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Abstract

Entanglement distillation is a fundamental information processing task whose implementation is key to

quantum communication and modular quantum computing. Noise experienced by such communication

and computing platforms occurs not only in the form of Pauli noise such as dephasing (sometimes called

T2) but also non-Pauli noise such as amplitude damping (sometimes called T1). We initiate a study of

practical and asymptotic distillation over what we call the joint damping-dephasing noise channel. In

the practical setting, we propose a distillation scheme that completely isolates away the damping noise.

In the asymptotic setting we derive lower bounds on the entanglement sharing capacities including the

coherent and reverse coherent information. Like the protocol achieving the reverse coherent information,

our scheme uses only backward classical communication. However, for realistic damping noise (T1 ̸= 2T2)

our strategy can exceed the reverse coherent strategy, which is the best known for pure damping. In the

forward communication setting we numerically exceed the single-letter coherent information strategy by

observing the channel displays non-additivity at the two-letter level. The work shows non-additivity can

also be found in realistic noise models with magnitudes of non-additivity similar to those found in more

idealized noise channels.

1 Introduction
Entanglement is a fundamental quantum resource which enables quantum computation and commu-

nication [Hor+09]. A key goal of quantum information theory [BS98] is to find, understand, and achieve

maximum rates at which this resource can be shared noiselessly across asymptotically many independent

uses of a noisy quantum channel. This maximum rate, called a channel’s capacity, can be defined de-

pending on the availability of classical communication between the sender and receiver of the quantum

channel [BS04; Wil17]. Availability of free noiseless forward (from sender to receiver), backward (only

from receiver to sender), and two-way classical communication to assist transmission across the quantum

channel define the channel’s forward, backward, and two-way entanglement sharing (also called entan-

glement distillation) capacities, E→, E←, and E↔, respectively [Leu08]. Capacity in the absence of forward

communication, E , is known to equal E→ and it follows that E ≤ E← ≤ E↔ [BKN00; GP+09]. However, a

tight understanding of each of these capacities has thus far eluded the research community. For instance,

obtaining easy to compute entropic expressions for each capacity has been hard and protocols for achieving

these capacities are seldom known for general channels.

A channel N ’s coherent information Ic(N ) is an entropic expression (for def. see eq. (3)) that bounds

its capacity E(N ) from below, Ic(N ) ≤ E(N ) [SN96]. Here, equality holds for the class of (anti) degrad-

able [DS05] channels but in general this inequality can be strict [DSS98; Cub+15] and E(N ) is given by

Ic(N⊗k)/k in the limit k tends to infinity, where N⊗k
represent k joint uses of N [Llo97; Sho02; Dev05].

Capacity E also equals the maximum achievable rate for quantum error correction, thus a channel’s co-

herent information also provides a useful bound on the ability of error correcting codes to remove noise
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introduced by a channel. For example, the well-known hashing rate [Ben+96b] used to benchmark quantum

error correcting codes under depolarizing noise Λ [GFG12; BA+21] is nothing but the channel’s coherent

information Ic(Λ). For most other types of channels (with the notable exception of degradable channels),

the channel coherent Ic is not easy to determine. This difficulty not only precludes one from finding an

important lower bound on the a channel’s capacity but also hinders finding an important benchmark for

quantum error correction across the channel.

Error correcting codes are not only useful for protecting quantum information but they are also valuable

for distributing entanglement. Rates for distribution can be improved beyond E by simply adding back-

ward classical communication [LLS09], however even this simple addition complicates the discussion of

entanglement sharing capacities. Analogously to the capacity E , we can bound the backward capacity E←
by an entropic quantity called the reverse coherent information Ir (for def. see eq. (5)) [GP+09]. Since Ir

has several remarkable properties such as concavity and additivity, it can be used more easily even though

it doesn’t satisfy data-processing. Finally, while not the primary focus in this work, the two-way capacity

E↔, is even less understood than its one-way counterpart.

One way to make progress in understanding one and two-way capacities is to study specific channels.

Indeed qubit Pauli channels have been extensively studied and a variety of interesting insights, such as super-

additivity of Ic in the one-way setting [SS07; FW08; BL21], and a variety of innovative protocols [VV05;

HDDM06] in the two-way setting have been found this way. Unfortunately, progress on two-way protocols

from studying Pauli channels has been slow and realistic noise models are typically non-Pauli and non-

unital. There is a need to use such realistic noise models for understanding error correction across these

models and also for developing new ideas for backward and two-way quantum capacities. Without getting

a better understanding of the one and two-way capacities of quantum channels we not only fail to build

realistic expectations for modular quantum computing and long-range quantum communication but also

remain partial in our understanding of quantum entanglement itself.

In this work we propose a way forward to study rates for sharing entanglement across a physically

relevant channel [GFG12] obtained by concatenating two well-studied channels. The first channel is a

qubit dephasing and the second is a qubit amplitude damping [GF05]. For both channels the reverse

coherent information [GP+09] is known to achieve the largest known rate for sharing entanglement using

backward (or even two-way) classical communication. Nonetheless, we find that the joint channel benefits

from our proposed backward only protocol that exceeds the channel’s reverse coherent information. One

key aspect of our strategy is to completely isolate the amplitude damping component of damping-dephasing

noise. In this way, the work provides a single-shot protocol to remove damping noise. The work paves the

way for benchmarking error correction across this damping-dephasing channel by providing the analog

of the hashing rate. It goes a step further to improve upon this rate by observing the channel’s coherent

information displays non-additivity. Even though the noise is more realistic, the non-additivity found is

simple (occurring at the two-letter level) and with magnitude comparable to those found in more idealized

noise models.

2 Preliminaries

2.1 Kraus representation
Let Ha, Hb, and Hc be finite dimensional Hilbert spaces with standard orthonormal basis {|k⟩a}, {|j⟩b},

and {|i⟩c} respectively. An isometry E : Ha 7→ Hb ⊗ Hc (here ⊗ represents tensor product) satisfies

E†E = Ia, the identity on Ha, where † represents conjugate transpose. This isometry can be expanded as

E =
∑

i Ki ⊗ |i⟩c =
∑

j Lj ⊗ |j⟩b (notice ⟨j|Ki|k⟩ = ⟨i|Lj |k⟩) and generates a pair of channels

N (M) = Trc(EME†) =
∑

i

KiMK†i ,

N c(M) = Trb(EME†) =
∑

j

LjML†j
(1)

from a to b and a to c, respectively, with Kraus operators {Ki} and {Lj}, respectively, here M is any linear

operator on Ha. One says N c
is the complement of N and vice-versa. If N c

can be obtained from the
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output of N by applying some channel M, i.e., M ◦ N = N c
, then N is said to be degradable and N c

anti-degradable. An entanglement-breaking (EB) channel [HSR03] N takes the form N (M) =
∑

i Tr(MVi)ρi

where {Vi} are a collection of positive-semidefinite (PSD) operators that sum to the identity, and ρi are

density operators (PSD and unit trace Tr(ρi) = 1).

2.2 Entropic quantities: coherent information and capacities
The von-Neumann entropy of a density operator ρ,

S(ρ) := −Tr(ρ log ρ) = −
∑

i

λi log λi, (2)

where {λi} are eigenvalues of ρ and we use log base 2 by default. The coherent information of a channel N
at an input density operator ρ,

Ic(N , ρ) = S
(
N (ρ)

)
− S

(
N c(ρ)

)
, (3)

maximized over density operators ρ gives the channel coherent information Ic(N ). This maximization is

generally non-convex, except with N is degradable and Ic(N , ρ) becomes concave in ρ [YHD08]. A channel

N ’s entanglement sharing capacity is given by the limit [Llo97; Sho02; Dev05],

E(N ) = lim
k 7→∞

1
k
Ic(N⊗k, ρ), k ∈ N, (4)

which equals Ic(N ) when N is either degradable or anti-degradable. For anti-degradable channels E(N ) =
0. The reverse coherent information of a channel N at an input density operator ρ,

Ir(N , ρ) = S(ρ) − S
(
N c(ρ)

)
, (5)

represents an achievable rate for sharing entanglement across N using only backward classicaly commu-

nication from b to a in addition to any pre-agreed classical communication between b and a prior to using

the channel. Since Ir(N , ρ) is concave in ρ for all N , it can be maximized over density operators ρ with

relative ease to obtain the reverse coherent information Ir(N ). This reverse coherent information is additive

Ir(N⊗k) = kIr(N ) ∀ k ∈ N [GP+09].

2.3 log-singularity Method(s)
Here we review a log-singularity method [Sid21; SD22]) and state a minor extension of the method to

analyse the reverse coherent information.

Let 0 ≤ ϵ ≤ 1 be a real parameter and ρ(ϵ) be a one-parameter family of density operators with von-

Neumann entropy S(ϵ) := S
(
ρ(ϵ)

)
. If one or several eigenvalues of ρ(ϵ) increase linearly from zero to

leading order in ϵ then a small change in ϵ from zero changes S(ϵ) by x|ϵ log ϵ|, x > 0, and S(ϵ) is said to

have an ϵ log-singularity with rate x.

Let N be a channel with complement N c
. These channels N and N c

map an input density operator

ρa(ϵ) to ρb(ϵ) := N
(
ρa(ϵ)

)
and ρc(ϵ) = N c

(
ρa(ϵ)

)
, respectively. Let Sa(ϵ), Sb(ϵ), and Sc(ϵ) denote the von-

Neumann entropies of ρa(ϵ), ρb(ϵ), and ρc(ϵ), respectively. At ρa(ϵ), let Ic(ϵ) := Sb(ϵ) − Sc(ϵ) denote the

coherent information and Ir(ϵ) := Sa(ϵ) − Sc(ϵ) denote the reverse coherent information.

If there is an input ρa(ϵ) such that at ϵ = 0, Ic(ϵ) = 0 and Sb(ϵ) has an ϵ log-singularity with a higher

rate than Sc(ϵ), i.e., Sb(ϵ) has a stronger log-singularity than Sc(ϵ), then Ic(N ) > 0. This statement showing

positivity of a channel’s coherent information, discussed previously in [Sid21] (see also [SD22]) can be easily

extended to a channel’s reverse-coherent information as follows. If an ϵ log-singularity in Sa(ϵ) is stronger

than the one in Sc(ϵ) then the reverse coherent information Ir(ϵ) > 0.

3 Damping-Dephasing Channel
A qubit density operator can always be written in the Bloch form,

ρ = 1
2(I2 + xX + yY + zZ), (6)

3



where the Bloch vector r = (x, y, z) has Euclidean norm at most one, I2 is the 2 × 2 identity matrix,

X = |0⟩⟨1| + |1⟩⟨0|, Y = i(|0⟩⟨1| − |1⟩⟨0|), and Z = |0⟩⟨0| − |1⟩⟨1| are Pauli matrices. The von-Neumann

entropy of ρ in (6) is h
(
(1+ |r|)/2

)
where h(p) := −

(
p log p+(1−p) log(1−p)

)
is the binary entropy function.

3.1 Dephasing channel
An isometry F : Ha 7→ Hb ⊗ Hc1 of the form,

F |0⟩ = |0⟩ ⊗ |ϕ0⟩ and F |1⟩ = |1⟩ ⊗ |ϕ1⟩ , (7)

where |ϕi⟩ =
√

1 − p |+⟩ + (−1)i√p |−⟩ , i ∈ {0, 1}, 0 ≤ p ≤ 1/2, and |±⟩ = (|0⟩ ± |1⟩)
√

2 generates

channels (via eq.(1))

Dp(M) = (1 − p)M + pZMZ,

Dc
p(M) = ϕ0Tr(MU0) + ϕ1Tr(MU1),

(8)

where ϕi = |ϕi⟩⟨ϕi| and Ui = |i⟩⟨i|. Here Dp is the qubit dephasing channel with dephasing probability p.
Let ρa be a qubit density operator with Bloch vector ra = (x, y, z) then ρb := Dp(ρa), and ρc1 := Dc

p(ρa) have

Bloch coordinates

rb = ((1 − 2p)x, (1 − 2p)y, z), and

rc1 = (1 − 2p, 0, 2
√
p(1 − p)z),

respectively. Channel Dp is degradable for 0 ≤ p ≤ 1/2 and EB at p = 1/2. The one-way, backward, and

two-way capacities of this channel equal its coherent information evaluated at I2/2 [Rai97],

E(Dp) = E←(Dp) = E↔(Dp) = Ic(Dp, I2/2) = 1 − h(p). (9)

3.2 Amplitude damping channel
An isometry G : Hb 7→ Hd ⊗ Hc2 of the form,

G |0⟩ = |0⟩ ⊗ |1⟩ ,

G |1⟩ = √
g |0⟩ ⊗ |0⟩ +

√
1 − g |1⟩ ⊗ |1⟩ ,

(10)

where 0 ≤ g ≤ 1 generates a pair of channels

Ag(ρ) = A0ρA
†
0 +A1ρA

†
1,

Ac
g(A) = B0ρB

†
0 +B1ρB

†
1,

(11)

where Ag is a qubit amplitude damping channel which damps |1⟩⟨1| to |0⟩⟨0| with probability g and Ac
is

a qubit amplitude damping channel with damping probability 1 − g if one interchanges |0⟩c2 and |1⟩c2. An

input density operator with Bloch vector rb = (x, y, z) is mapped to ρd := Ag(ρb), and ρc2 := Ac
g(ρb) with

Bloch vectors

rd = (
√

1 − gx,
√

1 − gy, (1 − g)z + g), and

rc2 = (√gx,−√
gy, g − gz − 1),

(12)

respectively.

At g = 1, Ag(M) = Tr(M)|0⟩⟨0| and thus EB; in general, Ag is degradable when 0 ≤ g < 1/2 and

anti-degradable otherwise [WP07]. Thus, the coherent information Ic(Ag) = E(Ag). In general Ic(Ag) is

less than the reverse coherent information Ir(Ag), for g ̸= 0,

E(Ag) < E←(Ag). (13)

Proof for this numerically observed fact [GP+09] is shown in Lemma 6.
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3.3 Joint damping-dephasing channel
The combined action of Dp and Ag , given by either Dp ◦ Ag or Ag ◦ Dp as the action of the channels

commute, gives a channel F . This channel has two parameters, the dephasing (p) and damping (g)
probabilities. Channel F takes the form,

F(ρ) =
∑

i

OiρO
†
i , (14)

where O0 =
√

1 − p(|0⟩ ⟨0| +
√

1 − g |1⟩ ⟨1|), O1 = √
g |0⟩ ⟨1| and O2 = √

p(|0⟩ ⟨0| −
√

1 − g |1⟩ ⟨1|). These

Kraus operators either commute or anti-commute with Z, OjZa = (−1)jOj , j ∈ {0, 1, 2}. The qubit output

of F , ρd, has Bloch vector,

rd =
(
(1 − 2p)

√
1 − gx, (1 − 2p)

√
1 − gy, (1 − g)z + g

)
. (15)

Sometimes it is convenient to write the channel’s input and output in the following form:

ρa =
(

1 − ρ11 ρ01
ρ∗01 ρ11

)
,

ρd = F(ρa) =
(

1 − ρ11e
−t/T1 ρ01e

−t/T2

ρ∗01e
−t/T2 ρ11e

−t/T1

)
,

(16)

where ρ01 is a complex parameter, and ρ11, t, T1, T2 are real non-negative parameters. These parameters

are related to g and p as

g = 1 − e−t/T1
and p = 1

2(1 − e−t(1/2T1−1/T2)), (17)

where the constraint 0 ≤ p ≤ 1/2 implies that 2T1 ≥ T2 with equality when p = 0, i.e., dephasing

noise is absent and F is simply a qubit amplitude damping channel. Here T1 can be viewed as a decay

constant (sometimes called single-qubit relaxation time), with which the |1⟩ state decays to |0⟩ and T2 as the

decay constant (sometimes called the dephasing time), with which the off-diagonal terms in ρa dephase.

This relationship of F with the parametrization in (16) and parameters T1 and T2 make F amenable for

describing noise in physical setups.

It is useful to write the complement of F in two different ways. The first makes use of the relationship

between the Kraus operators (14) of F and that of its complement (see above (1)) to give,

Fc(A) = P0AP
†
0 + P1AP

†
1 (18)

where

P0 = √
g|0⟩⟨1| +

√
1 − p|1⟩⟨0| + √

p|2⟩⟨0|,

P1 =
√

(1 − g)(1 − p)|1⟩⟨1| −
√
p(1 − g)|2⟩⟨1|,

(19)

and Fc
maps a to an environment e. Alternatively, notice the isometry, H : Ha 7→ Hd ⊗ Hc1c2,

H = (Ic1 ⊗G)F, (20)

defines the channel F(A) = Trc1c2(HAH†) (14) and its complement G(A) = Trd(HAH†). Using this second

definition, we obtain

G(A) = Q0AQ
†
0 +Q1AQ

†
1, (21)

here Kraus operators Qi : Ha 7→ Hc1c2 take the form

Q0 = (|ϕ0⟩c1 ⊗ |0⟩c2) ⟨0| + √
g(|ϕ1⟩c1 ⊗ |1⟩c2) ⟨1|

Q1 =
√

1 − g(|ϕ1⟩c1 ⊗ |0⟩c2) ⟨1|
(22)

where |ϕi⟩ are defined below (7). Using the form (16) for the input, the output ρc1c2 = G(ρa) can be written

as a block matrix (
(1 − g)[ϕ1]ρ11 + [ϕ0](1 − ρ11) √

g|ϕ0⟩⟨ϕ1|ρ01√
g|ϕ1⟩⟨ϕ0|ρ10 g[ϕ1]ρ11

)
, (23)

where each block is 2 × 2.
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4 Entanglement Distillation over the Joint Damping-Dephasing Chan-
nel

4.1 Forward only Distillation
A lower bound on the one-way distillable entanglement of F is the channel’s coherent information. We

first give bounds on parameters for which the coherent information is positive.

Lemma 1. The coherent information Ic(F) is strictly positive for

g < gmax(p) := 1 − 1
2(1 − 2p(1 − p)) (24)

where 0 ≤ p < 1/2.

Proof. Consider an input density operator ρa(ϵ) of the form in (16) where ρ01 = 0, ρ11 = ϵ, and 0 ≤ ϵ ≤ 1.

Channel output ρd(ϵ) has eigenvalues {ϵ(1 − g), 1 − ϵ(1 − g)}, and thus Sd(ϵ) has an ϵ log-singularity of rate

xd = 1 − g. The output ρe(ϵ) = Fc
(
ρa(ϵ)

)
in (18) has eigenvalues

λ0 = gϵ, λ± = 1 − gϵ

2 (1 ±
√
u2 + v2) (25)

where u = 2δ
√
p(1 − p), v = 1−2p and δ = (1+ ϵ(g−2))/(1− ϵg). While λ+ is non-zero at ϵ = 0, expanding

λ− to linear order gives λ− = ϵ4p(1 − p)(1 − g) + O(ϵ2). As a result Se(ϵ) has an ϵ log-singularity of rate

xe = g + 4p(1 − p)(1 − g).
If xd > xe then Ic(F) > 0. The inequality xd > xe occurs where g < gmax := 1 − 1

2(1−2p(1−p))
■

Next, we show that the calculation of Ic(F) can be simplified by the following observation:

Lemma 2. The coherent information Ic(F , ρ) at an input operator with Bloch vector r = (x, y, z) only depends

on z and x2 + y2
.

Proof for the Lemma in App. A makes use of an alternate form of the channel’s complement (see

Sec. 3.3). The simplification in Lemma 2 allows calculation of Ic(F) over Bloch coordinates r = (x, 0, z). We

numerically find this optimum to lie along (0, 0, z). In Fig. 1 we plot the coherent information Ic(F) as a

function of the amplitude damping probability g for fixed dephasing probability p. As g is increased, the

coherent information Ic(F) decreases, becoming zero at g = gmax(p) and remaining zero thereafter.

Using a log-singularity based argument we also prove that the coherent information of the complemen-

tary channel is positive for a wide range of parameters.

Lemma 3. The coherent information Ic(Fc) is strictly positive for 0 < p ≤ 1/2 when 0 < g < 1.

Proof. Consider an input density operator ρa of the form in (16) where ρ01 = 0, ρ11 = 1 − ϵ, and 0 ≤ ϵ ≤ 1.

The density operator F(ρa) = ρd has eigenvalues {g + ϵ(1 − g), (1 − g) − ϵ(1 − g)}, and thus S(ρd) has no ϵ
log-singularity. The output Fc(ρ) in (18) has eigenvalues,

λ0 = g(1 − ϵ), and λ± = 1 − g(1 − ϵ)
2 (1 ±

√
u2 + v2) (26)

where u = 2k
√
p(1 − p), v = 1−2p and k =

(
ϵ(2−g)− (1−g)

)
/
(
1−g(1− ϵ)

)
. While λ+ is non-zero at ϵ = 0,

expanding λ− to linear order in ϵwith 0 < g < 1 gives λ− = ϵ4p(1 − p) +O(ϵ2). As a result S
(
Fc(ρ)

)
has an

ϵ log-singularity of rate xe = 4p(1 − p). This rate is strictly positive for 0 < p ≤ 1/2 and thus Ic(Fc) > 0. ■

From the definition of F and lower bounds on E(F) it follows that F is (1) anti-degradable when g ≥ 1/2
or at p = 1/2 (2) EB at g = 1 or p = 1/2 (3) degradable at g = 0, and also at p = 0 and g ≤ 1/2, and (4) never

degradable for all 0 < p ≤ 1/2 and g ̸= 1 since Ic(Fc) > 0 (see Lemma (3)).
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Figure 1: A plot of the coherent information Ic of the damping-dephasing channel F (14) as a function of the

amplitude damping probability g for fixed dephasing probability p = 0.15. The plot also shows the Rains

information of the channel R(F), which upper bounds the forward-assisted entanglement distillation rate.

10−6 0.1 0.2 0.3 0.4 0.5

Dephasing Probabilty (p)

0.0

0.1

0.2

0.3

0.4

0.5

D
am

p
in

g
P

ro
b

ab
il
it

y
(g

)

gmax(p)

g0(p)

0.001

0.002

0.003

0.004

0.005

Figure 2: A phase diagram showing the region of dephasing and damping probabilities, p and g, respectively,

where the coherent information of F is non-additive at the two-letter level. The amount of non-additivity

found (29) is represented by the color.
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4.2 Non-Additivity of Coherent information
We observe that non-additivity of the coherent information, i.e., strict inequality in

1
n
Ic(F⊗n) ≥ Ic(F), (27)

where n ≥ 2, occurs for a range of p and g values. When n is the smallest integer for which (27) is a strict

inequality, one says non-additivity occurs at the n-letter level. We are able to observe non-additivty at the

lowest possible, two-letter level. This observation comes from maximizing Ic(F⊗2, σ) over a simple ansatz,

σ = λ1|00⟩⟨00| + λ2|ϕ⟩⟨ϕ| + λ3Za1|ϕ⟩⟨ϕ|Za1 + λ4|11⟩⟨11| (28)

where ϕ = (|00⟩ + |11⟩)/
√

2 is a maximally entangled state, Za1 acts on the first input of the F ⊗ F channel,

and {λi} are free paramters that form a probability distribution. The ansatz (28) has a pleasing property, at a

special value of {λi}, λ1 = (1+z)2/4, λ2 = λ3 = (1−z2)/4, and λ4 = (1−z)2/4 with −1 ≤ z ≤ 1, this ansatz

represents a product of two identical qubit density operators, each with Bloch coordinates r = (0, 0, z). Since

Ic(F) is attained at these Bloch coordinates (see discussion below Lemma 2), the maximum of I(F⊗2, σ)
over {λi}, I∗c , is at least 2Ic(F). Maximization over these parameters reveals that for a range of 0 < g < 1
and g0(p) < p < gmax(p) values, where g0(p) is found numerically, non-additivity occurs at the two-letter

level (see Fig. 2). The amount of non-additivity found is

δ = 1
2I
∗
c − Ic(F). (29)

For any fixed p as g is increased from zero, this amount is first zero until g reaches g0(p), then increases from

zero, reaches a maximum, and decreases to zero as g approaches gmax(p) (see Fig. 3).
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Figure 3: For fixed dephasing probability p = .16, the amount of non-additivity found, δ (29) as a function

of damping probability g.

4.3 Backward only distillation bound
A lower bound on E←(F) is the channel’s reverse coherent information. We prove that it is positive for

a wide range of values p and g,

Lemma 4. The reverse coherent information Ir(F) > 0 for all 0 ≤ p < 1/2 and 0 ≤ g < 1.

Proof. Consider an input density operator ρa(ϵ) of the form in (16) where ρ01 = 0, ρ11 = ϵ and 0 < ϵ ≤ 1.

Thus S
(
ρa(ϵ)

)
has an ϵ log-singularity of rate xa = 1.

As discussed in the proof of Lemma 1, S(Fc(ρ)) has an ϵ log-singularity of rate xe = g+ 4p(1 − p)(1 − g).
Notice xa > xe whenever p ̸= 1/2 and g ̸= 1. As a result xa > xe. Since at ϵ = 0 the revere coherent

information is zero, for small ϵ, Ir(F) > 0. ■
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To compute the reverse coherent information Ir, we use concavity of Ir and a Z symmetry in both F and

Fc
.

Lemma 5. The reverse coherent information Ir(F) is achieved at a qubit density operator with Bloch coor-

dinates r = (0, 0, z).

Proof. Following an argument similar to one in the appendix of [GP+08], we show the optimal input state

for Ir(F) is diagonal. Let H ′ =
∑

i Oi ⊗ |i⟩e be an isometry that generates F in (14) and Fc
in (18). This

isometry satisfies (We ⊗ Zb)H ′ = H ′Za where W = −|0⟩⟨0| + |1⟩⟨1| + |2⟩⟨2|. This equality implies

F(ZaNZa) = ZbF(N)Zb, and

Fc(ZaNZa) = WeFc(N)We

(30)

for any N . Let ρa be any input, and ρbe = H ′ρa(H ′)†. The reverse coherent at this input, Ir(F , ρa) =
S(ρa) − S

(
Fc(ρa)

)
=: S(b|e)ρbe

is concave in ρbe. For any ρ̃a, let

ρa = ρ̃a + Zaρ̃aZa

2 , (31)

be a diagonal density operator. From concavity and symmetry in (30) it follows the reverse coherent

information at this operator is larger than Ir(F , ρ̃a),

Ir(F , ρa) = S(b|e)ρbe
≥ 1

2 [S(ρ̃a) − S
(
Fc(ρ̃a)

)
+ S(Zρ̃aZ) − S

(
Fc(Zρ̃aZ)

)
]

= 1
2 [Ir(F , ρ̃a) + Ir(F , ρ̃a)]

= Ir(F , ρ̃a).

(32)

■

In Fig. 5 the reverse coherent information Ir(F) is plotted as a function of the amplitude damping

probability g for fixed dephasing probability p. As g is increased, the reverse coherent information Ir(F)
decreases, and for small δg := 1 − g it takes an asymptotic form,

Ir(F) ≃ δg(1 − q)
(
qδg

)q/(1−q)
, (33)

where q := 4p(1 − p). This form comes from noticing numerically that for any fixed p, as g tends to one

and δg 7→ 0, the optimum reverse coherent information is obtained at a density operator ρ = diag(1 − ϵ, ϵ)
where ϵ is small. For such small ϵ, the reverse coherent information can be written as

Ir(ϵ) ≃ f(ϵ) = (αϵ ln ϵ+ βϵ) log2 e (34)

where terms of order O(ϵ2) are dropped,

α = a0(q)δg, β = b1(q)δg + b2(q)δg ln δg, (35)

where terms of ln(1 − δg) are dropped and

a0(p) = q − 1, b1(p) = 1 − q + q ln q, and b2(p) = q, (36)

where q := 4p(1 − p). Since 0 ≤ p ≤ 1/2, 0 ≤ q ≤ 1 and α < 0, thus Ir(ϵ) > 0 for small enough ϵ. The

function f(ϵ) has a maximum value at ϵ = ϵ∗ := exp
(

− (1 + β/α)
)
. This maximum value of (34) for small

δg can then be written as

Ir(F) ≃ δg(1 − q)
(
qδg

)q/(1−q)
. (37)

We find good numerical agreement between the left hand side and the right hand side of the above equation

for small δg (recall q = 4p(1 − p)), where the left hand side is evaluated using direct numerics.
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Lemma 6. For the amplitude damping channel Ag , the reverse coherent information Ir(Ag) ≥ Ic(Ag) for all

0 ≤ g ≤ 1.

Proof. Notice at g = 0, equality holds as Ir(Ag) = Ic(Ag) = 0. Let Ir(z) and Ic(z) denote Ir(Ag, ρ) and

Ir(Ag, ρ), respectively, where ρ has Bloch vector r = (0, 0, z). For 1/2 ≤ g < 1 one can show, using expression

below (6), that Ir(0) > 0. On the other hand when 1/2 ≤ g < 1, Ic(Ag) = 0, from discussion above eq. (13).

For 0 ≤ g < 1/2, Ic(z) is maximum for z ≥ 0 since

Ic(z) = S(Ag(ρz)) − S(Ac
g(ρz))

= h

(
1 + |(1 − g)z + g|

2

)
− h

(
1 + |g − gz − 1|

2

)
= h

(
(1 − g)1 − z

2

)
− h

(
g

1 − z

2

)
and the maximum of the difference in the last line above is obtained when z ≥ 0 (see Lemma 7). For z ≥ 0,

it is easy to check, using expression below (6), that Ir(z) − Ic(z) ≥ 0
■

Lemma 7. For 0 ≤ α ≤ 1/2, let the maximum of the expression max0≤p≤1 h((1 −α)p) − h(αp), be attained at

p̃, then p̃ ≤ 1
2 .

Proof. Let f(α, p) = h((1 − α)p) − h(αp), we can show that for 0 ≤ α ≤ 1/2, p ≥ 1/2, f is monotonically

decreasing in p. This can be shown by computing
∂f
∂p and showing that it is negative for p ≥ 1/2. Then, the

maximum of the function must be attained for p ∈ [0, 1/2]. ■

4.4 Improved backward only distillation protocol
We introduce a two-stage protocol for distillation which we argue exceeds the bound established by

the reverse coherent information. The first stage is a modification of a standard recurrence protocol and

the second stage does hashing [Ben+96a]. Let Hri and Hai, 1 ≤ i ≤ 2 be qubit Hilbert spaces, such that

Hr := Hr1 ⊗ Hr2 is a reference space to inputs Ha := Ha1 ⊗ Ha2 of F ⊗ F , which each map F : Hai → Hdi.

Let Md represent the operation applying the controlled not unitary Ud = |0⟩⟨0|d1 ⊗ Id2 + |1⟩⟨1|d2 ⊗ Xd2
followed by a standard basis Z measurement on Hd2 resulting in outcome (−1)id2

, which for simplicity we

refer to as outcome id2.

Initially, Alice prepares a state

|ψ1⟩ = 1√
2

(|0⟩ |01⟩ + |1⟩ |10⟩)r1,a1a2 . (38)

This is equivalent to a single Bell pair between the r1 and a1a2 systems, where the half of the Bell pair

on the a1a2 system is encoded in a small 2-qubit code. Alice then sends the qubits a1, a2 over two copies

of the damping-dephasing channel F ⊗ F . The resulting state is ψ2 =
∑

i,j Oi ⊗ Oj |ψ1⟩ ⟨ψ1|O†i ⊗ O†j ∈
Hr1 ⊗ Hd1 ⊗ Hd2, as given in Eq. (14). Bob then applies a controlled-not gate from d1 to d2 and measures d2
in the Z basis, obtaining the outcome (−1)id2Z, accepting the state only if id2 = 1. Bob sends the outcome

id2 to Alice using backward communication, and they have agreement to only keep pairs where Bob has

measured id2 = 1.

We must then calculate the probability of the given outcome, as well as the final state. To simplify the

analysis of the consequence of this measurement on the state ψ2, we note that performing a controlled-not

followed by aZ measurement on the second qubit, is equivalent to measuring the observableZd1 ⊗Zd2 prior

to the action of the controlled-not gate. This is due to the fact that under the action of the controlled-not

gate Ud = |0⟩⟨0|d1 ⊗ Id2 + |1⟩⟨1|d2 ⊗ Xd2, the following holds: Ud(Zd1 ⊗ Zd2)U†d = Id1 ⊗ Zd2 and therefore

any measurement of Zd2 after the action of Ud is equivalent to the measurement of Zd1 ⊗ Zd2 prior to Ud.

The post-measurement state given that id2 = 1, is

ψ3 = Πd1,d2ψ2Πd1,d2

Tr[Πd1,d2ψ2] , where Πd1,d2 = 1 − Zd1Zd2

2 .
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Bob obtains the outcome id2 = 1 with probability Tr[Πd1,d2ψ2], for which we give a closed form below.

Note that Πr1,r2Oi ⊗ Oj |ψ1⟩ = cijOi ⊗ Oj |ψ1⟩, where cij = 1 if Oi ⊗ Oj commutes with Zd1Zd2 and

0 otherwise. Thus, the only terms that contribute to ψ3 are those resulting from applying O0 ⊗ O0, O1 ⊗
O1, O2 ⊗O2, O0 ⊗O2, O2 ⊗O0 to |ψ1⟩ . Then, we find that the state is:(

(1 − p)2 + p2)
|ψ1⟩ ⟨ψ1| + 2p(1 − p)Zd1 |ψ1⟩ ⟨ψ1|Zd1,

where we have replaced the a1, a2 labels with d1, d2 given the labelling of the output space. Moreover, we

find the probability of obtaining the above state to be: Tr[Πd1,d2ψ2] = (1 − g), again by keeping the Oi ⊗Oj

terms that commute with Zd1Zd2.

To return back to the correct basis, we apply a controlled-not d1 to d2, and get the state ρr1d1 ⊗ |1⟩ ⟨1|d2,

with

ρr1d1 = (1 − q/2)ϕr1d1 + 1
2qZd1ϕr1d1Zd1, (39)

where q = 4p(1 − p) and ϕ = |ϕ⟩ ⟨ϕ| is the maximally entangled state. The overall success probability of

the modified recurrence step of the protocol is ps = (1 − g). This step has practical relevance, the resulting

state (39) is just a dephased version of the input without any amplitude damping even though the input was

sent via F that applies both dephasing and damping. It should be noted that in this stage, replacing the

maximally entangled state |ψ1⟩ with some |ψs⟩ =
√
s |0⟩ |01⟩ +

√
1 − s |1⟩ |10⟩, 0 ≤ s ≤ 1 leaves the output

state (39) unchanged while modifying ps to a possibly lower value of 4s(1 − s)(1 − g).
We also note that this state uses two channel uses in order to produce a single Bell pair (upon successful

measurement), thus it has an ideal rate of R = 1/2. Following this step, the hashing protocol is carried out

on several copies of the accepted state ρr1d1, resulting in a protocol with an overall yield of:

Y = 1
2ps(1 − h(q/2)). (40)

Hashing requires one-way communication which can always be done from receiver to sender. Thus, all

classical communication in the protocol occurs from receiver to sender.

|ϕ⟩r1a1

|0⟩a2 id2

F
d1

X F
d2 Z

Figure 4: The modified recurrence stage of the proposed distillation protocol.

The distillation protocol can also be viewed as preparing a GHZ state, (|000⟩ + |111⟩)/
√

2, across the

r ⊗ a1 ⊗ a2 system, flipping one of the qubits on the a1 ⊗ a2 system, passing the a1 ⊗ a2 system across the

damping-dephasing channel and checking the parity between the two systems at the channel output. This

parity is only flipped if one or both the noisy qubits experience damping and thus damping can be detected

exactly. This parity check is done by measuring one of the output qubits, leaving a Bell state between the

reference r and the channel output. In this way, the protocol uses a GHZ state to protect one Bell pair worth

of entanglement from damping error.

We find (see Fig. 5) for both modest and specially high noise regimes, this yield is higher than the channel

coherent information and the channel reverse coherent information. For any p > 0, the yield Y exceeds the

asymptotic estimate (33) of Ir(F) for small enough δg, i.e., the ratio

Y

Ir(F) ≃ 1
(δg)q/(1−q)

(
1 − h(q/2)

2(1 − q)qq/(1−q)

)
, (41)

can always be made larger than one for small enough δg. As a result, Y can provide a strictly tighter lower

bound on the backward capacity of the damping-dephasing channel beyond the state-of-the art rates given

by the reverse coherent information.
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Figure 5: A plot of the reverse coherent information Ir and yield Y (40) of the damping-dephasing channel

F (14) as a function of the amplitude damping probability g for fixed dephasing probability p = 0.15. The

plot also shows the Maximal Rényi Rains Theta information of the channel R̂α,Θ(F) [FF21], which upper

bounds the two-way assisted entanglement distillation rate. The inset plot zooms into the g ∈ [0.3, 1] interval

where Y exceeds Ir.

5 Evaluation of the Results
To benchmark our proposed scheme’s yield, we would like to find the tightest possible upper bound on

the two-way assisted capacity of the dephasing-damping channel. Figure 6 shows a comparison of various

upper bounds used in the literature. One upper bound shown in the plots is one half of the quantum mutual

information of the channel which is an upper bound on the two-way assisted quantum capacity [KW20].

The quantum mutual information of the channel is given by the following optimization

max
ϕAA′

I(A : B)σ, where σ = NA′→B(ϕAA′).

The quantum mutual information of the channel at ρA [Ben+02]:

I(N , ρA) = S(ρA) + S(N (ρA)) + Tr[W log2 W ],

where Wij = Tr[EiρAE
†
j ], and Ei, Ej are Kraus operators of the channel. The term −Tr[W log2 W ] is the

entropy exchange. The quantum mutual information of the channel is concave in the input density matrix

ρA [Ben+02], and when the channel is Z-covariant, we can take ρA to be diagonal. Since the dephasing-

damping channel is Z-covariant, as shown in equation (30), the evaluation of the upper bound of one-half

of the quantum mutual information of the channel reduces to a simple optimization problem easily carried

out using scipy.optimize.minimize [Vir+20]. The plot in Figure 6 also shows the max-Rains information

and the Maximal Renyi Rains Theta Information upper bounds on the two-way assisted capacity, each having

a semidefinite program formulation along with accompanying code [FF21].

From the plots in Fig. 6, it is evident that the Maximal Renyi Rains Theta Information provides the

tightest upper bound on the two-way assisted quantum capacity of the dephasing-damping channel.

A combined lower bound on the achievable backward-communication assisted entanglement distillation

rate for different noise regimes is given byL(F) = max{Ir(F), Y }. At g = 0, the channel is a pure dephasing

channel, where the lower bound Ir(F) = Ic(F) = 1 − h(p) matches the upper bound given by the Maximal

Rényi Rains Theta information R̂α,Θ(F)[FF21]. We plot the lower boundL(F) and the upper bound R̂α,Θ(F)
against the dephasing probability p, for different values of the amplitude damping probability g, observing

how the gap between the lower and upper bound changes in Figure 7, as well as the difference between the

upper and lower bounds in Figure 8.
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Figure 6: A comparison of various upper bounds from the literature for the two-way classical communication

assisted capacity of the damping-dephasing channel at dephasing probability p = 0.15.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

p

Rate

L(F) R̂α,Θ(F)

(a) g = 0.1

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

p

Rate

L(F) R̂α,Θ(F)

(b) g = 0.5

0 0.1 0.2 0.3 0.4 0.5

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

p

Rate

L(F) R̂α,Θ(F)

(c) g = 0.9

Figure 7: For different g, the plots show the Maximal Rényi Rains theta information upper bound[FF21] and

the lower bound L(F) for the joint damping-dephasing channel.

0 0.1 0.2 0.3 0.4 0.5

0

5 · 10−2

0.1

0.15

0.2

p

D
iff
eren

ce

R̂α,Θ(F)− L(F)

(a) g = 0.1

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

p

D
iff
eren

ce

R̂α,Θ(F)− L(F)

(b) g = 0.5

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

·10−2

p

D
iff
eren

ce

R̂α,Θ(F)− L(F)

(c) g = 0.9

Figure 8: For different g, the plots show the difference between the Maximal Rényi Rains theta information

upper bound[FF21] and the lower bound L(F) for the joint damping-dephasing channel.
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6 Discussion
The feature of the proposed distillation protocol is to isolate the sources of noise in order to address each

individually. In the first stage, the modified recurrence step identifies amplitude damping noise. In fact,

by post-selecting out the measurement of id2 = 1, the scheme guarantees that any noise that is a result of

amplitude damping noise is caught. This exploits the asymmetric source of the noise, that |1⟩ can be mapped

to |0⟩ but the inverse is not true under this source of noise. Moreover, the dephasing noise commutes with

this first step, and can be mapped into a source of dephasing noise on the post-selected state. The rate of

the dephasing noise on this post-selected qubit is: 2p(1 − p), which is just the result of one of the receiver’s

qubits having undergone a dephasing Z error. It is worth remarking that if both of the receiver’s qubits

were dephased then those errors would cancel out.

Our backward-only protocol has rates higher than those given by the damping-dephasing channel F ’s

(reverse Ir) coherent information (Ic) when noise in this channel is modest. It would be interesting explore

other protocols, perhaps forward only, and appropriately compare them with Ic and Ir in the low-noise

regime of F .

In addition to these rates for entanglement sharing, it would be valuable to study other quantum

capacities of the physically well motivated channel F . Our study of the channel’s quantum capacity reveals

non-additivity in the channel’s coherent information. This non-additivity can be found at the simplest two-

letter level using a neat and explicit ansatz (28). The magnitude of the non-additivity observed, O(10−3), is

comparable to those found for dephrasure and generalized erasure channels [LLS18; SG21; Fil21] however

the noise channel in our case is qualitatively different. Our channel is strongly motivated to capture T1
and T2 noise, both observed together in practice. Occurrence of two-letter level non-additivity in such a

practically relevant setting paves the way for its experimental study.
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A Channel Coherent information
We claimed in Lemma 2 that the coherent information of F at an input density operator ρ with Bloch

coordinates r = (x, y, z), Ic(F , ρ), only depends on z and x2 + y2
. Proof for this claim is as follows:

Proof. The coherent information, Ic(F , ρ) = S
(
F(ρ)

)
−S

(
G(ρ)

)
, where we use G in (21) to be the complement

of F . We show each term in this difference depends on z and x2 + y2
. The first term, S

(
F(ρ)

)
is the entropy

of a qubit density operator and this entropy, see comment below (2), only depends on |rd| defined in (15),

Notice |rd| depends on z and x2 + y2
. We now analyze the second term, S

(
G(ρ)

)
. This term is the entropy

of the Block matrix ρc1c2 in (23). This entropy depends on eigenvalues of ρc1c2. These eigenvalues {λi} are

solutions to the polynomial g(λ) = 0 where

g(λ) = det(R), R = ρc1c2 − λI4 =
(
R11 R12
R21 R22

)
. (42)

and the 2 × 2 blocks

R11 = 1
2

(
(1 − g)|ϕ1⟩⟨ϕ1|(1 + z) + |ϕ0⟩⟨ϕ0|(1 − z)

)
− λI2,

R12 = √
g|ϕ0⟩⟨ϕ1|(x+ iy)/2 = R†21,

R22 = g|ϕ11⟩⟨ϕ11|(1 − z)/2 − λI2

(43)
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Using Schur’s formula for determinant for block matrices,

det(R) = det(R11) det(R22 −R†12R
−1
11 R12) (44)

Notice Rij are all 2 × 2 matrices and for two such matrices A and B, the determinant det(A + B) =
det(A)+det(B)+Tr(A)Tr(B)−Tr(AB). Using this equality in the previous equation (44), we get det(R22 −
R†12R

−1
11 R12) equals

det(R22) + det(R†12R
−1
11 R12)

− Tr(R22)Tr(R†12R
−1
11 R12) + Tr(R22R

†
12R

−1
11 R12)

(45)

Notice each term on the right side of the equality is either independent of x, y or depends on x2 + y2
. Using

this and the fact that R11 only depends on z, we find det(R) in eq. (44) depends on x2 + y2
and z. This

dependence implies g(λ) and thus its roots {λi} (the eigenvalues of ρc1c2) depend on x2 + y2
and z. ■
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