)(
MT

τ′

)−1
. Hence, C (A)⊥σ′ has the same parameters as C (A)⊥E . Since

A ∈M (Fq,s) is NSC, the parameters of C (A) and C (A)⊥E can be immediately obtained from

Lemma 2.12. This completes the proof the result (2).
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Example 3.2. Let q= ph be a prime power and t ∈F∗q be any element. Recall that several families

of q-ary σ′ dual-containing matrix-product codes were constructed in [12, Section 5] based on

Lemma 2.14. Assume that σ′ = (τ′,πe′) ∈ SLAut(Fsn
q ). One can further note that in [12, Section

5], τ′ always corresponds to a monomial matrix Mτ′ = Mτ̃⊗ In with Mτ̃ ∈ M (Fq,s) being a

monomial matrix. From Theorem 3.1, to derive σ self-orthogonal matrix-product codes from

these σ′ dual-containing matrix-product codes, it suffices to take σ = (τ,πh−e′) ∈ SLAut(Fsn
q )

such that τ corresponds to the monomial matrix

Mτ = t−1πh−e′(Mτ′)
T

=
(
t−1Is⊗ In

)(
πh−e′

(
MT

τ̃

)
⊗ IT

n

)

=
(

t−1πh−e′ (Mτ̃)
T
)
⊗ In.

(5)

Specifically speaking, we have the following results.

(1) In Theorems 5.5, 5.8, 5.11, 5.14, 5.17 and 5.20 of [12], e′ = 0 and Mτ̃ being symmetric are

restricted. Following Equation (5), we can take σ = (τ,πh) = (τ,π0), where τ corresponds

to the monomial matrix

Mτ =
(
t−1πh

(
MT

τ̃

))
⊗ In =

(
t−1π0 (Mτ̃)

)
⊗ In = t−1Mτ′.

Then we immediately get several classes of q-ary σ self-orthogonal matrix-product codes

by taking σ′ duals of these existing σ′ dual-containing matrix-product codes.

(2) Let ω be a primitive element of F4. In Theorem 5.2 of [12], two classes of quaternary σ′

dual-containing matrix-product codes were constructed, where σ′ = (τ′,π1) and τ′ corre-

sponds to a monomial matrix Mτ′ = Mτ̃⊗ In with Mτ̃ listed in the second column of Table

1. Following Equation (5), we can take σ = (τ,π1), where τ corresponds to a monomial

matrix Mτ listed in the third column of Table 1. Again, we directly obtain two classes

of quaternary σ self-orthogonal matrix-product codes by taking σ′ duals of the σ′ dual-

containing matrix-product codes constructed in [12, Theorems 5.2].

Table 1: The monomial matrices Mτ̃ and Mτ in Example 3.2 (2)
Finite field Fq Mτ̃ Mτ Reference

q = 4




1 0 0 0

0 0 0 ω+1

0 0 1 0

0 ω 0 0







t−1 0 0 0

0 0 0 t−1ω2

0 0 t−1 0

0 t−1ω 0 0


⊗ In [12, Theorem 5.2 1)]

q = 4




ω+1 0 0 0

0 0 1 0

0 ω 0 0

0 0 0 ω+1







t−1ω 0 0 0

0 0 t−1ω2 0

0 t−1 0 0

0 0 0 t−1ω


⊗ In [12, Theorem 5.2 2)]

We end this subsection with the following remark.
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Remark 3.3. Taking into account Equation (4), it is easy to conclude that (C⊥σ′ )⊥σ = C for

any [n,k]q linear code C provided that σ = (τ,πe) ∈ SLAut(Fn
q) and σ′ = (τ′,πe′) ∈ SLAut(Fn

q),
where τ corresponds to a monomial matrix Mτ ∈M (Fq,n) and τ′ corresponds to a monomial

matrix Mτ′ ∈M (Fq,n) satisfying e′ ≡ h− e (mod h) and πe(Mτ′) = tMT
τ for some t ∈ F

∗
q. In

particular, we have the following subcases.

(1) τ = τ′ = τid . In this case, Mτ = Mτ′ = In, then we have πe(In) = tIT
n with t = 1 for any

0 ≤ e ≤ h− 1. It implies that (C⊥h−e)⊥e = C . Moreover, we get that (C⊥E )⊥E = C and

(C⊥H )⊥H = C .

(2) τ = τ′ = τsym and n is even. In this case, Mτ = Mτ′ = Ωn, then we have π0(Ωn) = tΩT
n with

t =−1. It deduces that (C⊥S)⊥S = C .

Therefore, one has a unified framework for the relationship between a linear code and its dual

code with respect to a certain inner product that follows from the proof of Theorem 3.1. Note

also that this framework can not be obtained from the results in [34, 55].

3.2 The second general construction via quasi-σ̂ matrices obtained from

general Toeplitz matrices

In this subsection, we present the second general construction of σ self-orthogonal matrix-

product codes. We first introduce the concept of quasi-σ̂ matrices, which generalizes the well-

known quasi-orthogonal matrices and quasi-unitary matrices.

Definition 3.4. Let q = ph be a prime power and e be an integer with 0 ≤ e ≤ h− 1. Set

A ∈M (Fq,s) and σ̂ = (τ̂,πe) ∈ SLAut(Fs
q), where τ̂ corresponds to a monomial matrix Mτ̂ ∈

M (Fq,s). If AMT
τ̂

πe(A)
T ∈M (Fq,s) is a diagonal matrix with all nonzero diagonal elements,

then we call A a quasi-σ̂ matrix. In particular, a quasi-σ̂ matrix coincides with a quasi-orthogonal

matrix if σ̂ = (τid,π0); and a quasi-unitary matrix if σ̂ = (τid,πh/2) and h is even.

According to Lemma 2.15 and Theorem 2.16, the construction of quasi-σ̂ matrices is closely

related to the existence of σ self-orthogonal matrix-product codes. This motivates us to give an

explicit way for obtaining NSC quasi-σ̂ matrices as follows.

Theorem 3.5. Let q = ph be a prime power, r = 2e if 0≤ e≤ h
2

and r = 2e−h if h
2
< e≤ h−1.

Let g = gcd(r,h) and Fpg be the subfield of Fq with pg elements. Suppose that A ∈M (Fq,s) is

an NSC matrix and Mτ̃ = Dτ̃P̃τ ∈M (Fq,s) is a monomial matrix such that AMτ̃ ∈M (Fpg,s). If

all leading principal minors of AMτ̃πe(AMτ̃)
T are nonzero, then there is a unit lower triangular

matrix L ∈M (Fq,s) such that LA ∈M (Fq,s) is an NSC quasi-σ̂ matrix, where σ̂ = (τ̂,πe) ∈
SLAut(Fs

q) and τ̂ corresponds to the diagonal matrix Mτ̂ = Dτ̃πe(Dτ̃) ∈M (Fq,s).

Proof. Under the given conditions, for any a∈Fpg ⊆Fq, we have π2e(a)= πr(a)= a if 0≤ e≤ h
2
;

and π2e(a) = πr+h(a) = πr(πh(a)) = a if h
2
< e≤ h−1. Since AMτ̃ ∈M (Fpg,s), we get that

πe

(
AMτ̃πe(AMτ̃)

T
)T

= π2e(AMτ̃)πe(AMτ̃)
T = AMτ̃πe(AMτ̃)

T .
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It implies that

AMτ̃πe(AMτ̃)
T =

(
Bs−1 bs−1

πe(bs−1)
T bs

)
, (6)

where Bs−1 ∈ M (Fq,s− 1) satisfies πe(Bs−1)
T = Bs−1 and det(Bs−1) 6= 0, bs−1 is a column

vector of length s−1 over Fpg and πe(bs) = bs. Since Bs−1 is non-singular, we are able to take

Ls−1 =

(
Is−1 0(s−1)×1

−πe(bs−1)
T B−1

s−1 1

)
. (7)

Then it can be checked that Ls−1 is a unit lower triangular matrix and

Ls−1AMτ̃πe(Mτ̃)
T πe(A)

T πe(Ls−1)
T

=

(
Is−1 0(s−1)×1

−πe(bs−1)
T B−1

s−1 1

)(
Bs−1 bs−1

πe(bs−1)
T bs

)(
Is−1 −πe(B

−1
s−1)

T π2e(bs−1)
01×(s−1) 1

)

=

(
Bs−1 bs−1

01×(s−1) −πe(bs−1)
T B−1

s−1bs−1+bs

)(
Is−1 −πe((B

T
s−1)

−1)bs−1

01×(s−1) 1

)

=

(
Bs−1 0(s−1)×1

01×(s−1) −πe(bs−1)
T B−1

s−1bs−1+bs

)
,

(8)

where −πe(bs−1)
T B−1

s−1bs−1 +bs 6= 0 since

det
(
Ls−1AMτ̃πe(Mτ̃)

T πe(A)
T πe(Ls−1)

T
)
= det

(
AMτ̃πe(AMτ̃)

T
)
6= 0.

Note that all leading principal minors of Bs−1 are still nonzero and πe(Bs−1)
T = Bs−1, then

the above processes shown in Equations (6), (7), and (8) can be repeated for Bs−1. Note also

that they can be iterated s−2 times. Take L′s−i−1 =

(
Ls−i−1 0(s−i)×i

0i×(s−i) Ii

)
for 1≤ i≤ s−2 and

L = L′1L′2 · · ·L
′
s−2Ls−1. Then it is clear that L is a unit lower triangular matrix such that

LAMτ̃πe(Mτ̃)
T πe(A)

T πe(L)
T = (LA)

(
Mτ̃πe(Mτ̃)

T
)

πe(LA)T = (LA)Mτ̂πe(LA)T

is a diagonal matrix with all nonzero diagonal elements, where Mτ̂ = MT
τ̂
= Mτ̃πe(Mτ̃)

T =
Dτ̃πe(Dτ̃). Let σ̂ = (τ̂,πe) and τ̂ corresponds to the diagonal matrix Mτ̂. By Definition 3.4,

LA is just a quasi-σ̂ matrix. Since the matrix A is NSC and L is a unit lower triangular matrix, it

can be verified that

det((LA) j1, j2,..., jℓ) = det(A j1, j2,..., jℓ) 6= 0

for any 1≤ ℓ≤ s and 1≤ j1 < j2 < .. . < jℓ ≤ s. By Definition 2.3, LA is also a NSC matrix. We

have completed the whole proof.

Remark 3.6. With the notations and conditions as in Theorem 3.5. On one hand, if we take A

and Mτ̃ from M (Fpg,s), then AMτ̃ must be in M (Fpg,s). On the other hand, if we take Mτ̃ = Is

and e = h/2 with even h in Theorem 3.5, then Mτ̂ = Is, which implies that σ̂= (τ̂,πe) = (τid,πh/2)
coincides with the Hermitian inner product. It means that LA is just an NSC quasi-unitary matrix

in this case, which is the same as [10, Theorem 5]. Consequently, Theorem 3.5 can also be

regarded as a generalization of [10, Theorem 5].
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It should be emphasized that Theorem 3.5 is important and easy to use. Its importance will

be shown in Theorem 3.10 below for constructing σ self-orthogonal matrix-product codes. Com-

bining Theorem 3.5 with Theorems 2.6, 2.7, and Remark 3.6, we provide an algorithm for con-

structing NSC quasi-σ̂ matrices in Algorithm 1. In addition, we point out that Algorithm 1 is

more efficient compared to the case where the matrix T is taken to be other types of matrices in

Line 5 of this algorithm. This assertion arises from, at least, the following two facts.

(1) Toeplitz matrices are easy to store and compute (see [19, 40, 41, 44] for more details), and

many of the submatrices of a Toeplitz matrix are also Toeplitz matrices with smaller sizes.

(2) From Theorems 2.6 and 2.7, an NSC Toeplitz matrix is accompanied by three other NSC

matrices.

One has also the following open problem on NSC quasi-unitary matrices.

Problem 3.7. ([10, Question 14]) Let q = ph 6= 2 be a prime power. For s = q and q+2≤ s≤ q2,

do s× s NSC quasi-unitary matrices exist over Fq2?

An affirmative answer to Problem 3.7 was given in [10, Remark 16] only for the values

s = q = 3. Very recently, Cao et al. in [11] proposed an algorithm for searching NSC quasi-

unitary matrices over Fq2 by employing the so-called reversely non-singular by columns (RNSC)

matrices of type (V−1)T D, where V = (xi−1
j )1≤i, j≤s ∈M (Fq2 ,s) is a non-singular Vandermonde

matrix and D ∈M (Fq2,s) is a diagonal matrix. For more details on RNSC matrices, we refer

to [16, 33]. Clearly, (V−1)T D is not a Toeplitz matrix in general. Hence, even if we restrict

Algorithm 1 to the case of constructing NSC quasi-unitary matrices over Fq2 , it is different from

that given in [11]. The following remark gives a further comparison between them.

Remark 3.8. Similar to [11, Remark 3.7], we perform a sampling manner, with the

help of the Magma software package [7], to count the number of NSC quasi-unitary ma-

trices in M (Fq2,s) based on NSC Toeplitz matrices by using Algorithm 1 for (q,s) ∈
{(3,3),(3,5),(3,6),(4,4),(4,6),(4,7),(5,5),(5,7),(5,8),(7,7),(7,9),(8,8)} and the chosen

random seed 2024. Our sampling results and those of Cao et al. are listed in the second (resp.

third) and fifth (resp. sixth) columns of Table 2, respectively, where the symbol “a/10000”

denotes the number of the NSC quasi-unitary matrices obtained from Algorithm 1 (resp. [11, Al-

gorithm 1]) after sampling 10000 times and the symbol “−” denotes that no sampling results are

documented in [11]. From Table 2, it is easy to conclude that our sampling results are more than

those presented in [11, Remark 3.7]. As we stated before, this advantage stems from the use of

Toeplitz matrices.

An explicit example on general NSC quasi-σ̂ matrix is also given below and will be used in

the following.

Example 3.9. Take p = 3, h = 4, e = 1, then r = 2e = 2 and g = gcd(r,h) = 2. Note that

F32 = {0,1,ω10,ω20,ω30,2,ω50,ω60,ω70} ⊆ F34 , where ω is a primitive element of F34 . Let A
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Algorithm 1: An algorithm for constructing NSC quasi-σ̂ matrices

Input: A finite field size q = ph, a matrix size s, integers e, r, and g = gcd(r,h), a monomial
matrix Mτ̃ = Dτ̃P̃τ ∈M (Fpg ,s), and a matrix Q = adiag(1,1, . . . ,1) ∈M (Fpg ,s).

Output: An NSC quasi-σ̂ matrix in M (Fq,s).
// M

i,i is the i× i leading principal submatrix of the matrix M.

1 begin
2 SetSeed(2024);
3 A← Os×s.
4 while A = Os×s do

5 Sample randomly an NSC Toeplitz matrix T ∈M (Fpg ,s) and a diagonal matrix

D ∈M (Fpg ,s) with all nonzero diagonal elements;

6 P D i ←
(
T DMτ̃πe(T DMτ̃)

T
)

i,i
;

7 DP i ←
(
DT Mτ̃πe(DT Mτ̃)

T
)

i,i
;

8 R D i ←
(

πe(T )−1QDMτ̃πe

(
πe(T )

−1QDMτ̃

)T
)

i,i
;

9 DR i ←
(

Dπe(T )
−1QMτ̃πe

(
Dπe(T )

−1QMτ̃

)T
)

i,i
;

10 if det(P D i) 6= 0 for 1≤ i≤ s−1 then
11 A← T D;
12 else if det(DP i) 6= 0 for 1≤ i≤ s−1 then
13 A← DT ;
14 else if det(DP i) 6= 0 for 1≤ i≤ s−1 then

15 A← πe(T )
−1QD;

16 else if det(DP i) 6= 0 for 1≤ i≤ s−1 then

17 A← Dπe(T )
−1Q;

18 end

19 end

20 S← AMτ̃πe(AMτ̃)
T =

(
Bs−1 bs−1

πe(bs−1)
T bs

)
, where πe(Bs−1)

T = Bs−1 is invertible,

bs−1 ∈ F
s−1
pg , and πe(bs) = bs;

21 Ls−1←

(
Is−1 0(s−1)×1

−πe(bs−1)
T B−1

s−1 1

)
;

22 for 1≤ i≤ s−2 do

23 Bs−i←

(
Bs−i−1 bs−i−1

πe(bs−i−1)
T bs−i

)
, where πe(Bs−i−1)

T = Bs−i−1 is invertible,

bs−i−1 ∈ F
s−i−1
pg , and πe(bs−i) = bs−i;

24 Ls−i−1←

(
Is−i−1 0(s−i−1)×1

−πe(bs−i−1)
T B−1

s−i−1 1

)
;

25 L′s−i−1←

(
Ls−i−1 0(s−i)×i

0i×(s−i) Ii

)
;

26 end
27 L← L′1L′2 · · ·L

′
s−2Ls−1;

28 Mτ̂← Dτ̃πe(Dτ̃);
29 σ̂← (τ̂,πe), where τ̂ corresponds to the matrix Mτ̂;

30 return LA ∈M (Fq,s) is an NSC quasi-σ̂ matrix;

31 end
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Table 2: Comparison of sampling results between Algorithm 1 and [11, Algorithm 1]

(q,s) Algorithm 1 [11, Algorithm 1] (q,s) Algorithm 1 [11, Algorithm 1]

(3,3) 8294/10000 5384/10000 (3,5) 6622/10000 3449/10000

(3,6) 1117/10000 − (4,4) 7327/10000 3736/10000

(4,6) 4614/10000 2047/10000 (4,7) 5673/10000 −
(5,5) 7454/10000 4061/10000 (5,7) 5668/10000 2619/10000

(5,8) 4501/10000 − (7,7) 7633/10000 3897/10000

(7,9) 6235/10000 2913/10000 (8,8) 7595/10000 3844/10000

be a 3×3 NSC Toeplitz matrix over F32 ⊆ F34 given by

A =




ω10 ω50 ω20

ω30 ω10 ω50

1 ω30 ω10


 and Mτ̃ =




0 ω10 0

2 0 0

0 0 ω60


 .

One can compute that

AMτ̃π1(AMτ̃)
T =




1 0 2

0 2 ω30

2 ω10 0




and all leading principal minors of AMτ̃π1(AMτ̃)
T are 1,2,2. Then from the proof of Theorem

3.5 (resp. Algorithm 1), we can take

L =




1 0 0

0 1 0

1 ω10 1


 and hence, LA =




ω10 ω50 ω20

ω30 ω10 ω50

1 ω30 ω10




is a 3× 3 NSC quasi-σ̂ matrix over F34 , where σ̂ = (τ̂,π1) and τ̂ corresponds to the diagonal

matrix Mτ̂ = Dτ̃π1(Dτ̃) = diag(2,1,1). Moreover, one can indeed check that (LA)MT
τ̂

π1(LA)T =
diag(1,2,1). Similarly, more examples can be obtained by applying Theorem 3.5 (resp. Algo-

rithm 1).

The following result provides our second general construction of σ self-orthogonal matrix-

product codes.

Theorem 3.10. (Construction II) Let q = ph be a prime power, r = 2e if 0 ≤ e ≤ h
2
, and r =

2e−h if h
2
< e≤ h−1. Let g = gcd(r,h) and Fpg be the subfield field of Fq. Let Ci be an [n,ki,di]q

linear code with Euclidean dual distance d
⊥E
i for i= 1,2, . . . ,s and A∈M (Fq,s) be NSC. Set σ=

(τ,πe) ∈ SLAut(Fsn
q ) and σ′ = (τ′,πe) ∈ SLAut(Fn

q), where τ corresponds to a monomial matrix

Mτ = DτPτ ∈M (Fq,sn) and τ′ corresponds to a monomial matrix Mτ′ = Dτ′Pτ′ ∈M (Fq,n). If

both of the following conditions hold:

(1) there is a monomial matrix Mτ̃ = Dτ̃P̃τ ∈M (Fq,s) such that AMT
τ̃
∈M (Fpg,s) and all

principal minors of AMT
τ̃

πe(AMτ̃)
T are nonzero;
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(2) Mτ = (Dτ̃πe(Dτ̃))⊗Mτ′ and Ci is σ′ self-orthogonal for any 1≤ i≤ s,

then there is a unit lower triangular matrix L∈M (Fq,s) such that C (LA) is an [sn,∑s
i=1 ki,≥ d]q

σ self-orthogonal matrix-product code, where d = min{(s+ 1− i)di | 1 ≤ i ≤ s}. Moreover,

C (LA)⊥σ has parameters [sn,sn−∑
s
i=1 ki,≥ d⊥σ ]q, where d⊥σ = min{id⊥E

i | 1≤ i≤ s}.

Proof. Denote Mτ̂ =Dτ̃πe(Dτ̃), then MT
τ̂
=Mτ̂ ∈M (Fq,s) is a monomial matrix. It follows from

the condition (1) and Theorem 3.5 that there is a unit lower triangular matrix L ∈M (Fq,s) such

that LA is NSC and

(LA)MT
τ̂

πe(LA)T = (LA)(Dτ̃πe(Dτ̃))πe(LA)T = diag(d1,d2, . . . ,ds) ∈M (Fq,s)

with di 6= 0 for any 1 ≤ i ≤ s. Combining the condition (2) and Theorem 2.16, we directly

conclude that C (LA) is a σ self-orthogonal matrix-product code. By an argument similar to that

in the proof of Theorem 3.1 (2), C (LA) and C (LA)⊥σ have the described parameters.

Example 3.11. According to [45, Theorem 4.5], there exist (τid,π1) (i.e., 1-Galois) self-

orthogonal [81,k,82− k]34 MDS codes for any 1 ≤ k ≤ 20. Take σ = (τ,π1) and σ′ = (τid,π1),
where τ corresponds to the monomial matrix Mτ = Mτ̂⊗ I81 with Mτ̂ = diag(2,1,1) as in Exam-

ple 3.9. Put Ci = [81,ki,82− ki]34 for 1≤ ki ≤ 20 and 1≤ i ≤ 3. Combining Example 3.9 with

Theorem 3.10, we immediately get σ self-orthogonal matrix-product codes with parameters

[243,k1+ k2 + k3,≥min{(4− i)(82− ki) | 1≤ i≤ 3}]34 .

We list some explicit parameters of them in Table 3, where C1 = C2 = [81,20,62]34 is taken.

Table 3: Some σ self-orthogonal matrix-product codes derived from Theorem 3.10
C3 σ self-orthogonal matrix-product code C3 σ self-orthogonal matrix-product code

[81,1,81]34 [243,41,≥ 81]34 [81,2,80]34 [243,42,≥ 80]34

[81,3,79]34 [243,43,≥ 79]34 [81,4,78]34 [243,44,≥ 76]34

[81,5,77]34 [243,45,≥ 77]34 [81,6,76]34 [243,46,≥ 76]34

[81,7,75]34 [243,47,≥ 75]34 [81,8,74]34 [243,48,≥ 74]34

[81,9,73]34 [243,49,≥ 73]34 [81,10,72]34 [243,50,≥ 72]34

[81,11,71]34 [243,51,≥ 71]34 [81,12,70]34 [243,52,≥ 70]34

[81,13,69]34 [243,53,≥ 69]34 [81,14,68]34 [243,54,≥ 68]34

[81,15,67]34 [243,55,≥ 67]34 [81,16,66]34 [243,56,≥ 66]34

[81,17,65]34 [243,57,≥ 65]34 [81,18,64]34 [243,58,≥ 64]34

[81,19,63]34 [243,59,≥ 63]34 [81,20,62]34 [243,60,≥ 62]34

3.3 The third and fourth general constructions via special Toeplitz matri-

ces

In this subsection, we give our last two general constructions of σ self-orthogonal matrix-product

codes such that their defining matrices are Toeplitz matrices. As a byproduct of these two con-

structions, we also find an interesting application of these Toeplitz matrices in the so-called

τ̃-optimal defining matrices. The following result provides the third general construction.
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Theorem 3.12. (Construction III) Let q = ph be a prime power and e be an integer with

0 ≤ e ≤ h− 1. Let Ci be an [n,ki,di]q linear code with Euclidean dual distance d
⊥E
i for

i = 1,2, . . . ,s and A ∈M (Fq,s) be an NSC Toeplitz matrix. Set σ = (τ,πe) ∈ SLAut(Fsn
q ) and

σ′ = (τ′,πe) ∈ SLAut(Fn
q), where τ corresponds to a monomial matrix Mτ = DτPτ ∈M (Fq,sn)

and τ′ corresponds to a monomial matrix Mτ′ = Dτ′Pτ′ ∈ M (Fq,n). If both of the following

conditions hold:

(1) there is a monomial matrix M ∈M (Fq,s) such that πe(A)MA = DQ for some diagonal

matrix D ∈M (Fq,s);

(2) Mτ = (MQ)⊗Mτ′ and Ci is σ′ self-orthogonal for any 1≤ i≤ s,

then C (A) is an [sn,∑s
i=1 ki,≥ d]q σ self-orthogonal matrix-product code, where d = min{(s+

1− i)di | 1≤ i ≤ s}. Moreover, C (A)⊥σ has parameters [sn,sn−∑
s
i=1 ki,≥ d⊥σ]q, where d⊥σ =

min{id⊥E
i | 1≤ i≤ s}.

Proof. Denote Mτ̂ =MQ. Since M ∈M (Fq,s) is a monomial matrix and Q= adiag(1,1, . . . ,1)∈
M (Fq,s), it is easy to see that Mτ̂ ∈M (Fq,s) is still a monomial matrix. Noting that πe(A)MA=
DQ and A is NSC, we further get that all diagonal elements of D are nonzero since

det(D) = det(πe(A))det(M)det(A)det(Q)−1 6= 0.

It then follows from the condition (1) and Lemma 2.4 that

AMT
τ̂

πe(A)
T =

(
πe(A)Mτ̂AT

)T
=
(
πe(A)M(QAT)

)T
= (πe(A)M(AQ))T = D.

Combining the condition (2) and Theorem 2.16, it is straightforward to deduce that C (A) is a σ

self-orthogonal matrix-product code. Again, the parameters of C (A) and C (A)⊥σ can be obtained

by a similar argument as the one in the proof of Theorem 3.1 (2).

Example 3.13. Let q = 26 and e = 0. Let A ∈ M (F26,3) be an NSC Toeplitz matrix, M ∈
M (F26,3) be a monomial matrix, and D = diag(ω36,ω54,1) ∈M (F26,3) be a diagonal matrix

given by

A =




1 ω54 ω27

ω36 1 ω54

ω54 ω36 1


 and M =




ω27 0 0

0 ω54 0

0 0 ω27


 ,

where ω is a primitive element of F26 . It can be checked that π0(A)MA = DQ. According to [36,

Theorem 3], there exist (τid,π0) (i.e., Euclidean) self-orthogonal [64,k,65−k]26 MDS codes for

any 1≤ k≤ 32. Take σ = (τ,π0) and σ′ = (τid,π0), where τ corresponds to the monomial matrix

Mτ =(MQ)⊗I64 = adiag(ω27,ω54,ω27)⊗I64. Let the codes Ci = [64,ki,65−ki]26 for 1≤ ki≤ 32

and 1≤ i ≤ 3. With Theorem 3.12, we immediately get σ self-orthogonal matrix-product codes

with parameters

[192,k1+ k2 + k3,≥min{(4− i)(65− ki) | 1≤ i≤ 3}]26 .

For more clarity, we list some explicit parameters of them in Table 4, where C1 = C2 =
[64,32,33]26 is taken.
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Table 4: Some σ self-orthogonal matrix-product codes derived from Theorem 3.12
C3 σ self-orthogonal matrix-product code C3 σ self-orthogonal matrix-product code

[64,1,64]26 [192,65,≥ 64]26 [64,2,63]26 [192,66,≥ 63]26

[64,3,62]26 [192,67,≥ 62]26 [64,4,61]26 [192,68,≥ 61]26

[64,5,60]26 [192,69,≥ 60]26 [64,6,59]26 [192,70,≥ 59]26

[64,7,58]26 [192,71,≥ 58]26 [64,8,57]26 [192,72,≥ 57]26

[64,9,56]26 [192,73,≥ 56]26 [64,10,55]26 [192,74,≥ 55]26

[64,11,54]26 [192,75,≥ 54]26 [64,12,53]26 [192,76,≥ 53]26

[64,13,52]26 [192,77,≥ 52]26 [64,14,51]26 [192,78,≥ 51]26

[64,15,50]26 [192,79,≥ 50]26 [64,16,49]26 [192,80,≥ 49]26

[64,17,48]26 [192,81,≥ 48]26 [64,18,47]26 [192,82,≥ 47]26

[64,19,46]26 [192,83,≥ 46]26 [64,20,45]26 [192,84,≥ 45]26

[64,21,44]26 [192,85,≥ 44]26 [64,22,43]26 [192,86,≥ 43]26

[64,23,42]26 [192,87,≥ 42]26 [64,24,41]26 [192,88,≥ 41]26

[64,25,40]26 [192,89,≥ 40]26 [64,26,39]26 [192,90,≥ 39]26

[64,27,38]26 [192,91,≥ 38]26 [64,28,37]26 [192,92,≥ 37]26

[64,29,36]26 [192,93,≥ 36]26 [64,30,35]26 [192,94,≥ 35]26

[64,31,34]26 [192,95,≥ 34]26 [64,32,33]26 [192,96,≥ 33]26

If we add some extra restrictions to the Toeplitz matrices A used in Theorem 3.12 (Con-

struction III), we can obtain the fourth general construction of σ self-orthogonal matrix-product

codes as follows, in which C1,C2, . . . ,Cs are no longer required to be σ′ self-orthogonal.

Theorem 3.14. (Construction IV) Let q = ph be a prime power and e be an integer with 0 ≤
e ≤ h− 1. Let Ci be an [n,ki,di]q linear code with Euclidean dual distance d

⊥E
i for each i =

1,2, . . . ,s and A∈M (Fq,s). Set σ = (τ,πe)∈ SLAut(Fsn
q ) and σ′= (τ′,πe)∈ SLAut(Fn

q), where

τ corresponds to a monomial matrix Mτ ∈M (Fq,sn) and τ′ corresponds to a monomial matrix

Mτ′ ∈ M (Fq,n) such that Mτ = D⊗Mτ′ for some diagonal matrix D ∈ M (Fq,s). Then the

following statements hold.

(1) If A is a non-singular Toeplitz matrix, then C (A)⊥σ = [C
⊥σ′
s ,C

⊥σ′

s−1 , . . . ,C
⊥σ′

1 ] ·πe(A)
−1QD−1

(2) If A is a non-singular Toeplitz matrix and Ci ⊆ C
⊥σ′

s+1−i for 1 ≤ i ≤ s, then

C (πe(A)
−1QD−1) ⊆ C (A)⊥σ. Moreover, if πe(A)A = QD−1, then C (A) is a σ self-

orthogonal matrix-product code.

(3) If A is an NSC Toeplitz matrix, then C (πe(A)
−1QD−1) has parameters

[sn,∑s
i=1 ki,≥ d]q and C (A)⊥σ has parameters [sn,sn − ∑

s
i=1 ki,≥ d⊥σ ]q, where

d = min{(s+1− i)di | 1≤ i≤ s} and d⊥σ = min{id⊥E
i | 1≤ i≤ s}.

Proof. (1) Recall that πe(Q) = QT = Q−1 = Q for 0≤ e ≤ h−1. Regard Q as the permutation

matrix corresponding to the reverse permutation

(
1 2 · · · s

s s−1 · · · 1

)
. Since Mτ = D⊗Mτ′

and both Mτ and Mτ′ are monomial matrices, we easily know that each diagonal element of D is
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nonzero. It then follows form Lemma 2.14 that

C (A)⊥σ = [C
⊥σ′

1 ,C
⊥σ′

2 , . . . ,C
⊥σ′
s ] · (DT πe(A)

T )−1

= [C
⊥σ′

1 ,C
⊥σ′

2 , . . . ,C
⊥σ′
s ] · (Qπe(A)Q)−1D−1

= [C
⊥σ′

1 ,C
⊥σ′

2 , . . . ,C
⊥σ′
s ] ·Qπe(A)

−1QD−1

= [C
⊥σ′
s ,C

⊥σ′

s−1 , . . . ,C
⊥σ′

1 ] ·πe(A)
−1QD−1.

This completes the proof of the result (1).

(2) Note that C (πe(A)
−1QD−1) = [C1,C2, . . . ,Cs] ·πe(A)

−1QD−1. Combining the result (1)

above and the given conditions, the result (2) clearly holds.

(3) Since A is an NSC Toeplitz matrix and D∈M (Fq,s) is a diagonal matrix, it deduces from

Theorems 2.6 and 2.7 that πe(A)
−1QD−1 ∈M (Fq,s) is also an NSC matrix. With an argument

similar to that in the proof of Theorem 3.1 (2), the result (3) follows directly.

Example 3.15. Let q = 34 and e = 1. Let A ∈ M (F34,2) be an NSC Toeplitz matrix and

D = diag(ω8,ω8) ∈M (F34,2) be a diagonal matrix given by A =

(
ω38 ω68

ω68 ω38

)
, where ω is a

primitive element of F34 . It can be checked that π1(A)A = QD−1 = adiag(ω72,ω72). According

to Example 3.11, there exist (τ′,π1) self-orthogonal matrix-product codes C ′ with parameters

[243,k1 + k2 + k3,≥ min{(4− i)(82− ki) | 1 ≤ i ≤ 3}]34 for any 1 ≤ ki ≤ 20 and 1 ≤ i ≤ 3,

where τ′ corresponds to the monomial matrix Mτ′ = diag(2,1,1)⊗ I81 ∈ M (F34,243). Take

σ = (τ,π1) and σ′ = (τ′,π1), where τ corresponds to the monomial matrix Mτ = D⊗Mτ′ . Let

C2 = C ′. We can further deduce from Theorem 3.10 that C
⊥σ′

2 has parameters [243,243− k1−

k2− k3,min{i(ki + 1) | 1 ≤ i ≤ 3}]34. Taking C1 as a subcode of C
⊥σ′

2 , we immediately get σ

self-orthogonal matrix-product codes with parameters

[486,k1 + k2 + k3 + s,≥min{2i(ki +1),(4− i)(82− ki) | 1≤ i≤ 3}]34

for any 1 ≤ s ≤ 243− k1− k2− k3 and 1≤ ki ≤ 20 with 1 ≤ i ≤ 3 from Theorems 3.14 (2) and

(3). In particular, these σ self-orthogonal matrix-product codes coincide with σ self-dual codes

if s = 243− k1− k2− k3 is fixed.

As a byproduct, we get a connection between Toeplitz matrices and the so-called τ̃-optimal

defining (̃τ-OD) matrices introduced by Cao in [9] when D = Is and e = 0 are fixed in the condi-

tion (1) of Theorem 3.12 (resp. Theorem 3.14 (2)). To this end, we first recall the definition of

τ̃-OD matrices, and from it one realizes that τ̃-OD matrices are indeed a generalization of NSC

quasi-orthogonal matrices mentioned in Definition 3.4.

Definition 3.16. ([9, Definition 5.3]) Let q = ph be a prime power and A∈M (Fq,s) be NSC. We

call A a τ̃-optimal defining (̃τ-OD) matrix if AAT = DP̃τ for some diagonal matrix D ∈M (Fq,s)
and permutation matrix P̃τ ∈M (Fq,s) corresponding to the permutation τ̃.

Remark 3.17. (A connection between Toeplitz matrices and τ̃-OD matrices) Suppose that

A ∈M (Fq,s) is an NSC Toeplitz matrix satisfying πe(A)MA = Q for some monomial matrix

M ∈M (Fq,s). We have the following facts.
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(1) From Lemma 2.4, we conclude that

Aπe(A)
T = Aπe(QAQ) = AQ(QA−1M−1)Q = M−1Q ∈M (Fq,s)

is a monomial matrix. Since M−1 ∈M(Fq,s) is also monomial, then we can fix that M−1 =
Dτ′Pτ′ , where Dτ′ ∈M (Fq,s) is a diagonal matrix and Pτ′ ∈ M (Fq,s) is a permutation

matrix corresponding to the permutation τ′ =

(
1 2 · · · s

τ′1 τ′2 · · · τ′s

)
. It follows that Pτ′Q ∈

M (Fq,s) is a permutation matrix corresponding to the permutation

τ̃ =

(
1 2 · · · s

s+1− τ′1 s+1− τ′2 · · · s+1− τ′s

)
.

By Definition 3.16, A is just a τ̃-OD matrix in the case of e = 0.

(2) On the other hand, we note that the matrices of the types VD, LV , and LDV have been

used to find τ̃-OD matrices in [9, Section 5], where V = (xi−1
j )1≤i, j≤s is a non-singular

Vandermonde matrix, D is a diagonal matrix and L is a lower triangular matrix. It is

also easily checked that V D, LV and LDV are not Toeplitz matrices in general. For some

specific examples, one can see [9, Section 5].

Combining the facts (1) and (2) above, we conclude that the Toeplitz matrices A used in Theorem

3.12 (Construction III) (resp. Theorem 3.14 (Construction IV) (2)) are able to provide a new

way to find τ̃-OD matrices.

Furthermore, since we restrict to e = 0 and D = Is when considering τ̃-OD matrices, then we

can also regard the Toeplitz matrices A used in Theorem 3.12 (Construction III) (resp. Theorem

3.14 (Construction IV) (2)) as generalizations of τ̃-OD matrices. In other words, if the restric-

tions e = 0 and D = Is are relaxed, the Toeplitz matrices A used in Theorem 3.12 (Construction

III) (resp. Theorem 3.14 (Construction IV) (2)) may not be τ̃-OD matrices for any τ̃.

To illustrate the facts in Remark 3.17 we provide the following two examples.

Example 3.18. Let A∈M (F23,3) be an NSC Toeplitz matrix and M ∈M (F23,3) be a monomial

matrix given by

A =




1 ω2 ω3

ω3 1 ω2

ω2 ω3 1


 and M =




0 0 ω6

0 ω6 0

ω6 0 0


 ,

where ω is a primitive element of F23 . It can be easily checked that

π0(A)MA = Q and M−1 = diag(ω,ω,ω)Q

is a monomial matrix. From Remark 3.17 (1), we immediately get that A is a τid-OD matrix.
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Example 3.19. Let A∈M (F26,3) be the NSC Toeplitz matrix shown in Example 3.13. It is easy

to check that

AAT =




ω27 ω45 ω54

ω45 ω18 0

ω54 0 ω18




is not a τ̃-OD matrix for any permutation τ̃, where ω is a primitive element of F26 . Combining

Example 3.13, we conclude that A is indeed a candidate for Theorem 3.12 (Construction III)

but not for [9].

3.4 Comparisons of the four general constructions

In this subsection, we give comparisons among the four general constructions of σ self-

orthogonal matrix-product codes proposed in above subsections.

First of all, it is clear that Theorem 3.1 (Construction I) is not the same as Theorems 3.10,

3.12, and 3.14 (Constructions II, III, and IV). We further indicate that Constructions II, III,

and IV respectively provided in Theorems 3.10, 3.12 and 3.14 are also different from each other

in at least the following three regards.

(1) According to Theorem 3.5 (resp. Algorithm 1), the defining matrix LA used in Construc-

tion II is usually not a Toeplitz matrix, even if A is chosen to be a Toeplitz matrix. However,

the defining matrix A used in Constructions III and IV must be a Toeplitz matrix. This

suggests that Construction II is different from Constructions III and IV.

(2) Mτ = (Dτ̂πe(Dτ̂))⊗Mτ′, Mτ = (MQ)⊗Mτ′ and Mτ = D⊗Mτ′ are required in Construc-

tions II, III, and IV, accordingly. Note that Dτ̂πe(Dτ̂) and D must be diagonal matrices,

but MQ may not be. For instance, in Example 3.13, MQ = adiag(ω27,ω54,ω27) is not diag-

onal, where ω is a primitive element of F26 . This shows that Construction III is different

from Constructions II and IV.

(3) If one lets σ′ = (τ′,πe) ∈ SLAut(Fn
q) be the same in Constructions II, III, and IV, then

the input codes C1,C2, . . . ,Cs used in Constructions II and III are limited to be σ′ self-

orthogonal, but the σ′ self-orthogonality is not a necessary condition for Construction IV.

This shows that Construction IV is different from Constructions II and III.

In summary, the last three general constructions of σ self-orthogonal matrix-product codes, and

hence, all these four general constructions, differ from each other.

4 Concluding remarks

In this paper, we focused on the study of σ self-orthogonal matrix-product codes associated with

Toeplitz matrices and presented four general constructions, which were based on the σ′ dual of

a known σ′ dual-containing matrix-product code, the newly introduced NSC quasi-σ̂ matrices,

and the utilization of certain special Toeplitz matrices, respectively. We also proposed a concrete
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construction for the NSC quasi-σ̂ matrices and provided an efficient algorithm to obtain such

matrices by employing NSC Toeplitz matrices. As a byproduct, we also found an interesting

connection between those special Toeplitz matrices and τ̃-optimal defining matrices.

For future research, it would be interesting to construct more σ self-orthogonal matrix-

product codes for various σ inner products over finite fields or finite rings and explore their

possible applications in other areas.
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