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The j = 3/2 fermions in cubic crystals or cold atomic gases can form Cooper pairs in both singlet
(J = 0) and unconventional quintet (J = 2) s-wave states. Our study utilizes analytical field
theory to examine fluctuations in these states within the framework of the Luttinger-Kohn model.
We investigate how collective modes evolve with varying spin-orbit coupling (SOC) strength. In
the singlet state, quintet Bardasis-Schrieffer modes soften at a finite wavevector, hinting at Fulde-
Ferrell-Larkin-Ovchinnikov physics. In the quintet state, we identify additional gapless and gapped
modes originating from the partially broken symmetry due to SOC. Our results can be readily
detected using current experimental techniques.

Introduction.—While the existence of collective excita-
tions in superconductors have been anticipated for many
years [1], only relatively recently have experimental ad-
vancements facilitated their detection [2–6], prompting
a surge of renewed interest in the field. The collective
excitation spectrum in unconventional superconductors
and superfluids is predicted to be particularly rich, re-
flecting the breaking of additional symmetries and their
more intricate gap structure [7–9]. For example, the spin
and orbital degrees of freedom in the Balian–Werthamer
pairing state of superfluid 3He give rise to a complicated
spectrum of collective modes [8, 10].

A hallmark of unconventional superconductors is that
their gap functions are nodal, leading to continuum ex-
citations down to zero energy. The consequent damping
of the collective modes by the continuum is unfavourable
for their experimental detection. Recently there has been
growing interest in unconventional pairing states with s-
wave gap functions, which have been predicted to oc-
cur in systems where the low-energy fermionic states
are characterized by quantum numbers beyond the usual
spin- 12 , e.g. sublattice or spin [11–15]. In some materials
such as YPtBi [16] or the pyrochlore iridates [17], the
coupling between these different degrees of freedom give
the band electron states an effective j = 3/2. The pairing
states of such systems have been extensively studied [18–
23]. The j = 3/2 spin symmetry permits s-wave pairing
states with J = 2 (quintet) total angular momentum,
making it a compelling system for investigating collec-
tive excitations in an unconventional superconductor.

In this letter we explore the collective excitation modes
in a j = 3/2 system with quintet pairing and all
symmetry-allowed spin-orbit coupling (SOC) terms. Uti-
lizing a path integral approach, we derive an effective
action for the gap fluctuations around saddle points cor-
responding to real and fully-gapped singlet (J = 0) and
quintet states. Our calculation scheme benefits from an-
alytic expressions for the relevant Gor’kov Green’s func-
tions (GGF), which allows fast evaluation of the sums
over momentum space. We first study the singlet saddle
point, where we find that a pronounced softening of the
quintet Bardasis-Schrieffer modes at nonzero wavevec-

FIG. 1. (a) Illustration of the split ± bands of ĤLK at kz =
0. Quintet pairing involves both intraband and interband
pairing. When the latter dominates, the system transitions to
a finite momentum ground state, reflecting the FFLO physics,
with SOC acting as an effective magnetic field. (b) Spherical
harmonic representation of the fluctuation δ∆d2r on top of
the quintet pairing saddle point ∆d1. The presence of SOC
changes the shape and size of the function and thus opens a
gap. (c) Fluctuation δ∆d4r on top of the ∆d1 saddle point.
The SOC serves as a rotation, and thus the excitation remains
gapless.

tor is possible for sufficiently large SOC and interac-
tion strengths. This indicates an instability towards a
pairing state exhibiting a finite center-of-mass momen-
tum, recalling Fulde-Ferrel-Larkin-Ovchinikov (FFLO)
physics [24, 25]. Instead of a magnetic field, the intrin-
sic interband and intraband pairing in the quintet state
drives this phenomenon, see Fig. 1(a). The excitations
about the quintet saddle point show a rich spectrum,
with the appearance of massless amplitude modes corre-
sponding to rotation of the nematic director of the real
quintet state; these excitations, along with other distor-
tions of the quintet state which are present as gapped
modes, are shown in the cartoon Fig. 1(b) and (c). Our
findings lay the groundwork for the study of the collec-
tive excitations in j = 3/2 superconductors, which can
be realized in cubic solid-state systems or as engineered
Cooper pairs in cold-atomic gases.

Model.—We consider a system of j = 3/2 fermions
with local pairing interactions, which is described by the
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Lagrangian:

L =

∫
dr
[
ψ†
(
∂τ + ĤLK − µ

)
ψ + Ls + Ld

]
, (1)

where ψ = (c3/2, c1/2, c−1/2, c−3/2)
T is a spinor of Grass-

mann fields and τ is imaginary time. The noninteracting
part of the Lagrangian is the Luttinger-Kohn Hamilto-
nian, which is a minimal model for j = 3/2 fermions in a
cubic material including SOC [26]. In momentum space
this has the matrix form:

ĤLK = (αk2 − µ) 1̂4 +βJ
∑
i

k2i Ĵ
2
i + δJ

∑
i ̸=j

kikjĴiĴj,

(2)

where 1̂4 represents the 4 × 4 identity matrix and the
Ĵi,j=x,y,z are the j = 3/2 angular momentum ma-
trices. The parameters α, βJ , and δJ are material-
dependent quantities, and µ is the chemical poten-
tial. If δJ = βJ then ĤLK is spherically symmet-
ric; otherwise ĤLK has cubic symmetry. In the fol-
lowing it is convenient to use the five mutually anti-
commuting Euclidean Dirac matrices {γ̂a}a=1...5[19, 21,
23], which we define as follows: γ̂ = ( 13 (2Ĵ

2
z − Ĵ2

x −
Ĵ2
y ),

1√
3
(Ĵ2

x − J2
y ),

1√
3
{Ĵx, Ĵy}, 1√

3
{Ĵx, Ĵz}, 1√

3
{Ĵy, Ĵz}),

where the inner curly brackets represent the anticom-
mutation operation. Then ĤLK can be written as
ĤLK = ϵ0 1̂4 +

∑
a ϵaγ̂a, where ϵ0 = (α + 5

4 (βJ +
δJ))k

2 − µ and the vector of coefficients {ϵa}a=1...5

is ϵ = ((βJ + δJ)(3k
2
z − k2)/2,

√
3(βJ + δJ)(k

2
x −

k2y)/2,
√
3βJkxky,

√
3βJkxkz,

√
3βJkykz). The doubly-

degenerate eigenvalues of ĤLK are given by ϵ± = ϵ0±|ϵ|,
where |ϵ| ≡

√∑
a ϵ

2
a, see Supplemental Material (SM).

The effective spin-3/2 of the electrons allows s-wave
pairing in both singlet (J = 0) and quintet (J = 2) chan-
nels [18, 19]. To explore these pairing states we include
the local pairing interaction terms

Ls = −gs
(
ψ† ÛT ψ

∗
)(

ψT Û†
T ψ
)
, (3)

Ld = −gd
∑
a

(
ψ†γ̂a ÛT ψ

∗
)(

ψT Û†
T γ̂aψ

)
, (4)

where gs and gd represent the pairing strength in the
singlet and quintet channels respectively, and ÛT =

exp
(
−iπĴy

)
is the unitary part of the time reversal op-

erator. We follow the standard procedure of decoupling
the interactions Ls and Ld by introducing the bosonic
fields ∆s and {∆da}a=1...5 and performing the Hubbard-
Stratanovich transformation [27]. Upon integrating out
the Grassmann fields (see SM), the partition function be-

comes:

Z =

∫
D(∆∗

s,∆s)

∫ 5∏
a=1

D(∆∗
da,∆da) e

−S , (5)

S =

∫ β

0

dτ
∑
k

(
|∆s|2/gs +

5∑
a=1

|∆da|2/gd − ln det Ĝ−1

)
,

(6)

where β = 1/kBT with kB the Boltzmann constant and
Ĝ−1 represents the inverse of the GGF, which, following
a Fourier transformation, is expressed as:

Ĝ−1 =

(
iωn 1̂4 −ĤLK −∆̂

−∆̂† iωn 1̂4 +Ĥ
T
LK

)
= iωn 1̂8 −ĤBdG.

(7)

Here ∆̂ = (∆s +
∑

a ∆daγ̂a) ÛT and ĤBdG is the Bogoli-
ubov–de Gennes (BdG) Hamiltonian. In the following we
will consider saddle points of this action where only the
singlet or one of the quintet bosonic fields has a nonzero
value.
Singlet saddle point.—We first examine the collective

excitations in the spin-singlet pairing state. The saddle-
point value of the singlet gap is the solution of the gap
equation g−1

s =
∑

k(1/E+,k + 1/E−,k), which we denote

as ∆s0 and assume to be real, and E±,k =
√
ϵ2± +∆2

s0

are the eigenenergies of ĤBdG. Note that the summation
over momentum in the gap equation requires a cutoff
to converge, making the resulting expression an effective
renormalization condition for the interaction strength gs.
To study fluctuations about the saddle point we make the
Ansatz ∆s = ∆s0+δ∆s and ∆da = δ∆da, where the fluc-
tuation terms have both real and imaginary components,
e.g. δ∆s = δ∆sr + iδ∆si, representing amplitude and
phase fluctuations, respectively. Expanding the action in
the fluctuations to second order we obtain the Gaussian
form:

S =
∑
ωn,q

∑
ν=r,i

[
g−1
s + χs,ν(ωn,q)

]
|δ∆sν |2

+
∑
ωn,q

∑
ν=r,i

∑
a

[
g−1
d + χda,ν(ωn,q)

]
|δ∆daν |2, (8)

where the susceptibilities (or response functions) are:

χλ,ν =
1

2βN

∑
ωm,k

Tr
[
M̂λ,νĜ(k)M̂λ,νĜ(k + q)

]
. (9)

Here M̂λ=s(da),ν=r(i) is the coefficient of the real (imag-
inary) part of the bosonic field ∆λ=s(da) in the BdG
Hamiltonian, and we adopt the abbreviation k = (ωn,k)
and q = (ωm,q). Note that N originates from lattice
regularization and is sufficiently large to allow numerical
approximations of momentum summation by integration.
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The susceptibilities Eq. (27) have a logarithmic diver-
gence [7]. In the case of the singlet channel this is pre-
cisely canceled by replacing g−1

s by the gap equation,
leading to a universal function which is cut-off indepen-
dent. This does not hold for the quintet fluctuations:
although adding and subtracting g−1

s to the expression
inside the brackets allows us to cancel the logarithmic di-
vergence of the susceptibility, the solution then depends
on the nonuniversal value of g−1

d − g−1
s [7]. In evaluating

the regularized coefficients we are aided by the partic-
ularly simple analytical form of the GGF at the singlet
saddle point:

Ĝs =
∑
ν=±

−iωn 1̂8 −ϵν τ̂z ⊗ 1̂4 +i∆s0τ̂y ⊗ γ̂3γ̂5
ω2
n + ϵ2ν +∆2

s0

P̂ν ,

(10)

P̂± =
1

2

[
1̂4 ±

∑
a

ϵa
|ϵ| γ̂a 0

0 1̂4 ±
∑

a
ϵa
|ϵ| γ̂

T
a

]
, (11)

where τ̂x,y,z are Pauli matrices in the Nambu space and

P̂± is the projection operator into the band ϵ±. We use
Eq. (10) to evaluate the coefficients in Eq. (26), perform-
ing the Matsubara sum analytically and the integration
over k numerically. For the fluctuations in the singlet or-
der parameter, we find the expected Higgs mode at the
gap edge from the δ∆sr fluctuations, while the δ∆si fluc-
tuation generates the massless Goldstone mode. Both
modes are insensitive to the spherically symmetric SOC.

A more intriguing result emerges from the fluctuations
into the quintet channel. To be concrete, Fig. 2 illustrates
the collective modes associated with δ∆d1i, correspond-
ing to imaginary fluctuations in the |J,mj⟩ = |2, 0⟩ state.
In the absence of SOC and with equal pairing strength
ρ = gd/gs = 1, the degenerate singlet and quintet states
give rise to an SU(4) symmetry [28]; this is broken by
selecting the singlet saddle point, thereby generating five
additional Goldstone modes corresponding to phase fluc-
tuations into the quintet channels. The presence of a
spherically symmetric SOC lifts this degeneracy: Given
that the singlet pairing state opens the largest gap at the
Fermi surface [23], it is the ground state for ρ = 1. The
quintet Goldstone modes found above are now gapped
and can be regarded as Bardasis-Schrieffer modes [29],
i.e. fluctuations into a subdominant pairing state of dif-
ferent symmetry. As the strength of the SOC increases,
the dispersion of these modes shifts upward toward the
gap edge of 2∆s0, indicating the reduction of the effective
interaction in the quintet channel. It is noteworthy that
the top red curve in Fig. 2(a) develops a local minimum
at a finite q ≡ |q| value. This occurrence signals a mode
softening process and may foreshadow a phase transition
into a finite q state.

To demonstrate this observation, Fig. 2(b) illustrates
the phase transition process by adjusting ρ. As ρ in-
creases, the minimum value at finite q may become lower
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FIG. 2. Dispersion of the Bardasis-Schrieffer mode of δ∆d1i at
∆s0/µ = 0.05. (a) Evolution as a function of the dimention-

less SOC parameter β̃J = βJ µ/k2
F ℏ2 with δJ = βJ (spherical

symmetric SOC) and ρ = gd/gs = 1. (b) Evolution of insta-
bility with variations ρ, fixing βJ/∆s0 = 3.6 and δJ = −βJ .
Points represent numerical data, while solid curves serve as
visual guides; kF is the Fermi momentum.

than that at q = 0. At the critical point, the excitation
mode becomes gapless, signaling that the singlet saddle
point is no longer the genuine ground state, and the sys-
tem will transition to a pairing state at finite q. Physi-
cally, as the quintet channel involves both intra and in-
terband pairing of ĤLK split by the SOC, the system
transitions to a finite-q state when the interband pair-
ing dominates, as sketched in Fig. 1(a). Consistent with
this interpretation, we only observed the finite-q state
upon introducing a cubic anisotropy of the SOC which
enhances the interband pairing in the d1 channel.

This finite-q instability is reminiscent of the FFLO
state in spin- 12 Pauli-limited singlet superconductors [24,
25]. The interband pairing induced by the SOC plays
the same pair-breaking role as the Zeeman field in a
spin- 12 singlet superconductor, in clear analogy to FFLO
physics. A key difference is that in general there is also
intraband pairing for any cubic anisotropy of the SOC,
which in the analogy to the spin-12 superconductor cor-
responds to a same-spin pairing component. This is in-
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FIG. 3. Excitation spectrum (solid curves) at the ∆d1 saddle
point with ∆0/µ = 0.05. (a) Comparative analysis of various

fluctuation channels at β̃J = βJµ/k
2
F ℏ2 = 0.035. The blue

dashed curve denotes the effective gap. (b) Fluctuations on

the δ∆d2r channel with respect to β̃J at q = 0. The grey
dashed curve illustrates the reduced gap. In both panels, the
shaded grey area represents the continuum.

sensitive to the Zeeman field, but in general it cannot
coexist with singlet pairing. The presence of intraband
pairing means that the q = 0 quintet state remains a
weak-coupling instability for any cubic anisotropy [20],
although our results here show that it may be unstable
towards a finite-q state.

Quintet saddle point.—We now apply Eq. (26) to probe
the physics of the quintet saddle point. The five quintet
states are degenerate in the absence of SOC, and the sad-
dle point solution corresponds to any real combination of
the different channels [30]. Real solutions remain stable
and fully-gapped for sufficiently small but finite SOC [21],
although they display gap minima which deepen into line
nodes at some critical SOC strength. Within the mani-
fold of real solutions, switching on the SOC splits off the
uniaxial nematic |2, 0⟩ (d1) state from the four degener-
ate biaxial nematic states (d2-d5) [31]; we expect that the
|2, 0⟩ state is most stable since the gap minima form non-
intersecting circles, in contrast to the intersecting lines of
gap minima in the other states.

The saddle point equation is δS|gs=0/δ∆d1 = 0, and its
solution is denoted as ∆0. We proceed as before by ex-
panding to quadratic order in the fluctuations. Here the
coefficients of the quintet fluctuations are universal, since
the saddle point equation allows us to replace g−1

d by a
term which cancels the logarithmic divergence of the sus-
ceptibility. We again use an analytic expression for the
GGF to exactly perform the Matsubara sum, although
this is much more complicated than at the singlet saddle
point and we present it in the SM. In the following we
ignore the singlet channel which in general contributes a
Bardasis-Schrieffer mode.
At vanishing SOC strength we find five massless

modes: the usual Goldstone mode due to the U(1) sym-
metry breaking, and four additional degenerate ampli-
tude modes arising from the breaking of SO(5) symmetry
within the five-dimensional order parameter space [28].
As shown in Fig. 3(a), three of these Goldstone modes
survive upon switching on the spherically-symmetric
SOC: the phase fluctuation mode associated with δ∆d1i,
and the two amplitude modes associated with δ∆d4r and
δ∆d5r. The amplitude modes δ∆d2r and δ∆d3r acquire a
small mass gap, and move towards the edge of the con-
tinuum with increasing SOC as shown in Fig. 3(b).
The continued presence of Goldstone modes at finite

SOC strength follows from the breaking of the SO(3)
symmetry by the nematic director of the d1 state. To
see the effect of this, let us consider an infinitesimal

rotation about the y-axis, Ûy = exp
(
−iϕyĴy

)
, where

we have set ℏ = 1. As a result of this transforma-
tion, k 7→ k′ and ĤBdG undergoes the following changes:
ĤBdG(k

′) = diag(Û†
y , Û

∗
y )ĤBdG(k) diag(Ûy, Û

T
y ). To the

lowest nontrivial order in ϕy, the pairing potential trans-
forms as:

Û†
y∆̂d1(k)Û

T
y = ∆̂d1(k

′)−∆0ϕyγ̂4 ÛT +O(ϕ2y). (12)

This implies that the infinitesimal rotation of ĤBdG

about the y-axis corresponds to amplitude fluctuations
into the δ∆d4 channel ( 1

2i (|2, 1⟩ − |2,−1⟩) state). Owing
to the summation over momentum, the total energy of
the system remains unchanged by this rotation. Conse-
quently, the Goldstone theorem dictates the existence of
a massless mode corresponding to the δ∆d4r channel at
finite strength of SOC. A similar argument can be made
for the rotation against the x-axis and the fluctuation of
the δ∆d5r channel ( 12 (|2, 1⟩+ |2,−1⟩) state). The δ∆d4r

and δ∆d5r fluctuations remain degenerate upon including
a finite cubic anisotropy but the absence of SO(3) rota-
tional symmetry in the normal state implies a nonzero
mass for these modes.
The distinct behavior of fluctuations in the non-pairing

channels can be illustrated using a heuristic cartoon pic-
ture depicted in Fig. 1, which visualizes the quintet pair-
ing states as L = 2 spherical harmonic functions in real
space. The δ∆d2r fluctuations corresponds to a change in
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the shape of the harmonic function, thus requiring a finite
amount of energy. In contrast, the δ∆d4r fluctuations
corresponds to an overall rotation, and so this fluctua-
tion requires no energy. The symmetry-breaking process
induced by the δ∆d2r channel is clearly evident in the
evolution of the q = 0 frequency against SOC strength,
as depicted in Fig. 3(b). The mass gap increases with
βJ , but this trend appears to reverse near to the closing
of the excitation gap.

Summary.—In this letter we have presented a study
of the collective modes in fully-gapped pairing states in
a system of j = 3/2 fermions. Specializing to the real
singlet and quintet saddle points, we find a rich diversity
of collective modes. At the singlet saddle point, our in-
vestigation reveals that interband pairing may induce a
mode softening process which can disrupt the assumed
singlet ground state. This phenomenon resembles the
FFLO physics but without the requirement of a high ex-

ternal magnetic field. Consequently, the quintet system
offers a unique platform for investigating FFLO physics,
and reciprocally, the FFLO state may unexpectedly give
insight into the quintet system with SOC. Exploring the
quintet saddle point, we observe that in the presence of
SOC, the breaking of rotational symmetry by the uni-
axial nematic phases gives rise to two additional gapless
amplitude modes alongside the usual phase mode. Ob-
servation of these collective modes is feasible in either
cubic superconductors or in cold atomic gases of quin-
tet Cooper pairs using current experimental techniques.
Our results underline the important role that SOC plays
in unconventional multiband superconductors.

We thank Daniel Agterberg for useful discussions.
This work was supported by the Marsden Fund Coun-
cil from Government funding, managed by Royal Society
Te Apārangi, Contract No. UOO1836.

Spin j = 3/2 Angular Momentum Operator and γ̂a Matrices

The matrix representation of the j = 3/2 angular momentum operators is given by:

Ĵx =
1

2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 , Ĵy =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0

 , Ĵz =
1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (13)

The γ̂a matrices are:

γ̂1 =
1

3

(
2Ĵ2

z − Ĵ2
x − Ĵ2

y

)
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , γ̂2 =
1√
3

(
Ĵ2
x − J2

y

)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (14)

γ̂3 =
1√
3
{Ĵx, Ĵy} =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , γ̂4 =
1√
3
{Ĵx, Ĵz} =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , γ̂5 =
1√
3
{Ĵy, Ĵz} =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 .
(15)

The unitary component of the time reversal operator is given by:

ÛT = exp
(
−iπĴy

)
=


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (16)

path integral representation for the partition function

The Luttinger-Kohn (LK) Hamiltonian ĤLK defined in the main text reads:

ĤLK = (αk2 − µ) 1̂4 +βJ
∑
i

k2i Ĵ
2
i + δJ

∑
i ̸=j

kikj ĴiĴj . (17)

Utilizing the γ̂a matrices and the ϵ vector, the doubly-degenerate eigenvalues of ĤLK are: ϵ± = ϵ0 +
√∑

a ϵ
2
a.
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We consider an ensemble of non-interacting electrons described by ĤLK as the the non-interacting Hamiltonian H0.
In terms of the electron creation and annihilation operators base vector ψ̂ = (ĉ3/2, ĉ1/2, ĉ−1/2, ĉ−3/2)

T, H0 is given by:

H0 =

∫
dr
[
ψ̂†ĤLKψ̂

]
. (18)

Next, we introduce the interaction Hamiltonian HI , defined as:

HI =

∫
dr

[
−gs

(
ψ̂† ÛT ψ̂

∗
)(

ψ̂T Û†
T ψ̂
)
− gd

∑
a

(
ψ̂†γ̂a ÛT ψ̂

∗
)(

ψ̂T Û†
T γ̂aψ̂

)]
. (19)

The partition function of the full system is: Z = tr e−β(H0+HI). By inserting the resolution of identity of the coherent
states as outlined in Ref. [27], we arrive at the path integral description of the partition function written against the
Grassmann field basis ψ = (c3/2, c1/2, c−1/2, c−3/2)

T as:

Z =

∫
D(ψ†, ψ) exp

{
−
∫ β

0

dτ

∫
dr
[
ψ†
(
∂τ + ĤLK − µ

)
ψ + Ls + Ld

]}
,

Ls = −gs
(
ψ† ÛT ψ

∗
)(

ψT Û†
T ψ
)
,

Ld = −gd
∑
a

(
ψ†γ̂a ÛT ψ

∗
)(

ψT Û†
T γ̂aψ

)
. (20)

The quartic interaction appearing in the action does not allow analytic integration, but it can be transformed away by
using the Hubbard-Stratonovich transformation which introduces another bosonic field as a dynamic variable. Take
Ls as an example. To perform the Hubbard-Stratonovich transformation to cancel out the quartic interaction, we can
multiply Z by a constant, which is expressed as a functional integration of a bosonic field and its conjugate:∫

D(∆∗
s,∆s)e

−
∫
dτ

∫
r

|∆s|2
gs . (21)

Under this operation, all thermodynamic variables will remain unchanged as they are given by the derivative of lnZ
such that the additional constant will cancel out itself between the numerator and the denominator. We can further
manipulate the constant by making a shift to the bosonic field as:

∆s → ∆s − gsψ
† ÛT ψ

∗, and ∆∗
s → ∆∗

s − gsψ
T Û†

T ψ. (22)

The product of the shifted fields in |∆s|2/gs will cancel out the quartic term in Ls. Similar argument applies to the Ld

term. The remaining terms is quadratic in the Grassmann fields and can be integrated out by the Gaussian integral
[27], and the resulting partition function expressed by functional integration of bosonic field is:

Z =

∫
D(∆∗

s,∆s)

∫ 5∏
a=1

D(∆∗
da,∆da) exp

{
−
∫ β

0

dτ
∑
k

(
|∆s|2

gs
+

5∑
a=1

|∆da|2

gd
− ln det Ĝ−1

)}
. (23)

This expression serves as the central model in our discussions in the main text.

spin-singlet pairing state

The spin-singlet pairing state corresponds to the singlet saddle point solution. On the singlet saddle point, we can
write down the meanfield Bogoliubov–de Gennes (BdG) Hamiltonian in the Nambu basis as:

ĤBdG,k =

[
ĤLK ∆̂s

∆̂†
s −ĤT

LK

]
, (24)

where the pairing potential is given by ∆̂s = −∆s0 ÛT. The positive eigenvalues of the BdG Hamiltonian are:

E±,k =
√
ϵ2± +∆2

s0. (25)
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We find the singlet saddle point by solving the saddle point equation and then expand the action in terms of the
real and imaginary parts of the singlet channel fluctuation, as described in the main text. The expanded action and
susceptibility (or response functions) are given by:

S =
∑
ωn,q

∑
ν=r,i

[
g−1
s + χs,ν(ωn,q)

]
|δ∆sν |2, (26)

χs,ν =
1

2βN

∑
ωm,k

Tr
[
M̂s,νĜ(ωn,k)M̂s,νĜ(ωn + ωm,k+ q)

]
. (27)

Here, M̂s,ν is the off-diagonal block matrix of ĤBdG following complex decomposition. N comes from lattice regular-
ization and it is assumed to be sufficiently large so that in numerical calculations, the summation over momentum
can be approximated by integration.

To simplify expressions, from now on we omit the overhead hat symbol representing operators or matrices, and
define |ϵ| =

√∑
a ϵ

2
a. The Green’s function has the form

Gs(k, iωn) = (iωn18 −HBdG,k)
−1

=
1

(ω2
n + E2

+)(ω
2
n + E2

−)

{
−iωn(∆

2
0 + ϵ20 + |ϵ|2 + ω2

n)τ014 − ϵ0(∆
2
0 + ϵ20 − |ϵ|2 + ω2

n)τz14

+2iωnϵ0ϵ1τ0γ1 − ϵ1(∆
2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ1 + 2iωnϵ0ϵ2τ0γ2 − ϵ2(∆
2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ2

−ϵ3(∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τ0γ3 + 2∆0ϵ0ϵ5τxγ3 + 2iωnϵ0ϵ3τzγ3 + 2iωnϵ0ϵ4τ0γ4

−ϵ4(∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ4 − ϵ5(∆
2
0 − ϵ20 + |ϵ|2 + ω2

n)τ0γ5 − 2∆0ϵ0ϵ3τxγ5 + 2iωnϵ0ϵ5τzγ5

+2∆0ϵ0ϵ4τyiγ1γ2 − 2∆0ϵ0ϵ2τyiγ1γ4 + 2∆0ϵ0ϵ1τyiγ2γ4 +∆0(∆
2
0 + ϵ20 + |ϵ|2 + ω2

n)τyiγ3γ5
}

(28)

=
1

2(ω2
n + E2

+)
{−iωnτ014 − ϵ+τz14 − iωnϵ1τ0γ1 − ϵ1ϵ+τzγ1 − iωnϵ2τ0γ2 − ϵ2ϵ+τzγ2

−iωnϵ3τzγ3 − ϵ3ϵ+τ0γ3 − iωnϵ4τ0γ4 − ϵ1ϵ+τzγ4 − iωnϵ5τzγ5 − ϵ5ϵ+τ0γ5 +∆0τyiγ3γ5

−∆0ϵ1τyiγ2γ4 +∆0ϵ2τyiγ1γ4 +∆0ϵ3τxγ5 −∆0ϵ4τyiγ1γ2 −∆0ϵ5τxγ3}

+
1

2(ω2
n + E2

−)
{−iωnτ014 − ϵ−τz14 + iωnϵ1τ0γ1 + ϵ1ϵ−τzγ1 + iωnϵ2τ0γ2 + ϵ2ϵ−τzγ2

+iωnϵ3τzγ3 + ϵ3ϵ−τ0γ3 + iωnϵ4τ0γ4 + ϵ4ϵ−τzγ4 + iωnϵ5τzγ5 + ϵ5ϵ−τ0γ5 +∆0τyiγ3γ5

−∆0ϵ1τyiγ2γ4 +∆0ϵ2τyiγ1γ4 +∆0ϵ3τxγ5 −∆0ϵ4τyiγ1γ2 −∆0ϵ5τxγ3}

=
1

(ω2
n + E2

+)
(−iωnτ014 − ϵ+τz14 +∆0τyiγ3γ5)

(τ014 + ϵ1τ0γ1 + ϵ2τ0γ2 + ϵ3τzγ3 + ϵ4τ0γ4 + ϵ5τzγ5)

2

+
1

(ω2
n + E2

−)
(−iωnτ014 − ϵ−τz14 +∆0τyiγ3γ5)

(τ014 − ϵ1τ0γ1 − ϵ2τ0γ2 − ϵ3τzγ3 − ϵ4τ0γ4 − ϵ5τzγ5)

2

=
1

(ω2
n + E2

+)
(−iωnτ014 − ϵ+τz14 +∆0τyiγ3γ5)

(
P+ 0

0 P(h)
+

)
+

1

(ω2
n + E2

−)
(−iωnτ014 − ϵ−τz14 +∆0τyiγ3γ5)

(
P− 0

0 P(h)
−

)
(29)

where τ0xyz are Pauli matrices that have been introduced to encode the Nambu degree of freedom. The projection
operators for the electron and hole bands are given by :

P± =
1

2

[
14 ±

ϵ(k) · γ̂
|ϵ|

]
, (30)

P(h)
± =

1

2

[
14 ±

ϵ(−k) · γ̂
|ϵ|

]T
. (31)

The projection operators allow us to perform analytic summation over the Matsubara frequency, which is done by
Mathematica. After that, the divergence in the susceptibility can be canceled out by the pairing strength renormalized
by the gap equation. The resulting expression is a well-behave function in both k and q, and the plots in the main
texts are calculated by numerical integration over k, which converges very quickly.
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Spin quintet pairing

In this section, we consider a spin-quintet pairing state, which without loss of generality we choose to be

∆ = ∆0 γ1 UT (32)

The positive eigenvalues of the BdG Hamiltonian are

E± =

√
∆2

0 + ϵ20 + |ϵ|2 ± 2

√
∆2

0(ϵ
2
2 + ϵ23 + ϵ24 + ϵ25) + ϵ20|ϵ|

2
. (33)

An important feature is that the eigenvalues E± do not directly map to ϵ± in the limit ∆0 → 0. Rather, since
E− ≤ E+, we have

E− → min{|ϵ+|, |ϵ−|} , E+ → max{|ϵ+|, |ϵ−|} (34)

Thus, in contrast to the spin singlet pairing, here E− and E+ refer to “low-energy” and “high-energy” sectors,
respectively.

The Green’s function has the form

G(k, iωn) = (iωn18 −HBdG,k)
−1

=
1

(ω2
n + E2

+)(ω
2
n + E2

−)

{
−iωn(∆

2
0 + ϵ20 + |ϵ|2 + ω2

n)τ014 − ϵ0(∆
2
0 + ϵ20 − |ϵ|2 + ω2

n)τz14

+2iωnϵ0ϵ1τ0γ1 − ϵ1(∆
2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ1 + 2iωnϵ0ϵ2τ0γ2 − 2iωn∆0ϵ4τxγ2

−ϵ2(−∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ2 − ϵ3(−∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τ0γ3 − 2∆0ϵ1ϵ5τxγ3 + 2iωnϵ0ϵ3τzγ3

+2iωnϵ0ϵ4τ0γ4 + 2iωn∆0ϵ2τxγ4 − ϵ4(−∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τzγ4 − ϵ5(−∆2
0 − ϵ20 + |ϵ|2 + ω2

n)τ0γ5

+2∆0ϵ1ϵ3τxγ5 + 2iωnϵ0ϵ5τzγ5 − 2∆0ϵ1ϵ4τyiγ1γ2 − 2iωn∆0ϵ5τyiγ1γ3 + 2∆0ϵ1ϵ2τyiγ1γ4

+2iωn∆0ϵ3τyiγ1γ5 −∆0(∆
2
0 + ϵ20 + 2ϵ21 − |ϵ|2 + ω2

n)τyiγ2γ4 − 2∆0ϵ0ϵ1τyiγ3γ5

}
. (35)

It is convenient to split the Green’s function into a low-energy and a high-energy part, i.e. we write

G(k, iωn) = G+(k, iωn) + G−(k, iωn) (36)

where

G±(k, iωn) =
1

2(ω2
n + E2

±)

{
−iωnτ014 − ϵ0

(
1± 4|ϵ|2

E2
+ − E2

−

)
τz14 ∓

4iωnϵ0ϵ1
E2

+ − E2
−
τ0γ1 − ϵ1

(
1± 4ϵ20

E2
+ − E2

−

)
τzγ1

∓ 4iωnϵ0ϵ2
E2

+ − E2
−
τ0γ2±

4iωn∆0ϵ4
E2

+ − E2
−
τxγ2 − ϵ2

(
1± 4(ϵ20 +∆2

0)

E2
+ − E2

−

)
τzγ2 − ϵ3

(
1± 4(ϵ20 +∆2

0)

E2
+ − E2

−

)
τ0γ3

± 4∆0ϵ1ϵ5
E2

+ − E2
−
τxγ3∓

4iωnϵ0ϵ3
E2

+ − E2
−
τzγ3∓

4iωnϵ0ϵ4
E2

+ − E2
−
τ0γ4∓

4iωn∆0ϵ2
E2

+ − E2
−
τxγ4 − ϵ4

(
1± 4(ϵ20 +∆2

0)

E2
+ − E2

−

)
τzγ4

−ϵ5
(
1± 4(ϵ20 +∆2

0)

E2
+ − E2

−

)
τ0γ5∓

4∆0ϵ1ϵ3
E2

+ − E2
−
τxγ5∓

4iωnϵ0ϵ5
E2

+ − E2
−
τzγ5±

4∆0ϵ1ϵ4
E2

+ − E2
−
τyiγ1γ2±

4iωn∆0ϵ5
E2

+ − E2
−
τyiγ1γ3

∓ 4∆0ϵ1ϵ2
E2

+ − E2
−
τyiγ1γ4∓

4iωn∆0ϵ3
E2

+ − E2
−
τyiγ1γ5 −∆0

(
1± 4(|ϵ|2 − ϵ21)

E2
+ − E2

−

)
τyiγ2γ4±

4∆0ϵ0ϵ1
E2

+ − E2
−
τyiγ3γ5

}
. (37)

We have highlighted the symbols ± and ∓ in blue for clarity.
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