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Abstract

Industrial prognostics focuses on utilizing degradation signals to forecast and continually

update the residual useful life of complex engineering systems. However, existing prognostic

models for systems with multiple failure modes face several challenges in real-world appli-

cations, including overlapping degradation signals from multiple components, the presence

of unlabeled historical data, and the similarity of signals across different failure modes.

To tackle these issues, this research introduces two prognostic models that integrate the

mixture (log)-location-scale distribution with deep learning. This integration facilitates the

modeling of overlapping degradation signals, eliminates the need for explicit failure mode

identification, and utilizes deep learning to capture complex nonlinear relationships between

degradation signals and residual useful lifetimes. Numerical studies validate the superior

performance of these proposed models compared to existing methods.

Keywords: Data Analytics, Prognostics, Industrial Internet of Things, Multiple Failure

Modes, Mixture (Log)-Location-Scale Distribution

1. Introduction

Degradation is a gradual and irreversible process of damage accumulation that finally

results in the failure of engineering systems/assets. Although underlying degradation pro-

cesses are usually difficult to observe, there are often some manifestations associated with

physical degradation processes that can be monitored using sensor technology. The observed

sensing data are known as degradation signals, which can be used to predict the residual

useful life (RUL) of assets via prognostic modeling. Prognostic is usually achieved by de-
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veloping statistical/machining learning methods that map an asset’s degradation signals to

its time-to-failure (TTF) or RUL. Numerous prognostic models exist in the literature, some

tailored for applications with a single failure mode [1, 2, 3, 4, 5, 6, 7], while others cater to

systems with multiple failure modes [8, 9, 10].

Existing prognostic models for systems with multiple failure modes typically follow a

two-stage approach, starting with the classification or identification of failure modes based

on degradation signals, followed by constructing a prognostic model for each identified fail-

ure mode to predict the remaining useful life. However, this method encounters several

practical challenges in real-world applications. The first major challenge is the overlapping

degradation signals due to ambiguous degradation sources. Degradation signals often orig-

inate from sensors installed on the exteriors of machines, which may capture overlapping

degradation effects from multiple internal components. For instance, a vibration sensor on a

gearbox might detect signals influenced by both gears and bearings, complicating the task of

attributing the degradation to a specific source. Although some feature extraction methods

can be applied to isolate signals for each failure mode, few can perfectly decouple the sources

of degradation. The second challenge arises from the lack of labeled training data. In many

industrial settings, historical degradation data often lack labels indicating failure modes,

leaving the corresponding failure modes of observed signals unclear. This absence of labels

complicates the training of effective classification models, as it is challenging to definitively

identify the specific failure mode associated with each signal. The third challenge stems from

the similarity of degradation signals among different components or failure modes. In some

cases, especially in the early stages of degradation, the signals from various failure modes

are so similar that distinguishing them based solely on sensor data becomes difficult.

To overcome the challenges outlined above, this article proposes two prognostic methods

that are able to model overlapping degradation signals and eliminate the need for identi-

fying specific failure modes. The proposed methods work by mapping an asset’s single or

multiple stream time series-based degradation signals to its failure time via deep learning

structures. To model overlapping degradation signals and bypass the necessity of specifying

failure modes, the proposed methods employ a mixture (Log)-Location-Scale (LLS) distri-

bution to model the failure times. LLS distribution is a family of probability distributions

parameterized by a location parameter and a non-negative scale parameter, which have been
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widely used in reliability engineering to model the failure time of engineering assets [11].

It includes a variety of distributions that cover most of the failure time distributions of

engineering assets in real-world applications. Some examples of LLS distributions include

Normal, Log-Normal, Logistics, Log-Logistics, Smallest Extreme Value (SEV), and Weibull.

The mixture LLS distribution is a mixture of two or more LLS distributions, which is an

ideal distribution to model two or more groups of failure times such as the failure time of an

asset with multiple failure modes [12]. Employing the mixture LLS distribution enables the

construction of a prognostic model that effectively utilizes overlapping degradation signals

and obviates the need for identifying specific failure modes.

The first prognostic model we propose, referred to as Deep Learning-Based Prognostic

1 (DLBP1), operates as follows. Degradation signals are first preprocessed using a Sliding

Window Method (SWM) (more details later in Section 2.2) to make sure that the data from

all the assets are of the same length, which is required by the subsequent analysis. The

degradation signals across various assets often differ since an asset’s degradation signals are

usually truncated by its failure time (i.e., no degradation data can be observed beyond the

failure time since the asset is stopped for maintenance or replacement once it is failed), and

the failure time varies from one asset to another. The SWM addresses the varying-length

challenge and provides processed degradation signals with the same length. The processed

degradation signals then serve as the input of Long Short-Term Memory (LSTM) neural

networks [13], which is followed by Fully Connected (FC) layers. The output of the set of FC

layers is then connected to another layer, whose neurons represent the parameters of mixture

LLS distributions. The parameters are then used to calculate the assets’ RUL. For example,

if we consider an asset with two failure modes, and whose RUL can be characterized using

a mixture log-normal distribution, the distribution parameter layer consists of six neurons

that represent the means, variances, and weights of the two log-normal distributions (i.e.,

µ1, σ
2
1, and λ for the first distribution and µ2, σ

2
2, and 1−λ for the second distribution). As

a result, the asset’s failure time distribution can be calculated as follows: λLN (µ1, σ
2
1)+(1−

λ)LN (µ2, σ
2
2). The parameters of the proposed prognostic model can be estimated using

a historical dataset that comprises the degradation signals and failure times of a certain

number of failed assets. After that, the real-time degradation signals of a partially degraded

in-field asset are acquired and fed into the trained prognostic model, and the failure time
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distribution of the asset is estimated.

The second model we propose, named Deep Learning-Based Prognostic 2 (DLBP2),

resembles DLBP1 but with a key modification: it permits all assets to share the same

scale parameter. This approach draws inspiration from a common assumption in statistical

learning. For instance, in linear regression, it is typically assumed that while the mean of

each response variable is influenced by its corresponding predictors, the variance remains

consistent across all samples. In other words, DLBP1 allows each asset to have its own

unique location and scale parameters, whereas DLBP2 permits each asset to have its own

unique location parameter but shares a common scale parameter across all assets. This is

achieved by designing a hierarchical parameter estimation algorithm, in which the location

and scale parameters are optimized hierarchically. Specifically, only the location parameters

are represented by the neurons of the last layer of the deep learning structure. In each

iteration, after the weights of the neurons are computed, the scale parameters are optimized

separately (more details will be discussed in Section 2.2.4). Taking the mixture log-normal

distribution as an example again, the distribution parameter layer of DLBP2 is composed of

four neurons that represent the means and weights (i.e., µ1 and λ for the first distribution

and µ2 and 1 − λ for the second distribution). The shared attributes, scale parameters

(σ1 and σ2), are optimized individually using the neuron outputs from the parameter layer

and the training failure times. The updated scale parameters are then propagated into the

ensuing round of iteration until the convergence condition is satisfied.

The proposed prognostic methods integrate mixture LLS distributions with deep learn-

ing. We choose deep learning to map degradation signals to failure times due to its superior

performance in capturing complex nonlinear relationships between input and output vari-

ables, specifically between degradation signals and failure times in prognostics [14, 15, 16, 17].

The literature features numerous deep learning-based prognostic models suitable for applica-

tions with multiple failure modes, some of which do not require the identification of specific

failure modes [18, 19, 20]. Most of these models utilize Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), or Long Short-Term Memory (LSTM), a spe-

cial variant of RNN proposed by [13]. For example, the authors in [21] constructed an

LSTM deep neural network for RUL prediction and showed its enhanced performance over

other RNN networks such as GRU-LSTM and AdaBoost-LSTM. Article [18] proposed an
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LSTM Encoder Decoder-based model to estimate the health index of engineering assets and

validated its performance in capturing the severity of faults. Research paper [14] proposed

LSTM-DANN network for RUL prediction. In article [19], the authors developed a Bayesian

deep learning framework to predict RULs. Also, in article [22], a double attention-based

framework was proposed for aircraft engine RUL prognostics. However, few existing mod-

els have specifically designed a deep learning structure to address the overlapping effects in

degradation signals. The methods proposed in this article integrate mixture LLS distribu-

tions into deep learning, which enables the modeling of overlapping degradation signals since

mixture LLS distributions intrinsically are capable of modeling signals coupled from multiple

degradation processes. In addition, LLS distributions represent valuable domain knowledge

since they cover most of the failure time distributions of engineering assets in real-world ap-

plications. By integrating LLS distribution into deep learning, we expect that the prediction

performance of our proposed prognostic models can be enhanced. This enhancement will be

verified through numerical studies, as detailed in Section 3 later on.

The rest of the paper is organized as follows. Section 2 discusses the details of the

proposed prognostic methods. Next, Section 3 evaluates the performance of the proposed

models using aircraft turbofan engine degradation data from a physics-based simulation

model developed by NASA. Finally, Section 4 concludes.

2. The Deep Learning-Based Prognostic Method

In this section, we discuss the details of our deep learning-based prognostic methods for

the RUL prediction of complex engineering assets with multiple failure modes. We first intro-

duce the mixture LLS distribution that is used to characterize the failure time distribution.

Then, we present how to integrate mixture LLS distributions with deep learning.

2.1. Mixture (Log)-Location-Scale Distribution

The LLS distribution is a family of probability distributions parameterized by a location

parameter and a non-negative scale parameter. It includes a variety of distributions that are

widely used in reliability engineering and survival analysis. For a random variable Y from

a location-scale distribution, its probability density function (i.e., pdf) can be expressed as

f(Y ;µ, σ) = 1
σ
h(Y−µ

σ
), where µ is the location parameter, σ > 0 is the scale parameter,

5



and h(·) is a standard pdf of the location-scale distribution. For example, h(ϵ) = exp(ϵ −
exp(ϵ)) for SEV distribution, h(ϵ) = exp(ϵ)/(1+exp(ϵ))2 for logistic distribution, and h(ϵ) =

1/
√
2π exp(−ϵ2/2) for normal distribution. A random variable Y is a member of the (log)-

location-scale family if log(Y ) belongs to the location-scale family. The pdf of a random

variable Y from the (log)-location-scale family can be denoted as f(Y ;µ, σ) = 1
Y σ

h( log(Y )−µ
σ

).

A mixture LLS distribution is a weighted combination of two or more specific distribu-

tions that come from the LLS family. Considering an asset with K failure modes, the pdf

of its failure time can be denoted as follows:

g(y;µ1, · · · , µK , σ1, · · · , σK) =
K∑
k=1

λkfk(y;µk, σk), (1)

where y represents the failure time of the asset, fk(·) is the pdf of the kth probability distri-

bution, µk and σk are the location and scale parameter of the kth distribution, respectively.

λk is the weight coefficient, and
∑K

k=1 λk = 1. Below we give some examples of the mixture

LLS distribution:

2.1.1. Mixture Log-Normal Distribution

g(y;µ1, · · · , µK , σ1, · · · , σK) =
K∑
k=1

λk
1

yσk

√
2π

exp {−(log y − µk)
2

2σ2
k

}, (2)

where µk ∈ R, σk > 0 for k = 1, 2, · · · , K, and the mean is
∑K

k=1 λk exp {µk +
σ2
k

2
}.

2.1.2. Mixture Weibull Distribution

g(y;µ1, · · · , µK , σ1, · · · , σK) =
K∑
k=1

λk
µk

σk

(
y

σk

)µk−1 exp {−(
y

σk

)µk}, (3)

where µk > 0, σk > 0 for k = 1, 2, · · · , K, and the mean is
∑K

k=1 λkσkΓ(1 +
1
µk
).

2.1.3. Mixture Log-Logistic Distribution

g(y;µ1, · · · , µK , σ1, · · · , σK) =
K∑
k=1

λk
σk

µk

(
y

µk

)σk−1{(1 + (
y

µk

)σk)2}−1, (4)
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where µk > 0 when σk > 1 for k = 1, 2, · · · , K and undefined otherwise, and the mean is∑K
k=1 λk

µkπ
σk

{sin ( π
σk
)}−1.

2.1.4. Mixture Log-Normal and Weibull Distribution

g(y;µ1,1, · · · , µ1,K1 , µ2,1, · · · , µ2,K2 , σ1,1, · · · , σ1,K1 , σ2,1, · · · , σ2,K2)

=

K1∑
k1=1

λk1

1

yσ1,k1

√
2π

exp {−(log y − µ1,k1)
2

2σ2
1,k1

}+

K2∑
k2=1

λK1+k2

µ2,k2

σ2,k2

(
y

σ2,k2

)µ2,k2
−1 exp {−(

y

σ2,k2

)µ2,k2},

(5)

where µ1,k1 ∈ R, σ1,k1 > 0 for k1 = 1, 2, · · · , K1, and K1 is the number of log-normal

distributions. µ2,k2 > 0, σ2,k2 > 0 for k2 = 1, 2, · · · , K2. K2 is the number of Weibull

distributions. The expectation of the mixture distribution is
∑K1

k1=1 λk1 exp {µ1,k1 +
σ2
1,k1

2
}+∑K2

k2=1 λK1+k2σ2,k2Γ(1 +
1

µ2,k2
).

2.2. Deep Learning Model Construction

The first proposed prognostic model maps the degradation signals of an asset to its

RUL using a deep learning structure, which consists of LSTM layers, fully connected (FC)

layers, and a distribution parameters layer. Since the lengths of various assets’ degradation

signals may differ, we first apply a Sliding Window Method (SWM) on the original signals

such that the lengths of the processed signals from different assets are tailored to be the

same. Then, the processed same-length signals are fed into the deep learning framework, the

outputs of which are the parameters (i.e., weights, locations, and scales) of the mixture LLS

distribution. Finally, the parameters of the mixture distribution are used to calculate the

RUL of assets. The second prognostic model is similar to the first one. The main difference

between the two models is that the first model allows each asset to have its own location and

scale parameters, while the second method only allows each asset to have its own location

parameter but requires all assets to share the same set of scale parameters.

2.2.1. Sliding Window Method

We assume there exists a historical dataset for model training. The training dataset

consists of degradation signals and the failure time of N assets. We denote the RUL and
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Figure 1: A demonstration of the sliding window method. The time-series data is from sensor #4 of engine

#27 in the FD003 training dataset, whose real RUL is 320. The sliding window width is Tw. The solid

rectangle in red and the dashed rectangle in green represent two truncated signals, and their corresponding

RULs are ỹ1 and ỹ50, respectively (more details about the dataset will be provided in Section 3).

degradation signals of asset i as yi and Xi, respectively. Here yi ∈ R+, Xi ∈ Rni×P , ni is the

length of degradation signals of asset i, P is the number of sensors, and i = 1, . . . , N . To

ensure the degradation signals from different assets are of the same length, we use a window

with width Tw to truncate the signals, as shown in Figure 1. Specifically, we generate the

first truncated signal matrix X̃
(1)
i ∈ RTw×P by keeping the first Tw rows of the degradation

signal matrix Xi, i.e., X̃
(1)
i = Xi[1 : Tw, 1 : P ]. The first RUL corresponding to X̃

(1)
i is

ỹ
(1)
i = yi−Tw. Then, the second truncated signal matrix is generated by keeping the second

to the (Tw + 1)th row of Xi, i.e., X̃
(2)
i = Xi[2 : Tw + 1, 1 : P ], and its corresponding RUL is

ỹ
(2)
i = yi − Tw − 1. This operation is repeated until the last truncated signal matrix and its

corresponding positive RUL are generated. The SWM is applied to degradation signals of

all N assets in the training dataset and the resulting truncated degradation signal matrices

and RULs are respectively denoted by X̃i and ỹi, i = 1, . . . , n, where n is the number of

samples (which we still call “assets”) after truncation. A typical choice for the width of the

sliding window Tw is the smallest signal length among the N assets in the training data set,

i.e., Tw = inf({ni}Ni=1). The length may also be selected using model selection methods such
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as cross-validation. If there exists an asset i whose signal length is smaller than the window

width, i.e., ni < Tw, we may apply left zero padding [14] to keep the sample size consistent

for all the truncated signal matrices.

2.2.2. LSTM

To map the truncated degradation signal matrices to the RULs, one viable and widely

adopted method is Recurrent Neural Network (RNN) [23], a technique extensively employed

for processing sequential data by introducing recurrence that connects the hidden layer with

the feedback of the output. However, vanilla RNN does not always perform well. This is

because when the network becomes complex or the time steps between relevant information

become longer, the performance of RNN degrades due to the vanishing or exploding gradients

issues [24]. To deal with the long-term dependency challenge, the Long Short-Term Memory

(LSTM) method [13], which is a special type of RNN, is proposed. There are various LSTM

variants [25], and we will use the basic LSTM network [13] in this article.

LSTM has the same structure as RNN except that it replaces the hidden layer of RNN

with a memory cell, which consists of an input gate, a forget gate, an output gate, and a

cell state. Figure 2 shows the detailed recurrent LSTM structure. Let x⊤
t ∈ RP be the rows

of X̃i, where t = 1, . . . , Tw, the LSTM network can be formed as follows [26]:

Ft = σ(Wf · xt +Uf · ht−1 + bf )

It = σ(Wi · xt +Ui · ht−1 + bi)

Gt = tanh(Wg · xt +Ug · ht−1 + bg)

Ct = Ft ⊗Ct−1 + It ⊗Gt

Ot = tanh(Wo · xt +Uo · ht−1 + bo)

ht = Ot ⊗ tanh(Ct),

(6)

where ht−1,ht ∈ Rb are the outputs of the cell, b is the output dimension of the LSTM net-

work,Wf ,Wi,Wg,Wo ∈ Rm×P are the weights with respect to the input xt,Uf ,Uu,Ug,Uo ∈
Rm×b denote the weight matrices with regard to the output ht−1 coming from the previous

time step, bf ,bi,bg,bo are the bias vectors, and ⊗ is the element-wise multiplication op-

erator. Ct represents the cell state that stores the information added or removed by gate

operations. The forget gate at time t, denoted by Ft, decides the information to be kept or
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Figure 2: The LSTM recurrent cell diagram, where σ means applying sigmoid activation function to the

output of the input gate, the forget gate, as well as the output gate, and tanh represents the activation

function applied to the output of Gt.

dropped from the current cell. It characterizes the input gate that determines which infor-

mation gets updated, and Gt uses a nonlinear activation function to regulate and stabilize

the output. Denoted by Ot, the output gate determines which information gathered from

the cell state is going to pass to the next state. Such an LSTM architecture preserves the

capability of learning long-term dependencies in sequential data. We refer the readers to

the article [13] for a more detailed introduction to the LSTM network.

2.2.3. Deep Learning Network Structure Without Shared Scale Parameters

In this subsection, we delve into the details of the first deep learning-based prognostic

(DLBP1) model. The degradation signals of an asset are first processed using the sliding

window method discussed earlier such that the transformed signals are of the same length.

Then, the processed signals are fed into the LSTM layer, which is followed by fully connected

layers. The last fully connected layer is then connected to a distribution parameters layer,

and the neurons of which represent the parameters of the mixture LLS distribution and are

used to calculate the RUL of the asset.

The mapping function and parameters (i.e., weights) of the LSTM layer are denoted

by l(·) and θl, respectively. Similarly, the mapping function and parameters of the fully

connected layer are respectively represented by f(·) and θf . If we consider an asset with

K failure modes, there are 3K neurons in the distribution parameter layer. The outputs of

the first K neurons represent the location parameters of the K LLS distributions, while the
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outputs of the K + 1, K + 2, . . . , 2K neurons stand for the scale parameters. The outputs

of the last K (i.e., 2K + 1, 2K + 2, . . . , 3K) neurons are the weights corresponding to these

K distribution components.

We denote the activation function of the qth neuron in the distribution parameter

layer as dq(·) and the neuron weights as θq
d (the input of the qth neuron is a weighted

combination of the outputs of the neurons in the last fully connected layer), where q =

1, . . . , 3K. As a result, the output of the qth neuron in the distribution parameter layer

is dq(f(l(X̃i;θl);θf );θ
q
d), where X̃i is the degradation signals of asset i, l(X̃i;θl) is the

output of LSTM layers, f(l(X̃i;θl);θf ) is the output of fully connected layers. For sim-

plicity, we denote the location parameters corresponding to the first K neurons of the dis-

tribution parameter layer as µi,k’s, where µi,k = dk(f(l(X̃i;θl);θf );θ
k
d) and k = 1, . . . , K.

The scale parameters corresponding to the K + 1, K + 2, . . . , 2K neurons of the distribu-

tion parameter layer are denoted by σi,k’s, where σi,k = dK+k(f(l(X̃i;θl);θf );θ
K+k
d ) and

k = 1, . . . , K. The weights of the K distributions, which are corresponding to the output

of the 2K + 1, 2K + 2, . . . , 3K neurons in the distribution parameter layer, are denoted as

λ̃i,k’s, where λ̃i,k = d2K+k(f(l(X̃i;θl);θf );θ
2K+k
d ) and k = 1, . . . , K.

The output of the neurons in the distribution parameter layer (i.e., µi,k, σi,k, and λ̃i,k,

k = 1, 2, . . . , K) can be used to calculate the output of the proposed DLBP1 model, which

include the weights, location parameters, and scale parameters that can be used to compute

the RUL of the ith sample. Before doing the calculation, the weights λ̃k’s need to be

normalized such that the summation of the weights from all the distributions equals one.

If the normalized weights are denoted by λk’s, the normalization can be accomplished by

using λi,k = λ̃i,k/
∑K

j=1 λ̃i,j, k = 1, . . . , K. As the training dataset {X̃i, ỹi}ni=1 being fed into

the deep network, the parameters {µ̂i,k, σ̂i,k, λ̂i,k} for i = 1, · · · , n and k = 1, · · · , K can be

estimated. We use the negative log-likelihood function of the mixture LLS distribution as

the loss (objective) function, which can be minimized using Adam optimizer [27].

2.2.4. Deep Learning Network Structure with Shared Scale Parameters

In this section, we provide an in-depth illustration of the second network (DLBP2).

Unlike the first model where each asset has its own scale parameter, this model requires

that all assets share the same set of scale parameters. Similar to Section 2.2.3, if we con-

sider an asset with K failure modes, there are 2K neurons in the distribution parameter
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layer. The outputs of the first K neurons represent the location parameters of the K LLS

distributions, and the outputs of the last K (i.e., K + 1, K + 2, . . . , 2K) neurons are the

weights corresponding to these K distribution components. In the training process, fol-

lowing the notation in Section 2.2.3, we denote the activation function of the qth neuron

in the distribution parameter layer as dq(·) and the weights as θq
d (the input of the qth

neuron is a weighted combination of the outputs of the neurons in the last fully connected

layer), where q = 1, · · · , 2K. Then the output of the qth neuron in the distribution pa-

rameter layer is dq(f(l(X̃;θl);θf );θ
q
d, σ). As a result, the location parameters for asset i is

µi,k = dk(f(l(X̃i;θl);θf );θ
k
d , σ1:K) for k = 1, . . . , K and the weights of the K distribution

components are λ̃i,k = dK+k(f(l(X̃i;θl);θf );θ
K+k
d , σ1:K) for k = 1, . . . , K and the normal-

ized distribution weights are denoted as λi,k’s, where λi,k = λ̃i,k/
∑K

j=1 λ̃i,j, k = 1, . . . , K.

By feeding the training dataset {X̃i, ỹi}ni=1 and the scale parameters into the deep neuron

network, we can estimate the location and weights parameters {µ̂i,1, µ̂i,2, · · · , µ̂i,K}ni=1, {λ̂i,1,

λ̂i,2, · · · , λ̂i,K}ni=1. As a result, the RUL ˆ̃yi can be estimated by using the mean of the mixture

distribution. Here we give some examples of the estimated RUL ˆ̃yi under different mixture

distributions.

• Mixture log-normal:

ˆ̃yi =
K∑
k=1

λ̂i,k exp
{
µ̂i,k +

σ̂2
k

2

}
(7)

• Mixture Weibull:

ˆ̃yi =
K∑
k=1

λ̂i,kσ̂
2
kΓ

(
1 +

1

µ̂i,k

)
(8)

• Mixture log-logistic:

ˆ̃yi =
K∑
k=1

λ̂i,k
µ̂i,kπ

σ̂k

{
sin

(
π

σ̂k

)}−1

(9)

• Mixture log-normal and Weibull:

ˆ̃yi =

K1∑
k1=1

λ̂i,k1 exp
{
µ̂1,i,k1 +

σ̂2
1,k1

2

}
+

K2∑
k2=1

λ̂i,K1+k2σ̂
2
1,k2

Γ

(
1 +

1

µ̂1,i,k2

)
, (10)

where K1, K2 ∈ R+ and K1 + K2 = K. With the estimated location parameters and

distribution weights, we then update scale parameters using maximum likelihood estimation
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(MLE). For components that follow a log-normal distribution, the scale parameters are

updated using the formula below:

σ̂k =

√∑n
i=1(log ỹi − µ̂i,k)2

n
(11)

For Weibull and log-logistic distribution, the scale parameters are updated by solving func-

tions h(σk) = 0 and s(σk) = 0, respectively, where h(σk) and s(σk) are defined below:

h(σk) :=
n∑

i=1

µ̂i,k(σ
µ̂i,k

k − ỹi
µ̂i,k)

σ
µ̂i,k+1

k

(12)

s(σk) :=
n∑

i=1

{
log

(
ỹi
µ̂i,k

)[
1−

2
(

ỹi
µ̂i,k

)σk

1 +
(

ỹi
µ̂i,k

)σk

]}
+

n

σk

(13)

Since h(σk) = 0 and s(σk) = 0 do not have a closed-form solution, a numerical approach such

as the Newton-Raphson method can be applied. The complete algorithm for the training of

DLBP2 is summarized in Algorithm 1.

2.2.5. Real-Time RUL Prediction

Once the parameters of the DLBP models are estimated, the model can be used to predict

the RUL of a partially degraded in-field asset in real time. Specifically, the in-field asset’s

real-time degradation signals are first acquired using condition monitoring sensors. Next,

the degradation signals are processed using the SWM discussed in Section 2.2.1, such that

the latest observations are kept as the truncated signals. Then, the truncated signals are

fed into the trained deep learning model, which provides the estimation of the parameters of

the mixture LLS distribution corresponding to the in-field asset. Since the weights, location,

and scale parameters of the mixture distribution are known, the estimated RUL of the asset

can also be estimated.

3. Numerical Study

In this section, we evaluate the performance of the proposed deep learning-based prog-

nostic models, DLBP1 and DLBP2, and compare them with other state-of-the-art deep

learning-based prognostic models using a dataset from NASA data repository. All exper-

iments are executed on a Dell R7425 server with an AMD Epyc 8 core @ 2.2 GHz and a

512GB RAM.
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Algorithm 1: DLBP2

Input: {X̃i, ỹi}ni=1: Training data after applying the Sliding Window Method

I: Maximum iteration number

K : Number of mixture distribution components

ϵ : Convergence tolerance

Output: The converged neuron weights θl,θf , {θq
d}2Kq=1 and scale parameters σk,

k = 1, . . . , K

1 Initialize scale parameters σ̂
(0)
1 , σ̂

(0)
2 , · · · , σ̂(0)

K ∈ Uniform(0, 1).

2 For j = 1 to I:

3 Estimate the neuron weights θ
(j)
l ,θ

(j)
f , {θq(j)

d }2Kq=1.

4 Estimate the location parameters µ̂
(j)
i,k = dk(f(l(X̃i;θ

(j)
l );θ

(j)
f );θ

k(j)
d , σ̂

(j−1)
1:K ) for

k = 1, . . . , K.

5 Compute the weights of the K distribution components

λ̃
(j)
i,k = dK+k(f(l(X̃i;θ

(j)
l );θ

(j)
f );θ

K+k(j)
d , σ̂

(j−1)
1:K ) and normalize them, i.e., λ

(j)
i,k ’s,

where λ
(j)
i,k = λ̃

(j)
i,k/

∑K
j=1 λ̃

(j)
i,j , k = 1, . . . , K.

6 Update the scale parameters σ̂
(j)
k using Equations (11), (12), or (13),

k = 1, . . . , K.

7 if 1
K

∑K
k=1 ∥σ̂

(j)
k − σ̂

(j−1)
k ∥2 < ϵ then

8 break

9 end

10 end

11 Assign {µ̂i,k}ni=1 = {µ̂(j)
i,k}ni=1, {λ̂i,k}ni=1 = {λ̂(j)

i,k}ni=1 for k = 1, · · · , K; and

θl = θ
(j)
l ,θf = θ

(j)
f , {θq

d}2Kq=1 = {θq(j)
d }2Kq=1.

3.1. Data Description

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset has

been widely used for the performance evaluation of prognostic models. The entire dataset

consists of four sub-datasets, namely, FD001, FD002, FD003, and FD004. The difference

among the four sub-datasets lies in the aircraft engines’ flight conditions (i.e., throttle re-

solver angle, altitude, and ambient temperature) and the number of fault/failure modes (i.e.,

the fan and/or HPC degradation). In this article, we choose FD003 for model evaluation
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Table 1: Outline of the four sub-datasets. Conditions include the composition of a range of values for

Throttle Resolver Angle (TRA), altitude, and ambient temperature. Fault modes refer to fan degradation

and HPC degradation.

C-MAPSS Dataset

FD001 FD002 FD003 FD004

Training Engine Size 100 260 100 248

Testing Engine Size 100 259 100 249

Conditions 1 6 1 6

Fault Modes 1 1 2 2

because it comprises data collected from engines with two failure modes (i.e., the failure of

some engines is attributed to the fan degradation and others experience failure due to HPC

degradation) and operates under a single flight condition (i.e., the flight condition remains

constant throughout the duration of the degradation process). The dataset is composed of

the following components: (i) degradation signals from 100 training engines that were run to

failure, (ii) degradation signals from 100 test engines was prematurely terminated at random

time points prior to their failure time, and (iii) the real RULs of the 100 test engines. We

refer readers to [28] for a more comprehensive introduction of the dataset.

3.2. Data Preprocessing

The engines in FD003 are monitored by 21 sensors, which generate 21 time series-

based degradation signals for each engine. Since the signals from sensors 1, 5, 16, 18,

and 19 are constant throughout the engines’ entire life cycle, they do not provide any useful

health/degradation information and are thus excluded. As a result, there are 16 sensors

(i.e., sensors 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21) left for the prognostic model

construction. Using the notation in Section 2.2, we have P = 16 for i = 1, 2, · · · , N with

N = 100.

To ensure uniformity in the signal observations of each sensor within a consistent range,

we use the min-max normalization, which scales the degradation signals from each sensor

to [0, 1]. Recall the degradation signals of asset i is denoted by Xi ∈ Rni×P , where ni is

the length of degradation signals of asset i, P is the number of sensors, and i = 1, 2, . . . , N .
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We let Xi = (x
(1)
i ,x

(2)
i , . . . ,x

(P )
i ), where x

(j)
i ∈ Rni is the degradation signal from the jth

sensor of asset i, j = 1, 2, . . . , P . As a result, the min-max normalization for sensor j can

be achieved by employing the following equation:

x
(j)
normal,i =

x
(j)
i −min ({x(j)

i }Ni=1)

max(({x(j)
i }Ni=1))−min(({x(j)

i }Ni=1)
. (14)

The normalized signals from asset i is Xnormal,i = (x
(1)
normal,i,x

(2)
normal,i, . . . ,x

(P )
normal,i). As

discussed in Section 2.2.1, the sliding window method is applied to {Xnormal,i, yi}Ni=1 to

generate degradation signals with the same length, and the generated degradation signals

coupled with their corresponding RULs are {X̃i, ỹi}ni=1, where n is the number of samples

(“assets”) after applying SWM. Since degradation is observed only after the engine operates

for a certain number of life cycles (there is no degradation during the early stages of asset

life cycles), it is reasonable to maintain the RUL as a constant during the initial life cycles

of a sample (representing a non-degradation status) [29]. Following the suggestions of [29],

[20], and [14], we set the number of constant life cycles during the early non-degradation

stages as 125.

3.3. Evaluation Metrics

We use three criteria to evaluate the performance of our proposed method and to compare

with benchmarks: (i) Root Mean Square Error (RMSE), (ii) Prediction Score (PS), and (iii)

Relative Absolute Error (RAE). The RMSE is calculated using Equation (15), where δi is

the difference between the predicted RUL (the output of the proposed DLBP models) and

the real RUL of asset i, i.e., δi = f(X̃i;θl,θf ,θd) − ỹi, i = 1, . . . , nt, where nt is the total

number of samples in the test dataset (after applying the SWM).

RMSE =

√√√√ 1

nt

nt∑
i=1

δ2i (15)

Equation (16) shows the calculation of the second evaluation metric, the Prediction Score,

which is proposed by the article [28] and has been used in many studies using the C-MAPSS

dataset [30][19]. A comparison of the RMSE and the PS is illustrated in Figure 3. The RMSE

is symmetric, which gives an equal penalty to an underestimated RUL (the predicted RUL

is smaller than the true RUL) and an overestimated RUL (the predicted RUL is larger
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Figure 3: A comparison of RMSE and PS with x−axis be the difference between the predicted response and

the true value, and y−axis be the values of RMSE (in solid red) and PS (in dashed blue).

than the true RUL). Such a symmetric penalty function exhibits limited efficacy in practical

applications due to the increased severity of consequences stemming from an overestimated

RUL, as an overestimated RUL indicates a higher chance of having an unexpected failure

than an underestimated RUL. As indicated in Figure 3, the PS function is asymmetric and

addresses this challenge by imposing a more substantial penalty for an overestimated RUL.

Scorei =

e−
δi
13 − 1 if δi < 0

e
δi
10 − 1 if δi ≥ 0

(16)

The third evaluation metric is the Relative Absolute Error, which is computed using

Equation (17) below:

RAEi =
|δi|
|ỹi|

(17)

3.4. DLBP Model Establishing, Training, and Evaluation

We evaluate the performance of the proposed methods under three mixture LLS dis-

tributions: Mixture Log-Normal (MLN), Mixture Weibull (MW), and Mixture Log-Logistic

(MLL). We use FD003 dataset for training and testing as we discussed in Section 3.1. When

conducting the model training under each mixture distribution, we use stochastic gradient

descent (SGD) to estimate the neuron weights and biases of the deep learning structure,
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Table 2: The tuning parameter candidates and their values.

Hyperparameter Values

Sliding Window Width {15, 20, 25, 30, 35}
# of LSTM Layers {1, 2}
# of FC Layers {1, 2}
# of LSTM Units {64, 128, 256}
# of FC Units {32, 64, 128}
Batch Size {128, 256, 512}
# of Epochs {120, 150, 200, 250}

Table 3: The optimized tuning parameters and activation functions for model DLBP1 (AFDPL represents

the Activation Functions in the Distribution Parameter Layer).

Tw LSTM (# of units) FC (# of units) Batch Size Epochs AFDPL

Mixture Log-Normal 30 LSTM(128) FC(64)+FC(32) 512 250 elu; softplus; sigmoid

Mixture Weibull 30 LSTM(128)+LSTM(64) FC(64) 512 250 softplus; softplus; sigmoid

Mixture Log-Logistic 30 LSTM(64) FC(128) 512 250 softplus; softplus+1; sigmoid

Table 4: The optimized tuning parameters and activation functions for model DLBP2 (AFDPL represents

the Activation Functions in the Distribution Parameter Layer).

Tw LSTM (# of units) FC (# of units) Batch Size Epochs AFDPL

Mixture Log-Normal 30 LSTM(256)+LSTM(128) FC(64) 512 250 elu; ·; sigmoid

Mixture Weibull 25 LSTM(256)+LSTM(64) FC(128) 512 250 softplus; ·; sigmoid

Mixture Log-Logistic 25 LSTM(64) FC(128)+FC(32) 512 200 softplus; ·; sigmoid

and use the Xavier method [31] for weights initialization. In addition to the weight and

bias parameters, there are a certain number of tuning parameters that require optimization,

including (1) the window width (SWM step), (2) the number of LSTM layers, (3) the number

of FC layers, (4) the number of units in each LSTM layer, (5) the number of units in each

FC layer, (6) the batch size, and (7) the number of epochs. The batch size and the number

of epochs are related to the SGD algorithm. The batch size controls the number of samples

that are propagated through the network in each epoch (usually only a subset/batch of the

training data is utilized by SGD in each epoch for the purpose of reducing the computation
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memory, accelerating the convergence speed, and avoiding over-fitting), and the number of

epochs determines the number of iterations of the SGD algorithm. Table 2 summarizes the

candidate values of each tuning parameter that have been investigated in this case study.

Since there are a considerable number of tuning parameter combinations, estimating the

parameters for each individual combination is computationally intensive. As an alternative,

we optimize the tuning parameters block by block–that is–each time we optimize one block

of tuning parameters while keeping other blocks fixed.

To be specific, we first optimize the sliding window width while setting the number of

LSTM layers as one, the number of FC layers as two, the number of LSTM units as 128,

the number of neurons in the FC layer as 64, the batch size as 512, and the number of

epochs as 200. As illustrated in Table 2, we have tried five widths for the sliding window:

15, 20, 25, 30, 35. For each of the widths, we first apply the SWM on the training data in

FD003 to generate training samples whose degradation signals have the same length. Then,

we randomly select 90% of the training samples to estimate the weight and bias parameters

and use the remaining 10% data for model testing (the RMSEs are computed). The training

and testing process is repeated for 5 times, and the average RMSE is calculated. The window

width achieving the smallest average RMSE is chosen as the best one. Next, we optimize

the second block of the tuning parameters: the number of LSTM layers and the number of

FC layers. When optimizing the second block of hyperparameters, we set the first block

(the window width) as the value that has been optimized earlier and set other blocks as the

same values used when optimizing the first block. Since each of the two tuning parameters

has two candidate values, there are in total four combinations if we consider them together:

{1, 1}, {1, 2}, {2, 1}, {2, 2}. For each combination, similarly, we split the training samples

into training (90%) and testing (10%), repeat for 5 times, and use the average RMSE to

select the best candidate. The third block of tuning parameters is the combinations of the

number of units in each LSTM layer and the number of units in each FC layer, followed by

the fourth block, which is the batch size (see Table 2). The last block to be optimized is

the number of epochs, which has four candidate values. We summarize the optimized tuning

parameters under each of the three mixture distributions for model DLBP1 in Table 3 and

for model DLBP2 in Table 4.

In addition to the tuning parameters, the activation function is another important factor
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that significantly affects the performance of a deep learning model. In this study, the

state-of-the-art elu [32] activation function is used in the LSTM and FC layers. In the

distribution parameter layer, we also choose the elu activation function for the neurons

whose output range is a real number (i.e., R). For the neurons whose output has a restricted

range, an appropriate activation function should be selected accordingly. For example, for

model DLBP1, if the mixture log-logistic distribution is used, the scale parameters have to

be positive, as stipulated by the validity of the log-logistic distribution pdf. As a result,

the output of the neurons corresponding to the scale parameters and the responses of the

activation functions must be positive as well. In this article, the differentiable softplus

activation function is chosen for parameters whose range is (0,∞). The sigmoid activation

function is selected for the weights of the mixture distribution to guarantee the range is

(0, 1). Table 3 and 4 show the selected hyperparameters and activation functions of the

location parameters and scale parameters in this case study.

3.5. Benchmarks, Results, and Analysis

In this subsection, we demonstrate and analyze the performance of the proposed models

and some state-of-the-art prognostic methods that use the same dataset for model vali-

dation. The results of the estimated RUL of 100 test engines compared with their real

RUL values using the proposed methods are shown in Figure 4. As pointed out earlier,

we test the performance of our proposed model under three different mixture distributions:

Mixture Log-Normal (MLN), Mixture Weibull (MW), and Mixture Log-Logistic (MLL), and

they are denoted as “DLBP1-MLN”, “DLBP1-MW”, and “DLBP1-MLL”, respectively, for

DLBP1; and “DLBP2-MLN”, “DLBP2-MW”, and “DLBP2-MLL” for DLBP2. We choose

9 existing models as baseline methods. The first baseline method is MODBNE proposed

in the article [33]. This method is chosen because it is able to use multiple deep belief

networks simultaneously, and, more importantly, its prediction accuracy outperforms many

traditional data-driven methods such as SVM , LASSO , gradient boosting , and random

forest . Benchmark 2 is denoted as “LSTM+NN”, which was proposed in [34]. It con-

structed a framework consisting of a sequence of LSTM layers, whose output was fed into

feedforward networks. Benchmark 3 [30], which we denote as “Deep CNN”, is a deep con-

volutional neural network (CNN). Benchmark 4 is designated as “Semi-supervised DL” [20].

It has an unsupervised pre-training step followed by multiple LSTM layers, which is able to
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Figure 4: The estimated RUL value (in solid orange line with circle endpoint) and the real RUL (in dashed

green line with triangle endpoint) of 100 test engines using the proposed methods (left 3 subplots: model

DLBP1; right 3 subplots: model DLBP2) under three mixture distributions (from top to bottom: mixture

log-normal, mixture Weibull, mixture log-logistic).

achieve a better performance than benchmark 2. Baseline method 5, which is referred to as

“Bayesian LSTM”, is a Bayesian deep learning framework that has been validated to out-

perform many other existing deep learning-based prognostic models [19]. Benchmark model

6 [35], “MS-DCNN”, adopted an architecture that extracts multi-scale information of the

input degradation signals. Baseline method 7 “ATS2S” [36] constructed an attention-based

encoder-decoder framework with features of both the encoder and decoder integrated to pre-

dict the RUL. Benchmark 8 [22] built a double attention-based network that is composed

of a channel attention-based CNN and a Transformer to extract features and perform RUL

prognostics. In baseline method 9 “DS-SANN” [37], a dual-stream structure consisting of

original data and transformed auxiliary data with a multi-head self-attention mechanism

was proposed for RUL estimation. Similar to our proposed model, the SWM is first ap-
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Table 5: RMSE and PS of the proposed methods and the state-of-the-art benchmarks.

No. Algorithm[Ref.] RMSE Score

1 MODBNE [33] 12.51 521.91

2 LSTM+NN [34] 16.18 852

3 Deep CNN [30] 12.64 284.1

4 Semi-supervised DL [20] 12.10 251

5 Bayesian LSTM [19] 12.07 409.39

6 MS-DCNN [35] 11.67 241.89

7 ATS2S [36] 11.44 263

8 Double Attention [22] 13.39 290

9 DS-SANN [37] 12.28 286.07

10 Proposed DLBP1-MLN 11.97 208.25

11 Proposed DLBP1-MW 12.7 220.23

12 Proposed DLBP1-MLL 11.47 180.63

13 Proposed DLBP2-MLN 12.34 228.65

14 Proposed DLBP2-MW 11.84 187.64

15 Proposed DLBP2-MLL 13.18 225.07

plied to all the benchmark models as well. Despite the sliding window width varies across

algorithms, the selection of a best-fit value ensures the performance of each model remains

comparable.

We report the RMSE and PS of our proposed method and the 9 benchmarks in Table 5,

and use the bold font to highlight the three smallest RMSE and PS. Table 5 shows that our

proposed models surpass all benchmarks with respect to PS. Notably, the lowest three PS

values are recorded by the proposed models “DLBP1-MLL,” “DLBP2-MW,” and “DLBP1-

MLN,” with PS values of 180.63, 187.64, and 208.25 respectively. In fact, the proposed

methods also secure the 4th, 5th, and 6th lowest PS values, which are 220.23, 225.07, and

228.65, respectively. In the benchmarking models, the lowest PS value is recorded by the

Semi-supervised DL model [20], with a value of 251. As previously discussed, the PS is

a superior metric for performance evaluation of a prognostic model to RMSE because it
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Figure 5: The boxplot of Relative Absolute Error (RAE) of the proposed methods (left: model DLBP1;

right: model DLBP2) under three mixture distributions (from left to right in each subplot: Mixture Log-

Normal, Mixture Weibull, Mixture Log-Logistic).

penalizes more on an overestimated RUL than on an underestimated RUL. Generally, an

overestimated RUL (i.e., the estimated RUL is larger than the true RUL) can lead to more

severe consequences compared to an underestimated RUL (i.e., the estimated RUL is smaller

than the true RUL), as it carries a higher probability of causing an unexpected failure. In

terms of RMSE, Table 5 indicates that our proposed method “DLBP1-MLL” recorded the

second lowest value (i.e., 11.47), which is comparable to the lowest value (i.e, 11.44) that

is achieved by the benchmark ATS2S [36]. The PS and RMSE confirm the effectiveness of

our proposed models. We believe the reason for this is that our model incorporates domain

knowledge (i.e., mixture LLS distribution) into the deep learning framework. Unlike our

model, the benchmarks are purely deep learning models without using any domain knowledge

in reliability engineering and survival analysis.

To further demonstrate the prediction performance of the proposed model, we report the

RAE of DLBP1 and DLBP2 under the three distributions in Figure 5. Similar to RMSE,

RAE treats underestimation and overestimation equally, suggesting its limited effectiveness

compared with the PS metric. Nonetheless, RAE still provides some useful insights in
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evaluating the performance of the proposed model, and it is a widely used metric in perfor-

mance evaluation of prognostic models that has been adopted by many other research works

[38, 2, 39]. Figure 5 shows that the “DLBP2-MLL” model outperforms the other five models

in terms of both prediction accuracy and precision, as evidenced by the medians and the

interquartile range (IQRs) of the boxplots. In practice, while failure time often adheres to a

distribution within the LLS family, the specific distribution to use is usually uncertain. This

issue can be resolved through the use of model selection criteria. For instance, one might ini-

tially divide the historical data into training and validation datasets. Subsequently, various

models are fitted on the training dataset and evaluated using the validation dataset. The

model that yields the smallest validation error is then selected as the most suitable model.

4. Conclusions

In this article, we proposed two deep learning-based prognostic models for the RUL pre-

diction of complex engineering assets with uncertain failure modes. Both models incorporate

a mixture (log)-location-scale distribution into a deep learning framework. The first model

(i.e., DLBP1) allows each asset to have its own location parameters, scale parameters, and

distribution weights; the second model (i.e., DLBP2) allows each asset to have its own loca-

tion parameters and distribution weights but requires all assets to share the same set of scale

parameters, which is a common assumption in statistical learning. The integration of the

(log)-location-scale distribution with a deep learning framework addresses three difficulties

that are commonly faced by existing prognostic models for applications with multiple failure

modes: overlapping signals due to ambiguous degradation sources, lack of labeled training

data, and the similarity of degradation signals among different components or failure modes.

A dataset from the degradation of aircraft engines from the NASA data repository was used

to validate the effectiveness of these two proposed models and evaluate their performance.

Nine state-of-the-art deep learning-driven prognostic methods were chosen as benchmarks.

Numerical results demonstrate that the proposed deep learning-based prognostic models

outperform the benchmarks in RUL prediction.
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