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Abstract

Open-ended worlds are those in which there are no pre-specified goals or environ-
mental reward signal. As a consequence, an agent must know how to perform a
multitude of tasks. However, when a new task is presented to an agent, we expect
it to be able to reuse some of what it knows from previous tasks to rapidly learn
that new task. We introduce a novel technique whereby policies for different a pri-
ori known tasks are combined into a Mixture-of-Experts model with an attention
mechanism across a mix of frozen and unfrozen experts. The model learns when
to attend to frozen task-specific experts when appropriate and learns new experts
to handle novel situations. We work in an open-ended text-based environment in
which the agent is tasked with behaving like different types of character roles and
must rapidly learn behaviors associated with new character role types. We show
that our agent both obtains more rewards in the zero-shot setting, and discovers
these rewards with greater sample efficiency in the few-shot learning settings.

1 Introduction

Open-ended worlds are those in which there are no pre-specified goals or environmental reward signal.
In such environments, we might want to have an agent that is capable of carrying out a variety of
different behaviors and achieving a variety of goals based on the what is needed. In this work we
look at the challenge of task-transfer in open-ended environments. In an open-ended environment,
an agent must know how to perform a multitude of tasks. In this setting, we assume an agent has
learned one or more policies, each for a specific task, but now must acquire a new policy for a new
task. Policy models that perform distinct tasks can be gathered into a Mixture of Experts (MoE)
where an attention mechanism learns which expert to listen to when performing actions. We show
that the MoE can learn new tasks in a few-shot fashion when there are aspects of the new task that
result behaviors from the experts.

We work in an open-ended text environment based loosely on Dungeons & Dragons. Text envi-
ronments are those in which an agent receives natural-language descriptions of its immediate locale
in the environment, and performs actions by describing its actions with text. Text-based worlds
have become a benchmark challenge for reinforcement learning agents (Hausknecht et al., 2020;
Narasimhan et al., 2015; Ammanabrolu & Riedl, 2019; Ammanabrolu & Hausknecht, 2019; Am-
manabrolu et al., 2020; Adhikari et al., 2020; Shridhar et al., 2021; Murugesan et al., 2020; Wang
et al., 2022; Peng et al., 2023; Pan et al., 2023; Prasad et al., 2023; Abdulhai et al., 2023; Carta
et al., 2023; Wang et al., 2023; Ryu et al., 2023; Chhikara et al., 2023). They are exemplified by the
classical game, Zork, in which an agent must solve puzzles to get to the end of the game. Text-based
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games are challenging for the following reasons (Hausknecht et al., 2020): First, they are partially-
observable environments; what can be observed is usually limited to a “room”. Second, they have
very large action spaces. For example, the game, Zork can accept commands up to four words in
length and has a vocabulary of 700, meaning that there are 7004 possible actions available in each
state. Not all word sequences create meaningful change to the environment. Third, commonsense
and trope knowledge is usually required to complete games. Action sequences that make sense in
the real world usually also make sense in text games (e.g., “open mailbox” vs “eat mailbox”) and
have similar effects, though science fiction and fantasy tropes may also be present (e.g., silver bullets
kill vampires). Fourth, unlike many computer games, text-games often involve solving puzzles with
long-horizon causal and temporal relations.

Most commercial text games—such as those in the Jericho benchmark suite (Hausknecht et al.,
2020)—have an objective to solve, and thus a reward signal can be constructed around completion
of the game and/or progress through the game. On the other hands, Table-top role-playing games
such as Dungeons & Dragons are open-ended worlds in the sense that one can go nearly anywhere
and do nearly anything. Often there is a quest or mission, but that quest or mission is not pre-
ordained and often unknown in advance. A character may have a particular role—fighter, thief,
etc.—which is accompanied by particular behavioral expectations.

These behavioral expectations can be used to frame acting in a particlar role as a task. That is,
absent a mission or quest, an agent has a task of role-playing in character. If a mission or quest is
presented, then the task is to accomplish the goal by incorporating behavior expectations into their
actions (a hunter may be more interested in making progress by engaging in combat whereas a thief
may be more interested in progress via stealth and trickery).

From this, we can define the challenge of task transfer in role-playing games as a single agent that
must transfer knowledge from one or more known character roles to a new character role type.
Transfer is feasible because, although a role such as a thief will perform many actions that a hunter
would never perform, the thief will also need to handle common situations such as navigating through
the starting town, though perhaps visiting separate locations or interacting with the townsfolk in a
different manner. As is often the case in task transfer in text games, some of an original policy is
applicable to the new task without adaptation, but not all of it. By assembing expert, role-specific
policy models into a Mixture of Experts, one can learn a new role faster because one of the experts
may be able to make an informed guess about what the agent should do in the new context.

We introduce a novel technique whereby N frozen experts in the MoE model propose actions in the
next task, and attention is applied across experts. An N + 1th, untrained “expert” is added to the
ensemble but remains hot so that it can learn from interactions with the environment. This “hot”
expert learns how to interact with the environment when all the other frozen experts are insufficient,
and the MoE as a whole learns the new task more rapidly than training a new expert from scratch
or fine-tuning existing experts. This result holds even when the new task is not a strict blend of
existing experts.

2 Related Work

2.1 Text Adventure Game Playing Agents

Text based games have shown great potential for use as Reinforcement Learning benchmark environ-
ments (Hausknecht et al., 2020; Narasimhan et al., 2015). Ammanabrolu & Riedl (2019) proposed
augmenting reinforcement learning with knowledge graphs as external memory about world state.
Ammanabrolu & Hausknecht (2019) proposed KG-A2C, which integrates knowledge graphs into the
actor-critic (Bahdanau et al., 2016) RL framework. The Q*BERT agent (Ammanabrolu et al., 2020)
further extended KG-A2C to incorporate the BERT (Devlin et al., 2019a) language model into the
model architecture. We build on top of the KG-A2C family of models since they have shown state-of-
the-art performance. Other techniques for playing textgames include GATA (Adhikari et al., 2020),
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which builds a knowledge-graph based representation of the world on top of a transformer-based
agent, training through a combination of RL and self-supervised learning.

Whereas text adventure games have pre-defined progression toward a goal state, table-top role
playing games involve open-ended game play. We refer to text-based environments that support
open-ended game play as text-based role playing to signify the interaction with the environment
through reading and writing text instead of verbal interactions with other players and game masters.

The LIGHT environment (Urbanek et al., 2019) is a crowdsourced text-based role playing game
with a rich environment with interactable NPCs, objects and locations, each with a short paragraph
description, demonstrating the value of grounding in training agents that can not only act but
also converse successfully. Ammanabrolu et al. (2021) propose agents that can switch seamlessly
between generating natural language and action declarations. These agents can learn to play different
characters when given a motivation that includes character type and goal as part of the world state.

Story Shaping (Peng et al., 2023) is a technique for training RL agents to play text role-playing games
wherein a story is converted into a rich reward signal. The technique can be used to train different
characters, but can only train a single agent to emulate a single character. Our character-based
reward strategy is related, but our rewards are manually crafted instead of inferred from stories.

2.2 Ensembling in RL

To our knowledge, transfer learning with a mixture of pre-trained experts for RL has not been
explored but there exists a large body of literature on transfer learning and ensemble methods in
RL. Prior works explore ensemble methods of using multiple, frozen experts (teachers) to train a new
agent as a student where the goal is to minimize the difference between the teachers’ and student’s
policies (Hinton et al., 2015; Rusu et al., 2016; Yin & Pan, 2017; Schmitt et al., 2018; Schulman
et al., 2018; Teh et al., 2017; Parisotto et al., 2016). Other approaches instead make direct use of
the teachers’ policies, either with some heuristic to evaluate the ’goodness’ of the teacher’s action
with respect to the current state or via a learned discriminator (Cheng et al., 2020; Kurenkov et al.,
2020; Fang et al., 2021; Li et al., 2023). Some works further explore methods for compensating for
sub-optimal teachers (Kurenkov et al., 2020; Kessler Faulkner & Thomaz, 2021). Attention modules
have been utilized in RL before, but only with experts that are learned through segmenting features
or inputs at training time in a multi-task setting (Sodhani et al., 2021; Cheng et al., 2023). Our
work resides in the intersection of these ideas. We leverage multiple, frozen sub-optimal experts in
a MoE, using an attention module to combine the outputs of the experts. Rather than a student,
an additional hot expert learns to bridge the gap when the sub-optimality of the pre-trained experts
would leave the MoE otherwise unable to proceed.

2.3 Few-shot Adaption

Large pre-trained Language models have emerged as extremely powerful tools for NLP tasks (Devlin
et al., 2019b; Raffel et al., 2020; Brown et al., 2020). However, a limitation of these powerful
models is their size, some with parameters numbering in the billions (Brown et al., 2020). This
makes them prohibitively expensive when it comes to further training or fine-tuning. Low-Rank
Adaptation (LoRA) circumvents this by keeping the model frozen and introducing trainable rank
decomposition matrices (Hu et al., 2021). Our proposed technique also freezes the core model(s)
and trains additional layers on top, though the specific mechanics needed for reinforcement learning
are different.

3 Background

3.1 Text-Adventure Games

A text-adventure or text-based role playing game can be modeled as a partially-observable Markov
decision process (POMDP) M = ⟨S, T, A, ω, O, R, γ⟩ where S is the set of ground truth world states,
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A is the set of actions, T is the probability of transitioning from one state to another given an
executed action, R is a reward function, O is the set of possible observations, ω is the probability
of observations given the ground truth world state, and γ is a parameter estimating the reward
horizon (Hausknecht et al., 2020). In our setting, we will use a deterministic transition function T ,
which is common in text-based games. However, nothing in our proposed technique strictly requires
it. The objective of reinforcement learning is to learn a policy, π : S → A that maps states to
actions, such that taking the action mapped to the current state and following the policy henceforth
maximizes expected reward.

3.2 KG-A2C and Story Shaping

We consider the standard reinforcement learning setting where an agent interacts with a text game
environment over a number of discrete time steps. State-of-the-art approaches to RL in text envi-
ronments use a knowledge graph as external, persistent memory of the world state (Ammanabrolu &
Riedl, 2018; Ammanabrolu & Hausknecht, 2019; Ammanabrolu et al., 2020). As the agent explores
the game world, a knowledge graph is constructed and used as state representation. In this pa-
per, we choose KG-A2C agent framework (Ammanabrolu & Hausknecht, 2019) as our reinforcement
learning agent.

KG-A2C’s space of observations, ot, includes (a) text description of the room the agent is in, (b) text
descriptions of the character’s inventory, (c) the agent’s last command, and (d) feedback from the
last command. These state observations are processed using a GRU based encoder using the hidden
state from the previous step, combining them into a single observation embedding. Simultaneously,
the state observation is used to update a knowledge graph Gt of persistent memory of the world
state. This includes facts and relations about rooms, objects in rooms, inventory items, etc. This
knowledge graph is then embedded using a graph attention mechanism (Veličković et al., 2018). The
overall representation vector is updated as ot. The agent is trained via the Advantage Actor Critic
(A2C) (Mnih et al., 2016) method to maximize long term expected reward in the game in a manner
otherwise unchanged from Ammanabrolu et al. (2020). More details about this agent can be found
in Appendix A.

Agents output a language string into the game to describe the actions that they want to perform.
To ensure tractability, this action space can be simplified down into templates. Templates consist
of interchangeable verbs phrases (V P ), optionally followed by prepositional phrases (V P PP ), e.g.
([carry/take] ) and ([throw/discard/put] [against/on/down] ), where the verbs and preposi-
tions within [.] are aliases. Actions are constructed from templates by filling in the template’s blanks
using objects from the game’s vocabulary.

In order to train different role-aligned policy models πi, we follow the Story Shaping technique (Peng
et al., 2023). Different stories are first converted into knowledge graphs Gi. As the agent explores
the game world, a knowledge graph—called the World KG—is constructed and used as state rep-
resentation Gt. The similarity between Gi and Gt is used to provide an intrinsic reward for the
KG-A2C model, subsequently shaping the RL-Agent to conform to the specified roles. More details
about how we train KG-A2C with story shaping method can be found in Appendix B.

3.3 LIGHT Environment

In our paper, we create a game in LIGHT environment (Urbanek et al., 2019), which provides a
text world environment with a database of 1775 Non-Player Characters (NPCs), 663 locations, and
3462 objects with rich text descriptions. We’ve developed an open-world game where players can
play various roles, each with its own set of activities. For example, the player/agent can play a
“adventurer” in our game, and numerous activities have been specifically tailored for this role,
including the presence of dragons specifically designed for ‘adventurers’ to confront and defeat.
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Figure 1: Pipeline of our MoE Agent. At each time-step, all experts produces a logit distribution over
actions, a1, a2, ..., aN . These are each passed through a softmax to get the resulting probabilities and
multiplied by the v1, v2, ..., vN produced by each expert’s critic module. The scaled probabilities
are then mixed by the attention module and averaged (operation represented by µ) with the aN

produced by the trainable expert to obtain lt. These averaged logits are then passed through a
softmax and sampled to produce an action.

4 Method

Given a collection of pre-trained, role-aligned expert models e1, e2, ...eN−1 from source characters
p1, p2, ..., pN−1 pre-trained using story shaping methods (Peng et al., 2023), our agent aims to use
their knowledge on a new role task under few-shot settings.

Action Probabilities We first initialize an empty expert eT and add it to the mixture-of-experts.
This empty expert is a repository for any policy that is unique to the new task role and not sufficiently
handled by another, existing expert. We obtain a probability distribution over actions at time t for
each expert, at,1, at,2, ..., at,N , where at,j ∈ Rv, by feeding the overall representation vector ot into
frozen, pre-trained character-aligned agents, e1, e2, ...eN−1 and trainable policy model eN . v is the
action space of the game environment.

The KG-A2C splits action generation into a multi-step process. A template distribution τt,j is
generated from ot and is sampled to select template Tact. Both of these are then used to generate a
probability distribution over all game objects. A mask is applied to reduce this distribution to only
admissible objects for the current state Ot,j and sampled to product an object, Tobj. The resulting
action at,j is a combination of Tact and Tobj.

In our MoE agent, the template Tact sampled by the original model is used to generate the cor-
responding object distribution Ot,j . This means for each pre-trained, character-aligned model
e1, e2, ...eN−1 that results in action templates τt,1, τt,2, ..., τt,N−1, the templates sampled from these
distributions are used to generate Ot,1, Ot,2, ..., Ot,N−1. We represent both τt,j and Ot,j with at,j

going forward.

Value Seeding. Each expert e1, e2, ..., eN possesses a critic C1, C2, ..., CN that predicts an ex-
pected return vt,1, vt,2, ..., vt,N given state S. These values represent how rewarding each expert
believes their current state to be, or equivalently, the importance of the state to the respective,
pre-trained model. These values can be used to infuse the MoE model with knowledge on which
pre-trained expert to place more weight on at any given state due to an expectation of a higher
return. We do this by multiplying each at,j with the corresponding vt,j prior to being input to the
attention module. The critic modules are not explicitly shown in Figure 1.
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Expert Attention. An expert attention module G merges the output action distributions from
each expert module. It learns weights based on which expert to attend to and produces a final action
probability distribution. We use two separate attention modules, Gact and Gobj, to account for the
KG-A2C’s multi-step action generation. However, these attention modules are identical outside of
being modified to process the different sized inputs and will be collectively referred to as G going
forward. The approach outlined in the following section can be generalized to any architecture with
a single-step action generation.

The input of G is the representation of observations ôt in time step t and action probabilities
[at,1; at,2; ...; at,N ]. We believe the distribution of action probabilities multiplied by the corresponding
expected returns v1,j , v2,j , ..., vN,j represent the knowledge possessed by the experts in our game
environment; the expected returns represent how valuable each model perceives its current state to
be. Multiplying the former by the latter and mixing the experts’ action probabilities is a good way
to use this knowledge and save training time under few-shot setting.

We first apply a feed-forward network to project ôt non-linearly to a new representational space:

ht = LayerNorm(W⊤
up,o · γ(W⊤

down,o · ôt))

where γ(·) is a non-linear activation function. We used SiLU (Elfwing et al., 2018) in our architecture.
Wdown,o ∈ Rl×l′ and Wup,o ∈ Rl′×l are projection parameters to be updated during training. Then
we apply Layer Norm (Ba et al., 2016) to get ht ∈ Rl — the final projected representation of
observations ot. Similarly, we project each action probability at,j ∈ Rv of the role-aligned cj given
observations ot into the same space:

hl,j = LayerNorm(W⊤
up,l · γ(W⊤

down,l · at,j))

where Wdown,l ∈ Rv×v′ and Wup,l ∈ Rv′×v are projection parameters to be updated during training.

We compute the attentions by calculating the product between hl,j and ho and apply softmax over
the experts, as follows:

αt,j = e(hl,j ·ho)∑T
k=1 e(hl,k·ho)

.

We then obtain the output logits at ∈ Rv by computing a linear combination of [at,1 ∗ vt,1; ...; at,N ∗
vt,N ] given the computed input-logit attention,

lt = G(ô, [at,1; ...; at,N ]) = (at,N +
N∑

j=1
αt,jat,j)/2

Then we follow the standard approach of Reinforcement learning agents, where the combined logits lt

are processed by second softmax transformation and then used to sample the action. This sampling
is done in two stages where the output of Gact, τt,N , is sampled and used to generate Ot,N .

Exploration. Our agent tends towards premature convergence. Due to the Value Seeding we apply
to the probabilities prior to the attention module, the probability mass of the resulting distribution
post softmax tends to be most heavily weighted on the top action of the expert whose critic predicts
the highest value. When this action results in a reward, this becomes a positive feedback loop where
the attention module continuously places more weight on the expert associated with this reward
until all other experts are ignored. This results in a pre-mature convergence on the portion of the
reward function associated with the over-fit expert. This also leads to expert starvation, where an
expert whose rewards do not appear until later in the environment are always assigned an extremely
low weight by the attention module due to higher weights being assigned to experts whose rewards
are found early.

We implement two measures to solve this and drive exploration. We use (1) Epsilon-Greedy sampling
with decay instead of multinomial sampling, and (2) implement a new loss term. Epsilon-Greedy
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sampling helps with exploration because the original KG-A2C uses an entropy loss to push the
agent to explore and prevent the agent from prematurely convergence. While this is sufficient for
training any single expert KG-A2C module, it is not sufficient to prevent the attention module from
premature convergence. This in turn pushes the entire MoE agent towards prematurely converging
on the scores associated with a specific pre-trained role. Epsilon-Greedy avoids this by sampling a
new action in a manner that is influenced by neither the attention module nor the underlying A2C.

We add a new loss term to the KG-A2C loss. This loss is calculated as the log sum of the action
logits with the object portion of the loss normalized across the number of decoded objects. Let lact
and lobj be the outputs of Ga and Go respectively, where πact(ôt) = {τ0, τ1, ..., τK} and πobj(ôt) =
{O0, O1, ..., OM } represent all valid template and objects for a given state and n is the number of
objects used in Tact:

L(ot; θt) = 1
K

K∑
i=1

(1 − log(τi|ot)) + 1
n

n∑
p=1

1
M

M∑
j=1

(1 − log(Oj |ot))

Functionally, this a cross entropy loss that flattens the action probability distribution by penalizing
any particular action the closer its probability is to 1 and motivating a probability distribution that
is more uniformly distributed between the most probable actions.

5 Experiments

Experts. We use as experts four KG-A2C models which have each been trained to emulate a
role: ethief , eadventurer, ehunter, and ehoarder. The parameters of these experts are frozen. Another
untrained KG-A2C model acts as the empty expert, ehot, and attention modules Gact and Gobj are
randomly initialized and trained during the few-shot finetuning on the game with a new role.

Environment Details. We execute the MoE agent and our baselines in the same open-ended
environment that has multiple opportunities for actions that align with various personas. The
environment (see Figure A.1 in the Appendix) has a common starting room and an exit room that
terminates the game when the agent enters it. Reward is earned when certain role-specific behaviors
are performed in particular locations. Some roles have more opportunities for role-aligned actions
near the start room. Closer to the exit room there is a branch such that one role prefers one branch
with the other roless preferring the other branch.

Baselines. We test our MoE agent against two sets of baselines. All models used are from the KG-
A2C (Ammanabrolu & Hausknecht, 2019) family of models and are trained with Story-Shaping (Peng
et al., 2023). The first baseline is a KG-A2C agent trained from scratch on the new task. We also
use individual pre-trained expert policies, separated from the MoE and fine-tuned on the new role.
We train one Fine-tuned Expert for each expert that goes into the full MoE agent.

Target Roles. We evaluate our MoE agent across a number of different target roles. Blends are
target roles composed of behaviors drawn from a subset of original four roles. Partial blends are
target roles that are a mix of behaviors drawn from the original four roles but also completely new
behaviors. All target character are crafted to have roughly the same maximum scalar reward as the
pre-trained experts were pre-trained on, and all target roles must reach the goal location. We show
the results from a blended target role that has a roughly equal mix of behaviors from all previous
roles (but is not a strict union of all rewards from all roles) and a partial blend target role that
requires behaviors from only some pre-trained experts. Results from other target roles are available
in the appendix.

5.1 Results

The performance of the MoE agent can be measured through two metrics: sample efficiency and
total score. Figure 2 illustrates the training steps and testing time score of the full MoE agent
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against our baselines. We show the averaged results across 5 different seeds. Additional details and
results are available in the Appendix.

MoE AgentMax Score Thief Expert Hunter Expert Hoarder ExpertAdventurer ExpertKG-A2C

Blend Partial Blend

Figure 2: The full agent versus unfrozen experts allowed to continue training and a new KG-A2C.
The left graph illustrates the test time performance on a persona composed only of pre-existing
expert behaviors while the right illustrates the performance on a persona that is a mix of both
pre-existing and new behaviors.

Sample Efficiency. While the MoE Agent produces a set of action probabilities for every expert,
these distributions are generated from only one step in the environment. While this can result in an
increase in training time compared to the baselines, the MoE agent has far greater sample efficiency
and increases in score faster than the new KG-A2C baseline. Conversely, the Fine-tuned Experts all
see little to no change in testing-time performance in the span of the training.

Total Score. In both target roles, most Fine-tuned Experts fail to find any additional rewards
outside of those associated with their pre-trained roles and the small reward for reaching the goal
room. This is especially evident on the partial blend target roles, where the pre-trained experts
whose roles did not contribute to the target role achieved only the small reward for navigating to
the goal location. The New KG-A2C discovers some rewards closer to the starting location over the
course of the training period but fails to obtain rewards deeper in the environment. From testing
time performance at training step 0 and after a short period of training, we see the MoE agent
obtains a higher score in both a zero-shot setting due to the value seeding and a few-shot setting
over time. The large standard deviation of the MoE agent is largely an artifact of the bias we place
on exploration: across 20 random seeds over all target roles, only one seed failed to produce a model
that failed to achieve the max score when evaluated over 10 random seeds.

6 Expert Composition Study

In this section, we look at whether the composition of experts matter, with regard to having more
experts and less, and the extent to which the relevance of experts helps or hurts. The first test
examines the robustness of the MoE agent for e1, e2, ...eN−1 as N increases. The second examines
the performance of the MoE agent in the absence of any experts relevant to the target role.

Distractor Experts. To examine the MoE agent’s robustness to a large number of irrelevant
experts, we double the number of pre-trained, frozen experts by adding 4 randomly initialized KG-
A2C models. These new models are all kept frozen as with all other pre-trained experts. We follow
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Original Four ExpertsMax Score Original Four Plus Four Random

Blend Partial Blend

Figure 3: The testing-time performance of the MoE agent with only the original four experts versus
the same agent with four added random experts. When all experts contribute some relevant infor-
mation to the new task, the MoE agent’s performance suffers slightly as the attention module needs
more time to distinguish relevant experts from irrelevant experts. When there are only a few relevant
experts, additional irrelevant experts have little to no impact on the MoE agent’s performance.

the same training and evaluation procedure and show the results for the same roles used in Section
5.1. For visual clarity, we only plot the performance of the regular MoE agent against the same
agent with four additional, randomly initialized experts.

For the blended target, we see only a marginal drop in early performance due to the noise from
the random agents causing the MoE agent to take longer to learn which experts to attend to and
thus discover rewards. However, performance recovers as the attention module learns to ignore the
random agents after an extended period of training.

Conversely, in the partial blend we see the 4 random agents having virtually no impact on the
performance of the MoE agent. While the random agents have a negative impact on the attention
module in its ability to identify the most relevant experts for particular state, this becomes less of
an issue with a lower number of relevant experts.

Irrelevant Experts. To examine the MoE agent’s robustness to fewer, or irrelevant, experts,
we remove the relevant experts to the partial blend and run the MoE agent with only irrelevant
experts. This can be considered an adverarial attack on the agent, requiring it to perform a task
that is completely unlike any that it has ever mastered. Doing this drastically degrades the MoE
agent’s performance due to the adversarial nature of this arrangement. In a case where no expert
has any useful knowledge with respect to the target role, the MoE agent is effectively reduced to
training KG-A2C from scratch, but experts want to pull the agent away from promising exploration.
Even with epsilon-greedy exploration style, the experts will not let the agent explore too far.

7 Conclusions

In this paper, we introduce a novel method for task transfer in open-ended, text-based environments.
We demonstrate how performing a role can be framed as a task such that a variety of frozen experts,
each trained in a specific role, can be mixed by an attention module along with a new, trainable
expert to create a MoE agent capable of rapidly learning a new, related task. In this MoE agent,
the attention module assigns scores to each expert based on the current observation. Pre-trained
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experts are more closely attended to in contextually similar states with the new, trainable experts
filling in the parts of the policy that cannot be transferred from the pre-trained experts. We show
our MoE agent, when not facing adversarial settings, far outperforms any single individual of its
parts in a few-shot setting and demonstrate its robustness to a large number of irrelevant experts.
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Appendix

A KG-A2C

For our source agents, we build off the KG-A2C agent framework Ammanabrolu & Hausknecht
(2019), an Advantage-Actor Critic architecture augmented with a knowledge-graph based attention.
KG-A2C’s space of observations includes (a) text description of the room the agent is in via the
“look” command, (b) text descriptions of the character’s inventory via the “inventory” command,
(c) feedback from the last command, and (d) the agent’s last command. The state observations are
concatenated and embedded using a recurrent GRU.

Simultaneously, the state observation is used to update a knowledge graph of facts about the world
that have been observed to date. This includes facts and relations about rooms, objects in rooms,
inventory items, etc. This knowledge graph is then embedded using a graph attention mecha-
nism Veličković et al. (2018).

Advantage-actor critic networks Mnih et al. (2016) have two heads. The actor head generates logit
scores, one for each possible action, which can be converted to a probability distribution via softmax
and sampled to determine which action the agent takes. The critic head estimates the utility of the
state. Actions are made up of verbs and optional object names. The KG-A2C agent generates a
verb, which maps to a pre-defined template, and the generated object name is used to populate the
template.

A.1 Game Map

A.1.1 Game Map Part A

Tavern: 
Browntavia Tavern is not brown at all.  It is

made of wood and looks like a broken shack. 
Outside is  a huge watering hole for horses
and dogs.  Visually it doesn't look like much
but inside the chairs have a special design
and have carvings of horses and farm work

on the back of each chair.

hidden dagger
grimy stools
beer keg

some individual
old homeless man

Town Center: 
A lavish town full of stone buildings, most of

which are two or 3 stories. They have ornate tin
gutter fixtures with the water seeming to pour

from the mouths of different animals. They
almost all have wooden plaques next to the

doors describing the nature of their business.
the buildings are almost touching each other,

and the narrow streets are so filled with people,
donkeys pulling carts, and unruly children its

near impossible to walk by without bumping into
something.

man

Library: 
The library is a humongous cavernous room
full of floor to ceiling shelves. Each shelf is

stocked full of every type of book
imaginable, most in impeccable condition.
Near all of the shelves, there are types of

reading nooks with benches or chaises for
people to relax and read. There are some

tables and chairs for study in one half of the
room. There is a large fireplace in the center

and some comfortable lounge chairs
arranged around it for socializing. On the

sparse wall space there are tapestries. Some
small end tables hold huge vases of pink

flowers.
living book of spells
golem bookcase

tattered map

Sermon Hall: 
Inside the massive Church you can see a stage to the far
back. Benches lines the hall where some are kneeling in
prayer. To the far right there's a row of candles, some lit,
some not. On the stage there are bleachers for people to
stand on to sing the songs of their people. Sitting on the

center of the stage is a large podium where the priest
gives his sermons.

priest
knight

cross
donations

Marketplace: 
Merchants call out their wares and try
desperately to get the attention of the

wealthier passerby. People from all over the
world hustle to and fro, some keenly eyeing

the many tapestries, spices, tools and foods,
others openly staring in wonder. Still others
hurry along, heads down and avoiding eye
contact. Colors, smells and sounds assault
the senses. The cries of the gulls can hardly

be deciphered from the chatter of the
crowds, the ringing of the blacksmith's

hammer, the bells of the nearby shipyard,
and the hollers of the merchants.

skinning knife
finest wines

Armory: 
This room is filled with weapons and armor on manikins made of

wood and iron. The weapons here are well used, time and age have
made their dents and marks, however they remain reliable for any

man to wield.
blacksmith
blacksmith's apprentice
cat

sword
bow
armor
shield

Fishing Store: 
This store is a small one
room stone building with

wares laid about on tables. 
One can see fishing poles,
wooden buckets with dirt
and bait inside, along with
some mounted trophies.

customer

fisherman Pearl

Nothing

NPCs

Objects

Adventurer Behaviors

Hoarder Behaviors

Thief Behaviors

Hunter Behaviors

Start: Tavern Goal: Clearing

Map Part B

Map Part A
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A.1.2 Game Map Part B

Forest Entrance: 
The path quickly narrows and

darkens upon entering the forest. 
Dense branches overhead block all
but a few stray rays of sunshine. 
Fallen leaves just beginning to rot
blanket the forest floor, and every

footstep kicks up a rich, loamy
scent as fresh ground is

unearthed.
Treeswolf

snake

Dungeon: 
Dark and gloomy, the dungeon is the
ugly underbelly of the castle. A few
torches line the black stone walls,
throwing a meager light on the iron

bars of the cells. The air is damp and
still; the only disruptions are the

occasional anguished moans and
cries from the prisoners.

skeleton Nothing

Lower Dungeon: 
The lower dungeon is set below the
main hall. It is dark, lit by only a few

dim torches. Water is constantly
dripping down the walls, giving it a
dank and musty smell. There are

manacles and cages set along the
walls. In the middle of the room sits
a table with manacles on all corners

which are attached to a large
rotating lever.

captured knight
huge dragon Nothing

Gold Room: 
A hidden room, the Gold Room

is adorned with gold candle
fixtures on either side, and a

gold plated wooden table in the
center. Riches lay all around the

room and on top of the table.
Here can be found the crowns
of past kings and the royalty of

conquered nations.
treasure
golden sword of
kings

Hidden Passage: 
A rough, narrow

passageway descends
through the thick outer

wall of the dungeon.
Stair-like stones lead

downward into
darkness.

Nothing

Nothing

Nothing

Forest: 
The trail path is a well designed path in the middle of a

deep, dark forest. It is made purely from the bones of the
innocent that were sacrificed to the ogre. There are eyes

looking in the dark at you as you walk on the trail.

Nothing
Nothing

Swamp: 
The swamp is glowing with wonder and color.  There
are parts that range from dark red to bright yellow. 
People often visit here to speak with the gods and
claim it can be both harmful to those it dislikes and

healing to those who it deems worthy.

frog
bug

Small Graveyard: 
This is a small grassy area
located under a large oak
tree.  There are two home
made wooden crosses set

up along with mounds where
the bodies are buried.

graveyard keeper
ghost

Herbs

Family HeirloomsClearing: 
Few trees surround
the area.  There's a
low section of the
grass on the floor
along with some
stone boulders.

The Troll's Lair: 
Covered with rotting meat from nearby wildlife, the Troll's
lair reeks of death.  If the stench alone wasn't enough to
scare off an unfortunate travelers who stumbled upon it,

the bones of unlucky spelunkers would be.  The Troll
places his spoils near the numerous stalagmites on the

damp cave wall, his red eyes patiently scanning the dark
cave interior for anything that may disturb his isolation.

NothingCave Troll

Map Part A

Map Part B

B Story Shaping

We train all KG-A2C models with Story Shaping Peng et al. (2023). The following are the stories
used to align the pre-trained agents with their respective roles.

Adventurer. I am an adventurer. I have come to this town seeking treasure and challenge. In
the library, I find a tattered map that tells of a dungeon and the treasure within. I first go to the
armory to purchase a sword and armor. Leaving town, I make my way to the dungeon. I slay the
skeleton at the entrance and travel deeper into the dungeon. In the lower dungeon, I encounter a
huge dragon. After an arduous battle, I slay the huge dragon. Past the dragon, I find a gold room
and take the treasure. On the way to the clearing, I note the bodies on my path and find a Troll’s
Lair. Within, I slay the cave troll. My thirst for battle and treasure sated, I travel to the Clearing
and set off for the next town.

Thief. I am a thief. I value stealth and wealth, only getting into a fight when I have the advantage.
In the tavern, I find a hidden dagger and take it for my own. I explore the town, looking for easy
targets. In the sermon hall, I steal the donations but avoid the priest due to the knight. In the
marketplace, I find a fishing store with a lone fisherman. I kill the fisherman and steal the pearl.
Fleeing town, I avoid the dungeon and take a detour through the swamp. In the swamp, I see a
small graveyard with single graveyard keeper and some graves. I stab the graveyard keeper in the
back, killing him instantly. I dig up the graves and take the valuable family heirlooms. I travel to
the Clearing and make my escape.

Hunter. I am a hunter. My trade is in navigating natural environments and dealing with wildlife.
I buy a skinning knife from the markets and get a bow from the armory before I set off. As I travel
through the forest, I deal with the wildlife as they come. I kill and collect a wolf and a snake. I
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opt to take the route through the swamps rather than the dungeon, due to my comfort with nature.
I encounter and shoot a poisonous frog but otherwise face no issue as I travel to the Clearing and
make my way to the next town.

Hoarder. I am a hoarder. I love to collect useless things and anything I can get my hands on.
I get a drink from the tavern but keep the beer keg. The owner chases me out but I grab the
grimy bar stools as I go. In the marketplace, I can’t control myself and take the finest wines. I am
promptly chased out of town by the guards. Feeling hungry, I grab some herbs to tide me over. With
no weapons, I make sure to avoid the dungeon and instead travel through the swamp, accidentally
stepping on a bug. I exit through the clearing with my strange collection of items.

The corresponding triples generated for target knowledge graphs G1, G2, G3 and G4 result in the
following role-aligned behaviors:

Adventurer Nodes. get_sword, get_armor, get_tattered_map, hit_skeleton, hit_huge_dragon,
get_treasure, hit_cave_troll

Thief Nodes. get_hidden_dagger, get_donations, get_pearl, hit_fisherman, hit_graveyard_keeper,
get_family_heirlooms

Hunter Nodes. get_bow∗, get_skinning_knife, hit_snake, hit_wolf, hit_frog

Hoarder Nodes. get_beer_keg, get_grimy_stools, get_finest_wines, get_herbs, hit_bug

* indicates the respective expert did not successfully obtain this reward during training.

C Best Models

The following table contains the average total score and steps of the best MoE agent for each of the
5 seeds for all target roles. Models were ranked in order of highest average total score, number of
steps and total training steps.

Blend
Metric Target Role 1 Target Role 2

Avg Score 47.0 47.0 34.5 47.0 47.0 47.0 47.0 47.0 47.0 47.0
Avg Steps 22.875 25.375 18.666 22.5 22.375 18.0 18.0 22.0 18.0 18.0

Training Steps 8912 9331 12963 11773 6725 11817 8144 13245 5761 10832
Partial Blend

Metric Target Role 3 Target Role 4
Avg Score 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0
Avg Steps 26.125 24.125 25.5 27.625 27.375 19.143 19.75 21 19.0 18.75

Training Steps 11804 10887 8199 11330 10073 11615 10055 10458 8269 9356

Table 1: Average score and steps of all best MoE agents across ten games after training. Target Role
1 and 4 are those shown in 5.1. Our epsilon-greedy coefficient only decays to 0 after 10000 training
steps. Despite this, only one seed fails to produce a model that can achieve the max score across 10
testing time games.
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