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Abstract

Prediction-powered inference (PPI) is a method
that improves statistical estimates based on lim-
ited human-labeled data. Specifically, PPI meth-
ods provide tighter confidence intervals by com-
bining small amounts of human-labeled data with
larger amounts of data labeled by a reasonably
accurate, but potentially biased, automatic sys-
tem. We propose a framework for PPI based on
Bayesian inference that allows researchers to de-
velop new task-appropriate PPI methods easily.
Exploiting the ease with which we can design
new metrics, we propose improved PPI methods
for several important cases, such as autoraters
that give discrete responses (e.g., prompted LLM
“judges”) and autoraters with scores that have a
non-linear relationship to human scores.

1. Introduction
1.1. Motivation for prediction powered inference

Large foundation models often make it possible to build
applications with very little training data. However, even
zero- and few-shot models do require evaluation data. In
particular, to iteratively improve a method during develop-
ment, or to confidently report an improvement, one needs
to confidently and quantitatively assess performance of the
method. This is hard to do with evaluation sets of a few
hundred examples or fewer.

One often-proposed approach to avoiding the evaluation
bottleneck is to use secondary LLM-based system to judge
the output of the primary one: for instance, if the primary
task is developing an LLM-based question-answering (QA)
system, one could use a second LLM-based system that
rates question/answer pairs as acceptable or not (Bohnet
et al., 2023; Kamalloo et al., 2023; Bulian et al., 2022).
However, as others have noted (Angelopoulos et al., 2023a),
automated raters may be biased relative to the human raters
they are intended to model.

To illustrate this, Figure 1 (top) compares ratings from hu-
mans and an autorater for a hypothetical QA system. The

Figure 1. Top: Estimating accuracy P (H = 1) with 100 human-
labeled examples (green) or 5000 autorater-labeled examples (red).
Dotted vertical lines are the true accuracies P (H = 1) and P (A =
1) (for this synthetic data). Bottom: The dot-dashed blue/red lines
are a 95% confidence interval computed with classical methods
from 100 human-labeled examples. The grey histogram and solid
blue/red lines are a 95% confidence interval using PPI, which
combines the autorater and human predictions (see text).

true1 rate of acceptable responses from the QA system as
measured by humans is P (H = 1) = 0.733 (dashed green
vertical line), but using only 100 human-labeled examples
gives large variance: the uncertainty of the estimate (green
curve) means that the true P (H = 1) may be plausibly be
as low as 0.65 or as large as 0.82 (with 95% confidence, it
is between these values). With an autorater, more examples
can be labeled, leading to less uncertainty in the estimate
(the red curve). Unfortunately, the autorater gives very small
probability to the true accuracy of 73.3%, because it is bi-
ased, with a true mean (red dashed line) of 0.7.

Our choices seem to be between the high-variance unbiased
estimate from a small human sample, and a lower-variance
but biased autorater-based estimate. However, there are
also statistically valid ways of combining the auto-rater and
human data. Following (Angelopoulos et al., 2023a) we
will call such methods prediction-powered inference (PPI)
methods. The grey histogram in the graph of Figure 1 is
a PPI method which gives a confidence interval which is
much smaller than the “naive” classical interval, and which

1Known precisely here because we are using synthetic data.
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correctly contains the true value of P (H = 1).

1.2. Bayesian inference for PPI

In past work in PPI (Angelopoulos et al., 2023a;b) the com-
putation of a estimand—e.g., a statistic to be computed,
such as a population mean—is reduced to solving a con-
vex optimization problem—e.g., finding µ that minimizes∑

i(yi − µ)2 for a sample y1, . . . , yn. Analytic techniques
are then used to find bounds on the minimized value, typi-
cally by establishing asymptotic normality. This approach is
very natural for certain tasks—such as bounding coefficients
of linear or logistic regressions—but less natural for others.

Here we propose an alternative approach to PPI, based on
Bayesian inference. An advantage of our approach is that
it allows researchers to easily design a new PPI estimand
that makes task-appropriate use of autoraters, since much of
the analysis can be replaced by general-purpose numerical
methods that compute confidence intervals over the designed
statistics.

As an illustration, consider estimating a mean value of some
human label y that evaluates an instance x (e.g., an “ac-
ceptability” rating for a question/answer pair). We assume
a small sample Sn = (x1, y1), . . . , (xn, yn) of points xi

where yi is known, and a larger sample S̃N = x1, . . . , xN

of N ≫ n unlabeled points xj . We also assume an au-
torater or judge model f(x), which predicts y, and our goal
is to predict the expected value E[y] as precisely as possible
given the data D = (Sn, S̃N ).

The natural estimand for E[y] is the mean of the y’s in Sn.
An alternative is the following proxy estimand:

g(Sn, S̃N ) = µ1 + µ2, where (1)

µ1 =
1

N

N∑
j=1

f(xj)

µ2 =
1

n

n∑
i=1

yi − f(xi)

Here µ1 is the mean autorater score over the unlabeled data,
and µ2 is the mean difference between the autorater and the
human label over the labeled data Sn, called a rectifier in
(Angelopoulos et al., 2023a). Because the rectifier corrects
the bias of the autorater, E[g(Sn, S̃N )] is the same as E[y],
but it may have substantially lower variance if N is large and
f(x) is accurate: µ1 will have low variance when N is large,
and the rectifier will have low variance when yi − f(xi) is
generally small.

The statistic of Eq 1, sometimes called the difference es-
timate, is well-studied and its variance can be computed
analytically (Angelopoulos et al., 2023a; Breidt & Opsomer,
2017), leading to a classical confidence interval for E[y]. We
propose instead a Bayesian analysis, where we treat µ1, µ2

as random variables that depend on the data. Since µ1 and
µ2 are independent given the data D2 we can marginalize
them out as follows to compute the expectation of g over
the random variables:

E[g(Sn, S̃N )] =

∫
(µ1 + µ2)p(µ1|D)p(µ2|D)dµ1dµ2

(2)
Using Monte Carlo integration (see Sec 2.2 here or Sec. 24.2
in (Wasserman, 2013)) it is possible to compute such inter-
vals, and also to compute upper and lower bounds ℓ, u such
that Pr(ℓ ≤ E[g] ≤ u) ≤ c for a given confidence level
c. These bounds are called credible intervals in Bayesian
statistics (see Sec 2.1).

This computation is very efficient, and can be used for a
wide variety of potential proxy estimands, thus allowing
easy implementation of new PPI-like methods.

1.3. Contributions

To summarize our contributions, we introduce a Bayesian
framework for PPI tasks, specifically advocating for Monte
Carlo integration as the fundamental inference process. This
leads immediately to a framework in which one can read-
ily design autorater-powered proxy estimands for different
tasks, and compute confidence intervals over these designed
estimates.

Concretely, we propose and evaluate

• Bayesian variants of the difference estimate (called
simply PPI in (Angelopoulos et al., 2023a)) and its
extension using powertuning (called PPI++ in (An-
gelopoulos et al., 2023b));

• a Bayesian extension of the difference estimate called
stratified estimates, which improve experimentally
over prior methods on several experimental tasks, and
which are especially powerful when n is of moder-
ate size (a few hundred) and autorater scores have a
non-linear relationship to human labels;

• combinations of stratified estimates with the “power
tuning” approach of (Angelopoulos et al., 2023b);

• a family of novel estimates we call chain rule esti-
mates, which improve substantially over difference
estimates when autoraters give discrete, uncalibrated
responses, which is common when autoraters are based
on prompted LLMs.

We show that these new methods offer practically important
improvements on a wide range of tasks, including judging
outputs of summarization systems; evaluating attributed

2Note µ1 and µ2 are computed from different subsets of D.
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question-answering systems; evaluating open-book QA sys-
tems; and conducting side-by-side tests on QA systems.

We also discuss and experimentally analyze the PPI-based
credible intervals with classical confidence intervals, show-
ing that the intervals produced by Bayesian difference esti-
mates are virtually identical to their classical counterparts,
and that the methods perform experimentally with respect
to classical frequentist goals.

2. Background
2.1. Classical confidence intervals and credible intervals

2.1.1. DEFINITIONS

The following material is provided for completeness and to
establish notation, but can be found in many textbooks, such
as (Wasserman, 2013).

Statistical confidence intervals measure uncertainty of an
estimate of an unknown parameter θ from a finite sample
X—for example, θ might be the unknown value of p(H =
1) above. The most familiar procedure for computing a
confidence interval is to pick an appropriate probability
distribution function (pdf), written here f(θ): recall that a
pdf for θ has the property that p(a ≤ θ ≤ b) =

∫ b

a
f(θ)dθ.

A confidence interval for confidence level c is a pair of
values ℓ and u such that∫ u

ℓ

f(θ)dθ = c (3)

An equal-tailed interval discards the same amount of prob-
ability mass below ℓ and u, i.e., letting α = 1 − c, an
equal-tailed interval is one where

∫ ℓ

−∞
f(θ)dθ =

∫ ∞

u

f(θ)dθ = α/2

We consider only equal-tailed intervals in this paper.

In a Bayesian setting, we typically think of f(θ) as the
posterior of a random variable θ given data D, f(θ) =
p(θ|D), and the interval ℓ, u for level c means that p(ℓ ≤
θ ≤ u) > c, where the probability is taken over the possible
values of the unknown parameter θ. When this interpretation
is being used, ℓ, u is called a credible interval. Since the true
prior p(θ) is typically not known, it is generally necessary
to use an improper weak prior for θ.

The more common classical (frequentist) interpretation of
confidence intervals is more complicated. We can still say
that p(ℓ ≤ θ ≤ u) > c, but the probability is taken over
possible samples S, and θ is assumed to be fixed (but un-
known).

2.1.2. COMMON EXAMPLES

Intervals for means. One familiar case of this is when θ
is the mean of an unknown normal distribution. Given a
sample S = y1, . . . , yn, with sample mean y = 1

n

∑
i yi

and sample variance σ̂2 = 1
n

∑
i(xi − y)2, a confidence

interval can be found using Eq 3 by making f(θ) a Gaussian
distribution N (µ, σ), for µ = y and σ =

√
σ̂2/n. In this

case there is a simple closed-form solution for the classical
confidence interval, obtained by snipping off the tails of
f(θ), which for a 95% confidence interval gives ℓ = µ −
1.96σ and u = µ+ 1.96σ.

It turns out that this f(θ) can also be interpreted as a pos-
terior for θ. If this is done the Bayesian credible intervals
will be the same as the classical ones, and we follow this
practice here.

Intervals for proportions. Another common case is when
the data is generated by a Bernoulli distribution, i.e., for
each xi we have p(xi = 1) = θ and p(xi = 1) = 1 − θ,
for 0 ≤ θ ≤ 1. It is common to use the same procedure
as above—although the usual notation in describing it is to
write k for the number of times xi = 1, p̂ = µ̂ = k/n, and
σ̂2 = p̂(1− p̂). This is called the Wald method.

The Wald method is an approximation and is conservative—
i.e., the intervals can be too large. The most noticeable
errors are when ℓ < 0, which can happen when n is small
and θ∗ is close to zero, or when u > 1, which can happen
when n is small and θ∗ is close to one. Unfortunately this
is an important case for the methods described below, so in
the experiments below we use as the “classical confidence
interval” the Clopper-Pearson test (Nelson, 2018).

Bayesian credible interval computations for proportions
usually use a Beta distribution3 as a prior, often the Jeffrey’s
prior of Beta(α = 1

2 , β = 1
2 ), and we follow this practice in

the experiments of this paper.

A very useful extension to the Bernoulli distribution is the
multinomial distribution, where the random variable xi can
take on K possible integer values 1, . . . , K, so θ is a vector
on a K-dimensional simplex. The analog of the Beta distri-
bution here is called the Dirichlet distribution, for which we
use the prior α1 = . . . αK = 1

K .

2.2. Monte Carlo integration

As noted in the introduction, we will be interested in con-
structing credible intervals over expressions of the form

∫
g(θ1, . . . , θk)p(θ1|D) . . . p(θk|D)dθ1 . . . dθk (4)

3Recall that Beta(α, β) is defined over [0, 1] and is closely
related to the binomial distribution.
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Figure 2. Monte Carlo integration to compute confidence intervals for a function g(θ1, . . . , θk), where θi’s are unknown population means
and proportions that must be estimated from a sample D.

where g is an arbitrary function; each θi is an unknown
parameter value that is to be estimated from a dataset D;
and each p(θi|D) is the posterior over θi. In the cases con-
sidered here the construction is correct because the θi’s are
independent given D, generally because they are computed
from different subsets of the data.

Monte Carlo integration (Wasserman, 2013) approximates
this integral with bootstrap-like method. For each parameter
θi, we sample T times from its posterior:

s11, . . . , s
T
1 = T samples of p(θ1|D)

...
s1k, . . . , s

T
k = T samples of p(θk|D)

We then compute the function g on each of these T samples

g1 = g(s11, . . . , s
1
k)

...
gT = g(sT1 , . . . , s

T
k )

Since g1, . . . , gT is a posterior-weighted sample of
g(θ1, . . . , θk), Eq 4 can be approximated by 1

N

∑T
t=1 g

t.

Now suppose we sort the gt’s to create a long vector
⟨g′1, . . . , g′T ⟩, and consider the index tℓ = ⌊αT ⌋ for some
α, say α = 1

10 . Clearly only a fraction α of the original
sample were smaller than g′tℓ . Likewise only a fraction α
were larger than g′tu for tu = ⌈(1 − α)T ⌉, so for a large
sample a confidence interval can be easily constructed.

This process is illustrated in Figure 2. In the experiments
here, we use T = 10, 000 unless otherwise stated, which
is large enough that the uncertainty associated with the
sampling can be ignored.

3. Related Work
3.1. Past work on PPI

The difference estimate of Eq 1 is well-known in mathemat-
ical statistics (Breidt & Opsomer, 2017), and it is closely
related to doubly robust policies in reinforcement learning
(Dudı́k et al., 2011). Until recently, the difference estimate
was not widely known in the AI/ML community, but it was
discussed by (Angelopoulos et al., 2023a) as a means of
exploiting arbitrary machine learning models as autoraters.

(Angelopoulos et al., 2023a) also discussed a number of
generalizations of the difference estimate based on the ob-
servation that computing means can be viewed as solving a
convex optimization problem; specifically the mean µ of a
sample Y = y1, . . . , yn solves

µ = argminµ′

∑
i

(yi − µ′)2

Based on this insight, (Angelopoulos et al., 2023a) propose
“prediction-powered” algorithms for computing confidence
intervals for other statistics of interest, including means,
medians, quantiles, and parameters of logistic and linear
regressions.

(Angelopoulos et al., 2023a) also propose methods that ap-
ply to solutions to any convex optimization tasks—although
these are expensive with the methods of (Angelopoulos
et al., 2023a), requiring grid search over parameter space.
In later work (Angelopoulos et al., 2023b) propose a more
efficient process for finding confidence intervals for general
convex optimization methods, and also present a method
called power tuning, which we discuss below. Past applica-
tions of PPI include ranking chatbots in the Chatbot Arena
(Boyeau et al., 2024) and evaluating retrieval-augmented
generation systems (Saad-Falcon et al., 2024). In this paper
we do not compare to prior PPI experiments constructing
confidence intervals for parameters of linear or logistic re-
gression, as we consider prior methods more appropriate for
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this case.

Technically, the credible intervals produced by Bayesian
methods are different from the confidence intervals pro-
duced by approaches like that of (Angelopoulos et al.,
2023a;b; Boyeau et al., 2024). In practice, however, both
intervals are used in a similar way. We consider the main
contribution of this paper over prior work the computation
of better intervals, not any perceived benefit of Bayesian
interval analysis over classical analysis.

3.2. Power tuning for PPI

The difference estimator of Eq 1 can be generalized to

1

N

N∑
j=1

λf(xj) +
1

n

n∑
i=1

yi − λf(xi) (5)

where λ is any constant between 0 and 1 (Angelopoulos
et al., 2023b). This formulation is equivalent to the differ-
ence estimator when λ = 1, and equivalent to the classical
estimator when λ = 0 (and like the standard difference esti-
mator, it has the same expectation as the classical estimator).
Eq 5 thus defines a parameterized family of PPI methods
that interpolate between the classical and difference esti-
mate. (Angelopoulos et al., 2023b) present a closed-form
formula for computing λ∗ that minimizes variance, and call
this technique power tuning. The formula for λ∗ makes use
of both the labeled and unlabeled data: λ∗ is closely related
to the correlation coefficient between y and f(x).

In this work, we experimentally compare our methods to
power tuning, and additionally propose hybrid methods that
combine powertuning with novel PPI methods. We discuss
powertuning and related methods further in Section 5.1.5.

3.3. Other approaches to re-calibration and ensembles

One can also view power tuning as re-calibrating f(x), the
autorater, by scaling it by the factor λ∗. More generally,
there is a strong similarity between the rectifiers used in
PPI and post-hoc calibration of a classifier. There is a rich
literature on post-hoc approaches to calibrating learned clas-
sifiers (e.g., (Platt et al., 1999; Niculescu-Mizil & Caruana,
2005)), but there is a clear difference in goals between cali-
bration and PPI: the former is aimed at modifying a learned
classifier (the autorater) to make better probabilistic predic-
tions, and the latter is aimed at obtaining better confidence
intervals on a model by making use of an existing autorater.

That said, clearly one approach to improving PPI is to use
a better-calibrated classifier, perhaps by taking some of the
labeled data available and using it for re-calibration. We
leave such approaches as future work here, but we do exper-
imentally explore PPI approaches on both well-calibrated
autoraters and poorly calibrated ones.

Power tuning can also be viewed as an ensemble method—a
sort of mixture-of-experts approach in which λ serves to
softly select the classical estimate or the difference estimate.
It is fairly easy to ensemble PPI methods (for instance, by
doing multiple-test corrections explicitly) but we again such
approaches as future work.

4. Methods
4.1. Notation and overview

4.1.1. NOTATION

Following (Angelopoulos et al., 2023a), we assume a sample
Sn = (x1, y1), . . . , (xn, yn) of n examples drawn from
some unknown static distribution, where yi is a real-valued
target output; a larger sample S̃N = x̃1, . . . , x̃N for which
the target outputs are not available (N >> n); and an auto-
rater function f(x) which provides a “good approximation”
of the target y for x.

For example, assume each x is a question/answer pair where
the answer is produced by an LLM-based QA system we
wish to evaluate, y is a 0/1 gold rating of correctness of the
answer, f(x) predicts the human rating on a question/answer
pair x, and E[y] is the accuracy of the QA system on the
distribution from which questions are drawn.

Below we write sample means using this notation:

µ̂n
y = Mean(y : y ∈ Sn) ≡

1

n

∑
(xi,yi)∈Sn

yi

with the understanding that this implies a sample standard
deviation of σ̂y; a true (population) mean and standard devia-
tion of µy and σy; a true parameter value θ∗y ; and a posterior
p(θy|Sn). The superscript n will be dropped where it is
clear from context.

We denote binomials, estimated from a sample S =
{a1, . . . , an}, for ai ∈ {0, 1},as

p̂A = Prop(A ∈ S)

where again p̂ implies a corresponding true probability
pA = θ∗A, and a posterior p(θA|S). Estimates for con-
ditional probabilities p(A = 1|B = 1) for a sample
S = {(a1, b1), . . . , (an, bn)} are written

p̂A|B = Prop(A|B ∈ S)

and estimates of p(A = 1|B = 0) will be written p̂A|¬B for
conciseness. When A or B is a multinomial then we use a
similar notation, without abbreviating P (A = 1) to P (A)
or P (A = 0) to P (¬A).

All of these quantities are modeled as random variables that
depend on data, and each of them has a prior and posterior,
so we can meaningfully write things like p(µ̂n

y |D).
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4.1.2. OVERVIEW: DESIGNING A BAYESIAN PPI
METHOD

We assume we are given is a statistic, the target estimand,
we want to measure in expectation. The target estimand is
denoted e(Sn, S̃N ).

The first step is to introduce a second statistic, the proxy esti-
mand, that has the same expectation as e but lower variance.
The equality of expectations is easy to verify for the cases
considered here. The proxy estimand is denoted g(Sn, S̃N ),
and is a function of random variables. In this paper, these
random variables are all means or proportions, derived from
the data D, with known posteriors, so in the general case g
can be written

g(Sn, S̃N ) = h(θ1, . . . , θk)

Next, we choose a posterior p(θi|D) for each random vari-
able in g. The priors we use in this paper are weak, uni-
formed conjugate priors, as discussed above and detailed in
Sec A.1: a Gaussian or Student’s T distribution for means,
a Beta for simple proportions (binomials), and a Dirichlet
for multinomials.

Finally, we measure variance of g and compute a confidence
interval ℓg, ug using Monte Carlo integration, as described
in Section 2.2.

4.2. The Bayesian difference estimate

For the difference estimate we begin with the target estimand

e(Sn, S̃N , f) ≡ Mean(y : (x, y) ∈ Sn)

The proxy estimand is

g(Sn, S̃N , f) ≡ µ̂N
f(x) + µ̂m

y−f(x)

where

µN
f(x) ≡ Mean(f(xj) : xj ∈ S̃N )

µn
y−f(x) ≡ Mean(y − f(xi) : (xi, yi) ∈ Sn)

It is straightforward to verify that E[g] = E[e], and we use
the usual priors. The Bayesian difference estimate, as well
as the other PPI methods described here, is summarized in
Table 1.

This variant of the difference estimate is presented for peda-
gogical purposes, not practical ones. Experimentally, it is
virtually identical in performance to the approach of (An-
gelopoulos et al., 2023a)—although the supporting theory
is different, experimentally it gives essentially the same con-
fidence intervals. Hence experiments below that use the
difference estimate as a baseline generally use the method
of (Angelopoulos et al., 2023a).

4.3. Stratified estimates

With the priors selected above, the Bayesian difference gives
the same confidence intervals as the traditional method. Our
first novel PPI method, stratified estimates, is based on the
observation that, while the difference estimate works best
when the variance of Mean(y − f(x) : (x, y) ∈ Sn) is
small, this can be true in two cases: (1) if f(x) ≈ y, but
also when (2) f(x) ≈ y + b, where b is constant. In other
words, it is not necessary for the autorater to be unbiased,
as long as its bias is consistent across examples.

There are many cases, however, where autorater bias is not
consistent. Consider, for example, a task for which humans
give a “star rating” which is an integer between 1 and 5, and
an autorater is trained to predict that rating. If the human
scores are frequently extreme (i.e., 1 or 5, and rarely 2, 3
or 4), and the autorater is trained to minimize loss, it may
well trend low on examples a human would rate 5 stars, and
high on examples a human would rate as 1 star. In this case
you might see two regimes of autorater bias: perhaps when
f(x) > 2.5, then y ≈ f(x) + 1, and when f(x) ≤ 2.5 then
y ≈ f(x)− 1.

One way of adjusting for this effect would be create a par-
tition function π, which maps f(x) to a discrete set of in-
tervals, and then construct a difference estimate over each
interval. In this example, we would define

π(f(x)) =

{
lo if f(x) > 2.5
hi else

Let us define

Slo
n = {(xi, yi) ∈ Sn : π(f(xi) = lo

Shi
n = {(xi, yi) ∈ Sn : π(f(xi) = hi

and define S̃lo
N and S̃hi

N similarly. Consider the random
variables

µ̂lo
f(x) = Mean(f(x) : x ∈ S̃lo

N )

µ̂hi
f(x) = Mean(f(x) : x ∈ S̃hi

N )

µ̂lo
y−f(x) = Mean(y − f(x) : y ∈ Slo

n )

µ̂hi
y−f(x) = Mean(y − f(x) : y ∈ Shi

n )

p̂lo = Prop(π(f(x)) = lo ∈ S̃N )

The proxy estimate g(Sn, S̃N ) is

(µ̂lo
f(x) + µ̂lo

y−f(x)) · p̂
lo + (µ̂hi

f(x) + µ̂hi
y−f(x)) · (1− p̂lo)

In general, if there are K partitions, the model is a weighted
sum of K difference estimates, where the difference esti-
mate for partition k is constructed using the labeled and
unlabeled data mapped to partition k, and the weight of that
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estimate is the fraction of (unlabeled) data mapped to par-
tition k. It can easily be shown that the expectation of g is
still the population mean. The general form of the stratified
difference estimate is given in Table 1.

This stratified difference estimate essentially it combines
PPI methods with stratified sampling (Singh & Mangat,
1996), and like standard stratified sampling, it can be used
with any partitioning scheme. In the experiments below we
explore two partitioners. In the simple case, we divide x ∈
S̃N into K equal-population bins. We also explore using the
labeled data in Sn to build a regression tree (Lewis, 2000),
and taking the leaves of the tree as partitions: see 5.1.5 for
details.

4.4. Chain rule estimates

4.4.1. A SIMPLE CHAIN RULE ESTIMATE

We now consider extending the difference method to dis-
crete autoraters—for instance, autoraters based on prompted
LLMs. For this new method we denote the human rating
with the random variable H and the autorater’s rating as A,
so

Sn = {(a1, h1), ....(an, hn)}
S̃N = {a1, ....hN}

Notice that H and A are dependent on a randomly chosen
question/answer pair, x. We don’t use x below, but to ensure
parameter independence, the x’s associated with Sn and S̃N

should be non-overlapping.

Our target estimand is the expected human rating:

e(Sn, S̃N ) = Prop(H ∈ Sn)

and the proxy estimand uses the chain rule to evaluate it:

g(Sn, S̃N ) ≡ p̂H|A · p̂A + p̂H|¬A · (1− p̂A)

where

p̂A = Prop(A ∈ S̃N )

p̂H|A = Prop(H|A ∈ Sn)

p̂H|¬A = Prop(H|¬A ∈ Sn)

By analogy with the difference estimator, we call this
method a chain rule estimate. It is clear that E[g] = E[e],
but it is less obvious why this trick should reduce vari-
ance. However, recall the standard error of a binomial with
probability p∗ estimated from n samples is approximately√

p∗(1− p∗)/n. Examining the proportions in g, we see
that σ̂A is small since it is computed from N samples, and
N is large. If the autorater is accurate, then p∗H|¬A and
(1− p∗H|A) will be small, so σ̂H|¬A and σ̂H|A will be small.

This model is quite similar to the stratified estimate dis-
cussed above, as they both marginalize over different cases.
One technical difference is that it uses binomials instead of
difference estimates in the “inner loop” of the marginaliza-
tion sum. It is also arguably a clearer description of how to
make use of discrete autorater values.

4.4.2. PPI FOR ABSTAINING AUTORATERS

There are a number of natural extensions to the chain rule
estimate, and we consider two of these in depth in this paper.
One is for autoraters that do not always give a yes-or-no an-
swer. It might be that the autorater output cannot be parsed
as expected, or it might be that the autorater is designed to
answer “unknown” when presented with a question/answer
pair whose correctness cannot be determined. To model this,
we can assume that A is a multinomial random variable with
three outputs, y for “acceptable”, n for “not acceptable”,
and u for “unknown”. If we assume the gold human labels
are still binary, we can modify our model as follows:

p̂A=a = Prop(A = a ∈ S̃N ), a ∈ {y, n, u}
p̂H|A=a = Prop(H|A = a ∈ Sn), a ∈ {y, n, u}

g(Sn, S̃N ) =
∑

a∈{y,n,u}

p̂H|A=a · p̂A=a

In this case, we don’t expect the variance of p̂H|0 to be
especially small, so it should also be the case that the the
autorater not abstain too often—i.e., that p(A = u) is small.

4.4.3. PPI FOR SIDE-BY-SIDE TESTS

Another common kind of labeling is variously called a side-
by-side test, an A/B test, or a paired test. In this case raters
are asked to compare two alternative outputs for the same
input string, and either express a preference between them,
or say that the outputs are equally good. In Section 5.3, we
describe a novel estimate for this based on the chain rule
estimate. For completeness, this estimate is also shown in
Table 1.

5. Case studies
5.1. Continuous autorater predictions and stratified

estimators

5.1.1. DATASETS

A common task in NLP is evaluating long-form outputs
from LLMs: for instance, the outputs of chatbots, summa-
rizers, and systems that provide long answers to information-
seeking questions. In general this is done with human rat-
ings, and for many tasks, autoraters also exist. In this setting,
there will be a limited set of gold ratings x, z, y, and two
LLM models: a generator model which produces answer
an output z from an input prompt x, and a autorater model
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Estimand Designed Statistic Means or Proportions Used in g Comments
e(Sn, S̃N ) g(Sn, S̃N )

Mean(y : y ∈ Sn) µ̂N
f(x) + µ̂n

y−f(x) µ̂N
f(x) = Mean(f(x) : x ∈ S̃N ) difference

µ̂n
y−f(x) = estimate
Mean(y − f(x) : (x, y) ∈ Sn)

Mean(y : y ∈ Sn)
∑K

i=1(µ̂
i
f(x) + µ̂i

y−f(x)) · p̂i for i = 1, . . . ,K: stratified
p̂i = Prop(π(f(x)) = i ∈ S̃N ) difference
µ̂i
f(x) = Mean(f(x) : x ∈ S̃i

N ) estimate
µ̂i
y−f(x) =

Mean(y − f(x) : (x, y) ∈ Si
n)

Prop(H ∈ Sn) p̂H|A · p̂A + p̂H|¬A · (1− p̂A) p̂A = Prop(A ∈ S̃N ) chain rule
p̂H|A = Prop(H|A ∈ Sn) estimate
p̂H|¬A = Prop(H|¬A ∈ Sn)

Prop(H ∈ Sn)
∑

a∈{y,n,u} p̂H|A=a · p̂A=a for a ∈ {y, n, u}: chain rule
p̂A=a = Prop(A = a ∈ S̃N ) estimate with
p̂H|A=a = Prop(H|A = a ∈ Sn) an abstaining

autorater

Prop(H = w ∈ Sn) −
∑

a∈{w,l,t} p̂H=w|a · p̂A=a − for a ∈ {w, l, t}, h ∈ {w, t}: chain rule
Prop(H = l ∈ Sn)

∑
a∈{w,l,t} p̂H=l|a · p̂A=a p̂A=a = Prop(A = a ∈ S̃N ) estimate for

p̂H=h|a = Prop(H = h|A = a ∈ S̃N ) paired tests

Table 1. Overview of PPI methods used in this paper. The difference estimate is a Bayesian version of prior work and the remaining
models are novel.
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CI Width CI Ratio to Classical
Method Seahorse1 Seahorse2 AQA1 AQA2 Seahorse1 Seahorse2 AQA1 AQA2

methods that do not tune hyperparameters on Sn

classical 0.112 0.107 0.108 0.112 1.000 1.000 1.000 1.000
difference estimate 0.098 0.104 0.099 0.096 0.873 0.968 0.914 0.855
ours: chain rule 0.100 0.102 0.094 0.094 0.892 0.951 0.870 0.833
ours: stratified(K = 5) 0.094 0.100 0.084 0.080 0.839 0.929 0.778 0.708

methods that tune on Sn

tree(5) 0.093 0.100 0.082 0.079 0.829 0.932 0.765 0.703
stratified(K = ∗) 0.092 0.099 0.082 0.079 0.826 0.919 0.759 0.701
difference estimate + ptune 0.095 0.100 0.089 0.089 0.848 0.928 0.825 0.788
stratified(K = 5) + ptune 0.093 0.099 0.082 0.078 0.826 0.916 0.764 0.688
stratified(K = ∗) + ptune 0.092 0.098 0.081 0.077 0.822 0.914 0.748 0.685
tree(K = 5) + ptune 0.091 0.097 0.078 0.075 0.808 0.902 0.726 0.668

Table 2. CI widths and CI width ratio for all datasets with n = 300 human-labeled examples. Methods marked with “+ ptune” use
powertuning (Angelopoulos et al., 2023b) within partitions. The difference estimate baseline is implemented as in (Angelopoulos
et al., 2023a). All methods that include tuning are novel (“ours”) except for the difference estimate with power tuning (called PPI++ in
(Angelopoulos et al., 2023b)).

Method SH1 SH2 AQA1 AQA2

classic 96.6 96.5 97.8 97.3
difference est 96.9 95.5 98.8 99.0
chain rule 97.4 96.4 98.3 98.9
strat(K = 5) 96.3 95.8 97.3 97.0

tree(K = 5) 96.3 95.7 96.3 95.5
tree(K = ∗) 92.2 88.5 91.3 89.4
strat(K = ∗) 96.9 95.7 97.6 96.9
+ powertune
difference est 97.6 95.9 99.3 98.5
strat(K = ∗) 96.8 95.7 97.5 96.4
tree(K = 5 96.3 95.8 95.5 95.1
tree(K = ∗) 89.7 87.7 87.7 86.1

Table 3. Coverage results at n = 300 for 1000 trials of each
method. All methods, even the tuned methods, obtained coverage
at least as large as the expected 95% except for those that combine
regression-tree learning with search over the optimal number of
partitions.

which takes a pair x, z and outputs a predicted human rating
ŷ.

As the first testbed for these tasks, we use data from the Sea-
horse project (Clark et al., 2023). In this work, the authors
considered generator models that summarize a source docu-
ment x in a multilingual setting. This is a compelling task
since obtaining labels for multiple languages is expensive.
Seahorse also includes labels for many languages, many
systems, and many dimensions of summary quality: overall

there are labels for 6 dimensions of summary quality, for 9
summarization systems, and 6 languages.

We consider here two quality dimensions, one which cap-
tures if the summary is fully attributable to the source doc-
ument, and one which captures if the summary captures
the main idea of the source. (These are the dimensions
for which there was the greatest variance between different
summarization models. ) We consider one summarization
system—a finetuned 13B parameter multilingual mT5 (Xue
et al., 2020) model, the strongest model based on an open-
source LLM. The judge models for each dimension are
also mT5-XXL finetuned models, which output probability
scores. The data contains 2728 examples for these two task,
all of which have both human ratings and autoratings.

As a second testbed we used data distributed by the authors
of (Bohnet et al., 2023), which compared many models on
the task of attributed question answering. In attributed ques-
tion answering, the goal of the QA system is to output an
answer and a document that supports that document—i.e.,
a generation z is a pair (ax, dx) where ax is an answer to
question x, and dx is a document dx that supports the an-
swer, and the generation is considered correct (y = 1) if
the answer is indeed supported by the document. We eval-
uated two “generator” models from (Bohnet et al., 2023):
the highest-scoring “retrieve-and-read” QA system4, and

4RTR-10 in the dataset. Retrieve-and-read (RAG) models use
a dense retriever with x as query to find candidate documents dx
from a corpus and then generate an answer ax with a fine-tuned
LLM that takes dx as context.
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Figure 3. Comparing stratified estimates on multiple datasets. On all graphs, the x axis is number of human-labeled examples n, and the y
axis is confidence interval width. All PPI methods improve over classical approaches. The chain rule estimate and difference estimate are
generally comparable, and the stratified estimate improves performance substantially over each of them (see Section 5.1.3).

the highest-scoring “post-hoc retrieval” system.5 The au-
torater for this task is a natural-language entailment model:
a 11B parameter T5 (Raffel et al., 2020) model fine-tuned
on a collection of NLI-related tasks (Honovich et al., 2022),
which again gives probability scores. These datasets have
1000 human labels and 3000 autorater labels.

5.1.2. INITIAL EXPERIMENTAL RESULTS

Following (Angelopoulos et al., 2023a) we evaluate
PPI method performance using the width of a confi-
dence/credible interval. Using ℓe, ue for the classical con-
fidence interval for the estimand e and ℓg, ug for the PPI
confidence interval of the designed statistic g, the width of
the classical confidence interval is ue − ℓe, and similarly
for the PPI interval. We also consider the CI width ratio,
which we define as ug−ℓg

ue−ℓe
, i.e., the CI width of a PPI test

normalized by the width of the classical test.

We compare the classical estimate, which uses only the
human labels Sn to a stratified model with K = 5 equal-
frequency partitions. We did not tune the number of parti-
tions at all in these initial experiments. We also compare to
the difference estimate (called simply PPI in the experiments
of (Angelopoulos et al., 2023b;a)), and, for completeness,
the chain rule estimate. The chain rule estimate is designed

5Post-6 in the dataset. Post hoc retrieval systems generate an
answer ax and then search for a supporting document dx using ax

as a query.

for discrete autoraters, and was used here by discretizing the
autorater scores using a threshold of 0.5. The difference es-
timate baseline is the classical method (Angelopoulos et al.,
2023a), not the Bayesian version described Table 1.

The top rows of Table 2 shows these results, averaged over
1000 trials each.

We also use the experimental procedure of (Angelopoulos
et al., 2023a) to simulate the performance of statistical tests
with varying numbers of human labels n. We pick 10 differ-
ent numbers n ranging from 100 to 500, and for each value
of n, we sample n of the cases with human labels for the
human-labeled set Sn, and use all the remaining autorater
labels as S̃N . We repeat this 100 times for each value of
n, and graph the average CI width over all trials for 95%
confidence intervals. These results are shown in Figure 3.

As shown in Table 2 at n = 300, the difference estimate
performs surprisingly well, and is comparable and to the
chain rule estimate perform similarly on all dataset, despite
not having access to the autorater’s actual numeric scores.
As expected, the stratified estimate gives a noticeable im-
provement over the others.

There is a larger improvement for all PPI methods in the
attributed QA tasks: note that one important difference
between the Seahorse data and the attributed QA data is
that English-language entailment is a well-studied problem
with large amounts of training data available, so one would
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expect the autorater here to be strong.

Figure 3 adds nuance to this view, showing that the stratified
methods performs less well comparatively with small n,
but improves over other methods substantially for larger n.
This makes sense, because there will be variance associated
with the rectifier in each partition, and this variance will be
larger when the partition has few human-labeled examples.
Additional experiments exploring this are in Appendix A.2.
The crossover between the stratified estimate with K = 5
and the difference estimate is between n = 100 and n =
150 for these datasets.

5.1.3. PRACTICAL IMPLICATIONS

The graphs of Figure 3 make it fairly easy to see the practical
impact of the improved test. As an example, drawing a
horizontal line on the lower right-hand graph at around
y = 0.10 shows that similar confidence sized confidence
intervals using 200 examples of the stratified estimate as
using 400 examples of the classical estimate, so in this case
labeling costs could be potentially reduced by half. On
the upper right-hand graph, where the differences between
methods are smaller, a line in the same y position shows that
300 examples with the stratified estimate are as useful as
around 360 labels for the classical method, a 20% reduction
in labeling.

5.1.4. COVERAGE TESTS

The other important property for a statistical test to have,
of course, is that an interval be calibrated: e.g., that a 95%
interval contain the true value of the parameter at least 95%
of the time. Since for each of these tasks, a fairly large
human-labeled dataset is available, we used the mean value
obtained using all the human-labeled data as a proxy for
the “true” value of the unknown parameter θ∗, an measured
test coverage, i.e., how often the interval given by each test
contains this θ∗. For a 95% confidence interval, this should
occur 95% of the time.

In Figure 3, we aggregate all the tests for each method and
each task, so there are a total of sixteen cases, with 1000
intervals considered for each case. In each case the cov-
erage was 95% or greater, as expected, with the minimum
coverage estimate being 95.5% (for the difference estimate
on the “Main Points” Seahorse dimension). In conducting
the experiments for Figure 6, the stratified estimate was
run 1000 times each for 4 values of K. In each of the four
cases the coverage was 97.2% or greater, confirming the
theoretical predictions.

5.1.5. TUNING AND POWERTUNING PPI ESTIMATES

In statistical testing, one must be wary of conducting mul-
tiple tests and choosing the best, as this can lead to results

that are not well-calibrated—i.e., the true parameter value
will lie outside the suggested confidence interval more fre-
quently than expected. This is why in the experiments of
Figure 3 we used a fixed K = 5 for the number-of-partitions
hyperparameter.

In many practical settings, however, it is necessary to evalu-
ate systems on many related tasks: e.g., one consider scaling
the Seahorse data from 9 languages to 90, or evaluating
dozens of variants of a chatbot system during development.
In such settings it is certainly plausible to tune a PPI estimate
on a subset of the available tasks and run the well-tuned task
on the others, eliminating any multiple-test worries. Past
experiments of (Angelopoulos et al., 2023b) also show that
power tuned models seem to be well-calibrated even when
the λ∗ parameter is set by (re-)using Sn. (Recall from Sec-
tion 3.2 that powertuning generalizes the difference method
to

g(Sn, S̃N ) =
1

N

N∑
j=1

λf(xj) +
1

n

n∑
i=1

yi − λf(xi)

for any λ and also provides a method for picking a λ∗ to
minimize variance, thus finding the best test in a family.)

In summary, even if some gaps remain in our formal un-
derstanding of the practice of tuning PPI estimates with the
labeled data, it seems important to consider these techniques.
In this section we consider methods for tuning hyperparam-
eters of these methods.

Tuning K is conceptually easy—one can simply run the
method with different values of K and adopt the K∗ that
gives the smallest variance. More generally, the way in
which partitions are constructed could also be varied, by
intelligently picking partitions to be as large as possible
subject to the constraint that y − ŷ stays roughly constant
within partitions. One easy-to-implement version of this
idea is to fit a regression tree (Lewis, 2000) to the labeled
data, using the autorater score ŷ as an input feature and the
human label y as the target value, and then use the leaves of
the tree as partitions.

The bottom rows of Table 2 presents results for a variety of
tuned PPI methods. We first present the regression-tree par-
titioning method, constrained to output a tree with at most
K = 5 leaves, and varying the number of partitions K for
the equal-frequency partitions with and without powertun-
ing (see Appendix A.2 for details.). We then consider adding
powertuning to all methods (except the chain rule.) Many of
these methods lead to substantially improved results, with
the powertuned regression-tree method performing best.

5.1.6. COVERAGE TESTS

Without a strong theory that predicts coverage for tuned
PPI methods, experiments on coverage are essential. The



Bayesian PPI - Page 12 of 16

EM F1 Human (delta)
3.6k examples 300 examples

DPR 40.9 47.8 58.8 +12.9
FiD 46.5 53.7 64.8 +17.0
ANCE/FiD 47.3 54.8 65.8 +17.6
RocketQAv2/FiD 47.7 55.6 70.1 +20.3
Contriever/FiD 47.9 55.4 66.5 +20.0
FiD-KD 49.6 57.4 73.1 +22.3
GAR+/FiD 49.8 57.4 69.4 +18.2
EviGen 49.8 57.0 67.1 +15.3
EMDR2 51.5 59.5 73.1 +19.9
R2-D2 52.4 59.0 71.4 +18.6

Table 4. Human vs automatic labels for open-book QA systems,
from (Kamalloo et al., 2023).

results for each result in Table 2 are averaged over 1000
trials each, and we recorded for each of these trials the
coverage of the method (i.e., how often the CI contains the
true value, as estimated from all available human-labeled
examples.) The results are shown in Table 3. Interestingly,
all of the methods, including those that use tuning, are
still well-calibrated, except for the ones that combine tree
learning and search over K (shown as “tree(K = ∗)” in the
table.) The poor coverage results for these methods are why
their CI widths are not presented in Table 2.

5.2. Uncalibrated autoraters and chain-rule estimates

The previous section considers autoraters that are based
on well-calibrated, fine-tuned models. A common recent
practice is to use prompted models for autoraters, which we
consider next. Note that some of the strategies available for
fine-tuned models cannot be used here: in particular, since
only a few different predictions are made by autoraters,
partitioning cannot be used effectively.

5.2.1. DATASETS

In a recent paper (Kamalloo et al., 2023) showed that the
most commonly-used metrics for evaluating open-book QA
systems are very biased, relative to human raters. Among
other results, they evaluated 10 widely-used open-book QA
systems on 3600 examples with automatically-computed
metrics, such as exact-match or token-F1 similarity to
known answers, and also evaluated the same systems with
human raters on a smaller set of 300 examples. The human
ratings are very different (see Table 4), showing gains in
accuracy of more than 20% in several cases. The authors
discuss potential solutions, including using prompted LLMs
as autoraters, but ultimately conclude “At this time, there ap-
pears to be no substitute for human evaluation [of open-book
QA systems].”

Figure 4. Confidence intervals for the chain rule estimate with
abstentions, the difference estimate, and the classical method for
the open-book QA methods from (Kamalloo et al., 2023).

We experimented with the data released by (Kamalloo et al.,
2023). The data includes model outputs for ten models
on 3600 examples, but only includes human labels for
the smaller set of 300 examples. Since PPI methods re-
quire a larger set of autorater examples, we implemented an
prompted autorater using Gemini Pro (Team et al., 2023),
and ran this autorater on the the question/answer pairs for
every model on each of the 3.6K standard NQ test examples,
resulting in 300 human labels and 3.3k autorater labels for
each model. Similar to the autoraters of (Kamalloo et al.,
2023), our autorater takes a question/answer pair, plus the
set of known short answers, and predicts if the answer is
acceptable or not. No probability scores are associated with
an autorating.

We elected to evaluate performance at n = 300 labeled
examples exclusively, rather than constructing curves as in
Figure 3.

5.2.2. AN ABSTAINING, UNCALIBRATED AUTORATER

Our model is prompted to produce binary values, but occa-
sionally outputs results that are cannot be easily parsed into
a correct/incorrect decision. A principled way of dealing
with this was discussed in Section 4.4.2: we use the chain
rule estimater, and model the LLM as producing an “un-
known” value as a third possible outcome for the random
variable A, which now could take on the values “y” (for an
acceptable question/answer pair), “n” (for an unacceptable
pair), or “u” for an uncertain result.

As summarized in Figure 4 and Table 5 confidence intervals
produced by the chain rule estimate are about 15% smaller
than the classical intervals, and about 8% smaller than the
difference estimate intervals. 6

6Notice that to use the difference estimate, it is necessary to
map the unordered discrete values “n”, “y”, and “u” into real
numbers: we made the natural assignment of n = 0, y = 1,
and u = 0.5, which makes the values similar to the binary 0/1
values used for the human rating. Other options are discussed in
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mean interval width ratio
width to classical

classical 0.105 1.00
difference estimate 0.096 0.92
chain rule estimate 0.089 0.85

Table 5. Summary of confidence interval sizes at n = 300 with an
abstaining autorater for the data of (Kamalloo et al., 2023), aver-
aged over 10 models. Applying the difference estimate requires
linearizing the autorater scores (see text).

mean interval width ratio
width to classical

classical 0.105 1.00
difference estimate 0.095 0.91
chain rule estimate 0.085 0.81

tuning on Sn

difference est + ptune 0.083 0.79

Table 6. Summary of confidence interval sizes with a binary au-
torater for the data of (Kamalloo et al., 2023), averaged over 10
models. The autorater was engineered to “back off” to exact match
when the prompted model abstained (see text)

For this dataset, there is another reasonable strategy for han-
dling unparseable judge model responses, namely, “backing
off” to the exact-match evaluation metric which is tradition-
ally used for evaluation of open-book answers. Doing this
improves both the chain rule estimate and the difference
estimate slightly (as shown in the top Table 6, but the chain
rule still performs best.

If we consider tuned methods, we note that adding pow-
ertuning to the difference estimate improves performance
significantly for these tasks. As shown in the bottom sec-
tion of Table 6, the power-tuned difference estimate slightly
outperforms the chain rule estimate.

5.2.3. PRACTICAL IMPLICATIONS

Although a 20% reduction in width may seem modest, be-
cause confidence shrink with the square root of the number
of labeled data, the number of labels needed may be reduced
dramatically due to a small reduction in CI width. Showing
curves like those of Figure 3 for all ten models is impractical,
so following (Angelopoulos et al., 2023a) we subsampled
the available human-labeled data to find the smallest sample
size nmin that would give a confidence interval the same
width or smaller than the baseline interval obtained by run-
ning the classical method on all available data. The results,
shown in Table 7, indicate that only 60% of the data need

Appendix A.4.

nmin with n with
chain rule classical
interval interval

DPR 151 291
FiD 129 300
ANCE/FiD 137 300
RocketQAv2/FiD 185 299
Contriever/FiD 141 300
FiD-KD 150 300
GAR/FiD 151 300
EviGen 155 299
EMDR2 241 274
R2-D2 175 300

average 161.5 296.3

Table 7. Minimal number of human-labeled examples nmin for the
chain rule to obtain a confidence interval width smaller than the
classical interval width using all available human-labeled exam-
ples.

be labeled to get estimates that are just as precise. (These
results use the best untuned model above, i.e., the chain rule
estimate with backoff instead of abstentions.)

We also estimated the number of examples n+ that would
need to be human-labeled to get the chain-rule estimate’s
interval width using the classical method. The average n+

for these tasks is 465, or about 57% more labels (not shown
in any table or figure).

5.2.4. COVERAGE TESTS

Without large human-labeled sets, it is not possible to de-
termine if the confidence intervals produced include the
true values of θ∗. We thus used synthetic data to conduct
coverage tests: for details, see Appendix A.3. Again we
experimented with the best untuned model above.

On 1000 synthetic datasets, the “true” θ∗H used to generate
the data was included in the 95% confidence interval all but
48 times, or 95.2% of the time.

5.3. Designing a PPI method for side-by-side tests

One claimed advantage of the Bayesian approach is that it
is straightforward to design a new PPI method. We now
consider constructed such a new method for side-by-side
tests—to our knowledge, no PPI method for this task exists.

In side-by-side tests, raters (human H or automatic A) label
a pair x with w, l, or t, for win, loss, or tie. In the exam-
ple of evaluating of question-answering systems, x would
contain a question and two answers (one from a baseline
method, and one from a proposed improvement) and f(x)
predicts the human response with ŷ ∈ {w, l, t}. As before
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we assume a small set Sn with both human and autorater
labels and a larger dataset S̃N with only autorater labels.

The goal of side-by-side tests is to see if the proposed
method outperforms the baseline. We formalize this with a
statistic that tests to see if wins are more likely than losses:

e(Sn, S̃N ) ≡ µ̂Hw − µ̂Hl

where

µ̂Hw = Prop(H = w ∈ Sn)

µ̂Hl = Prop(H = l ∈ Sn)

The designed statistic is a straightforward extension of the
chain rule estimate. We use the chain run to define autorater-
assisted versions of µ̂Hw and µ̂Hl and then subtract them.

p̂A=a = Prop(A = a ∈ S̃N ) , for a ∈ {w, l, t}
p̂H=w|a = Prop(H = w|A = a ∈ S̃N ) , a ∈ {w, l, t}
p̂H=l|a = Prop(H = l|A = a ∈ S̃N ) , a ∈ {w, l, t}

g(Sn, S̃N ) =
∑

a∈{w,l,t}

p̂H=w|a · p̂A=a − p̂H=l|a · p̂A=a

5.3.1. DATA AND EXPERIMENTAL PROCEDURE

Freely available, high quality side-by-side labeled data for
pairs of models is difficult to obtain. However, when the
same outputs of two different have been individually labeled,
it is easy to simulate side-by-side ratings: e.g., if model A’s
output on input x is rated as “good” and model B’s output
on x is rated as “bad”, then one can rate x as a “win” for A.
The same process can be used to simulate an autorater that
produces side-by-side ratings. Hence for for simulated side-
by-tests, we used again the attributed QA data distributed
by the authors of (Bohnet et al., 2023).

We began by finding a set of pairs of models M1,M2 such
that (1) both models are competitive (2) neither model
makes use of the autorater internally and (3) M1 outper-
forms M2. We then used a multiple hypothesis test to find
a set of 59 pairs M1,M2 where every M1 outperforms M2

with 95% confidence (using a classical paired test on pro-
portions and all the human data).

We then reran the classical test and the method of Sec 4.4.3
with subsamples of various sizes, ranging from 50 to 1000,
as in the experiments above, and averaged over ten trials.

5.3.2. RESULTS AND PRACTICAL IMPLICATIONS

The results are shown in Figure 5. The x axis is the number
of human-labeled examples used, and the y axis is the frac-
tion of the 59 pairs that can be separated at a 95% confidence
level. We only compared the chain-rule test and a classical
paired test, as previously published PPI tests are not directly
applicable to paired tests, and our prior experiments in lin-
earizing discrete scores for difference estimates suggest that

Figure 5. Fraction of pairs of truly different systems that can be
distinguished by a paired test, with classical methods and a chain
rule estimate.

doing this effectively requires substantial exploration (see
Appendix 9.)

As the figure shows, the chain rule test is dramatically dif-
ferent according to this measure: for example, with 100
examples, only 54% of the pairs were separable with the
classical test, verses 76% with the chain rule test, and with
200 examples, the corresponding numbers are 79% and
94%.

5.3.3. COVERAGE TESTS

We ran synthetic-data experiments similar to those of Sec-
tion 5.2.4 for the side-by-side estimates, as detailed in Ap-
pendix A.3. On 1000 synthetic datasets, the “true” θ∗H used
to generate the data was included in the 95% confidence
interval 94.5% of the time, which is not statistically signifi-
cant lower than the expected result (p-value of 0.46 using a
classical test.)

5.4. Non-Bayesian experimental results

To clarify the claims of this paper, we do not suggest that the
methods here improve on prior methods simply because they
are Bayesian. Rather, we claim that (1) for PPI, Bayesian ap-
proaches are analytically simpler, facilitating development
of new PPI methods which are (2) experimentally preferable
to prior PPI methods.

5.4.1. DISCUSSION

Let us begin this section with a short discussion of Bayesian
vs. frequentist approaches to confidence intervals. Recall a
Bayesian credible interval for parameter θ, for confidence
level c, is a pair of values ℓ and u such that∫ u

ℓ

f(θ)dθ = c

where f(θ) as the posterior of a random variable θ given
data D, f(θ) = p(θ|D). In this framework, the interval
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ℓ, u for level c means that p(ℓ ≤ θ ≤ u) ≥ c, where the
probability is taken over the possible values of the unknown
parameter θ.

In a classical (frequentist) confidence interval, the same
relationship between f , ℓ, and u, and c holds, but f(θ) is
not a posterior of anything—it’s just a pdf, depending on
the data D, that has been designed to satisfy the constraint
above. To be precise about the classical claim, let us use θ∗
for the unknown and fixed parameter value, and write f =
fS to show its dependence on S. A frequentist construction
for f is correct if

∀θ∗, ℓ, u : pS(ℓ ≤ θ∗ ≤ u) =

∫ u

ℓ

fS(θ)dθ (6)

where pS means that the probability is taken over samples
drawn according to θ∗, i.e., S ∼ p(S|θ∗).

To compare these two interpretations briefly, the Bayesian
approaches require a posterior over θ, which in turn requires
a prior. This is a double-edged sword: you can inject subjec-
tive knowledge about θ easily if you have it, but you have to
make up some sort of prior even when you don’t. However,
credible intervals are easy to compute for many cases (as
we see above). In contrast, the classical interpretation re-
quires (and allows) no prior on θ, but is a bit harder to make
sense of, and in our experience it is often confused with
the Bayesian credible-interval interpretation (especially by
ML researchers who have been exposed to Bayesian meth-
ods). It’s also technically difficult to establish that a method
satisfies Eq 6, although of course classical tests for most
common situations exist.

We emphasize, however, that while there is definitely a
conceptual difference between treating the sample S as a
random variable (in the classical setting) and treating the
parameter θ as a random variable (in the Bayesian setting),
the practical differences are less dramatic. Usually there is
only one θ and one S, and unsurprisingly the computations
for classical and Bayesian work out to be quite similar: in
each case, one picks a pdf f(θ) and snips off the tails. For
the case of means, the two pdfs are identical. For the case of
proportions, fitting a Beta with a Jeffrey’s prior to a sample
produces generally produces curves almost identical to the
Gaussians used in the Wald method.7

5.4.2. EXPERIMENTAL RESULTS

The discussion above suggests that the Bayesian credible
intervals explored here might also perform well according
to frequentist goals. To evaluate this, we re-visited the cov-
erage experiments of Section 5.2.4, where 1000 synthetic
datasets were produced with different (but plausible) “true”

7The exception is for small n and extreme θ, where an exact
test would be preferred, and here the Beta closely approximates
the binomial of Clopper-Pearson test.

parameters θ∗. As expected, about 5% of these led to cov-
erage failures—i.e., the chain-rule confidence interval did
not contain θ∗. In a Bayesian setting, this sort of failure
is fine, since the probability for the interval is taken over
different values of θ∗; however, the frequentist interpreta-
tion of confidence intervals requires a 95% interval contain
the true value of the parameter for every true value, where
the probability is taken over samples—i.e., synthetically
generated datasets.

To evaluate performance according to the frequentist goal,
we returned to the experiments of Section 5.2.4, randomly
selected 20 of the θ∗’s which led to coverage failures in the
initial set of 1000 trials, and re-generating 1000 synthetic
datasets for each of these problematic θ∗’s. The fraction
of coverage failures on this set of 20,000 simulations was
4.49% overall. Considering the 20 values for θ∗ separately,
each of the 1000 θ∗-specific runs had between 37 and 54
coverage failures, showing the technique is well-calibrated
in a frequentist sense as well. We performed a similar8

experiment with the data from Section 5.3.3 and obtained
similar results, with an overall coverage-failure rate of 3.9%.

5.4.3. THE BOOTSTRAP AS ALTERNATIVE TO MONTE
CARLO INTEGRATION

Our approach also relies on Monte Carlo integration, a
Bayesian approach. An alternative to using Monte Carlo
integration to evaluate CIs for proxy estimands is the boot-
strap (Wasserman, 2013), which makes no explicit Bayesian
assumptions.

The bootstrap can be used to compute expected values
and confidence intervals over any numeric function g(S)
computed on a sample S. In bootstrapping, one creates
B bootstrap replicates S1, . . . , SB and then computes
g1 = g(S1), . . . , gB = g(SB). A bootstrap replicate is
simply a dataset of size |S| that is formed by randomly
sampling |S| elements of S with replacement. The results
of applying g to each replicate are handled same way as
the results of applying g to samples from the posterior in
Monte Carlo integration. (In fact, our use of Monte Carlo
integration is closely related to parametric bootstrapping
(Efron, 2012).)

Compared to Monte Carlo integration, bootstrapping is
slower, since samples of g require time O(N), instead of
constant time. However, bootstrapping does not require
parameter independence, and does not require picking pri-
ors for each parameter. Although the arguments behind the
correctness of bootstrap are different, it behaves similarly
on these tasks. For instance, we repeated the experiments
of Table 6 using bootstrapping instead of Monte Carlo inte-

8To reduce cost, here we ran a total of 1000 trials, where in
each trial we selected one random coverage-failing θ∗ from the 55
observed, and regenerated a dataset from that.
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gration, and results that were numerically almost identical:
e.g., the chain rule estimate’s average width was measured
as 0.084358 with the bootstrap, and 0.084516 with Monte
Carlo integration.

6. Conclusion
One often-proposed approach to avoiding evaluation bot-
tlenecks in developing LLM-based systems that produce
long-form outputs is to use a secondary LLM-based sys-
tem as a judge or “autorater” of input, output pairs. Au-
toraters can be used to score outputs more cheaply than
human raters, but are potentially biased. To address this,
prediction-powered inference (PPI) methods (Angelopoulos
et al., 2023a) can be used, which combine a small number of
human-rated outputs and a larger number of autorater-rated
outputs, and produce a confidence interval that contains the
average human rating, but is as small as possible.

Here we propose an new approach to PPI, where a target
estimand (e.g., the mean human rating score) is coupled
with a proxy estimate that makes use of autoratings in a
carefully designed, task-specific way. We use a Bayesian
formulation and simple general-purpose numerical methods
to compute confidence intervals over the proxy estimand.
Using this approach leads to a number of novel proxy esti-
mands that improve prior results on several tasks, sometimes
dramatically, and which sometimes eliminate cumbersome
engineering steps. For instance, in evaluating two attributed
QA models, the best existing PPI method reduces the CI
width to 91% and 86% of the classical CI width, while our
method reduces CI width to 78% and 71% of the classical
width; if powertuning methods are allowed, prior methods
obtain 83% and 79%, and our method obtains 76% and 69%.
On another set of tasks, prior PPI methods give 93%, or 91%
with some engineering of the autorater, while direct applica-
tion of our method gives a reduction to 85% of the classical
CI width, implying that 60% fewer labeled examples would
be needed to obtain equally statistically meaningful results.
We also show a dramatic improvement in conducting side-
by-side tests: e.g., with 200 examples, only 79% of the truly
different pairs of models were separable with the classical
test, verses 94% with the chain rule test.

6.1. Limitations

Our approach is Bayesian, not frequentist, and makes guar-
antees different from those associated with traditional con-
fidence intervals. Although the approach can also be im-
plemented with non-Bayesian methods like the bootstrap,
and that experimentally, the method seems to have good
frequentist properties as well, this is still an important lim-
itation, and makes the results difficult to compare directly
with prior work in this area. An important area for future
work is developing frequentist versions of the successful

methods explored here, notably the stratified PPI methods
(and the closely-related chain rule estimates).

In prior work (Angelopoulos et al., 2023a) proposed PPI
methods that apply to solutions to any convex optimization
tasks, which are ideal for certain estimation statistics, such
as parameters of linear or logistic regression, or Bradley-
Terry coefficients (Boyeau et al., 2024). It is not immedi-
ately obvious if it is possible (or appropriate) to apply our
approach to such problems.
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import diem
def theta_fn(data):
# pandas DataFrames holding S_n and S_N
labeled_df, unlabeled_df = data
return {

’autorater_mean’:
diem.Mean(unlabeled_df.f),

’rectifier’:
diem.Mean(labeled_df.y - labeled_df.f)

}
def g_fn(autorater_mean, rectifier_mean):

return autorater_mean + rectifier_mean
lo, hi = diem.MCIScorer(

data, theta_fn, g_fn).score().ci()

Table 8. Sample Python code that implements the difference esti-
mate.

A. Experimental Details
A.1. Python Implementation

Table 8 illustrates an implementation of Monte Carlo inte-
gration in our software package, called diem (for Design of
Interval Estimation Methods). Implementing a PPI method
is broken down into two steps: constructing and naming
the θ’s (means and proportions) that will be used in g, and
then a Python implementation of the proxy estimand. The
Mean object is responsible for sampling from the posterior,
and the Scorer object orchestrates sampling from each
posterior, passing the samples to the proxy estimate function
(here g_fn), and creating an object to hold the results.

The code allows one to construct only three kinds of parame-
ter posteriors, called Mean (which has a Gaussian posterior
for n > 30), Proportion (a Beta posterior, using a Jef-
frey’s prior), and KProportion (a Dirichlet posterior, for
which we use the prior α1 = . . . αK = 1

K .). For Means
the Gaussian has a variance of σ̂2/n where σ̂2 is the sample
variance. Instead of a Gaussian we use the appropriate Stu-
dent’s T curve for n < 30, which reflects standard classical
statistical practice.

A.2. Experiments: Seahorse and Attributed QA

Regression trees were fit using the
DecisionTreeRegressor implementation from the
sklearn.tree package, using the max_leaf_nodes
parameter to fix K. When tuning K, we considered the
values 2, 3, 5, 10, 20, 40 and picked the one with smallest
CI width.

The equal-frequency partitions were always selected using
only the unlabeled data, and the tree is fit using only the
labeled data. This means that it is possible for there to be
very few members of a partition in Sn (for equal-frequency
partitions) or S̃N for tree partitions. To fix this, we used
a simple post-processing step, where (1) if there are any

Figure 6. Varying the number of partitions for one dataset.

partitions that have fewer than 3 members in either Sn or
S̃N , those partitions are deleted, and replaced with a special
“miscellaneous” partition and then (2) if the “miscellaneous”
partition has fewer than 3 members in either part of the data,
the smallest partition is deleted and its members are added
to the “miscellaneous” one.

In Figure 6 we vary the number of partitions for a single
dataset (note the y-axis here is log scale, to make it easier
to separate the results). In general the best results are to use
few partitions for small n, and more with larger n.

A.3. Synthetic Data

To generate synthetic data similar to the data of (Kamalloo
et al., 2023) we used this procedure.

1. We created a Beta posterior distributions for p(H|A),
p(H|¬A), and p(A) for each QA method at n = 300.

2. To create a set of “true” values θ∗ , we pick a QA
method uniformly, and then sample values from the
corresponding Betas. This maintains dependencies that
might exist in the parameter values, but also allows
many different “true” θ∗’s to be chosen.

3. Finally, we uniformly sample values of n ∼
{100, . . . , 500} and N ∼ {3000, . . . , 4000}, and then
generate a synthetic dataset of the right size using the
“true” θ∗ sampled in step 2.

We then run the chain rule estimate on these generated
datasets and test for coverage.

For the experiments of Section 5.3.3, we used the same
procedure, except instead starting with Beta distributions at
n = 300, we consider each n used in creating the curves
of Figure 5 (i.e., n = 30, 50, 100, . . . 300, 400, . . . , 1000)
for a total of 826 different Betas. To create true θ∗ val-
ues, we uniformly sample n ∼ {500, . . . , 1000} and N ∼
{2000, 4000}.
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mean interval width ratio
width to classical

chain rule estimate 0.088 0.84
difference estimate 0.149 1.43
classical 0.104 1.00

n = −1, y = +1, u = 0
difference estimate 0.193 0.92
classical 0.210 1.00

Table 9. Alternative linearization schemes for abstaining au-
toraters.

A.4. Linearizing the choices made by the abstaining
autorater

The discrete values “n”, “y”, and “u” were internally en-
coded by the Dirichlet as integers 0, 1, and 2 respectively. In
addition to the scheme described in the paper, we considered
several other linearization schemes, all of which were dra-
matically worse for the difference estimate, as summarized
in Table 9.

We considered all six permutations of these codes and report
numbers for the best in the top of the table. It is a little
surprising that the difference estimate is so much worse here
worse than the classical estimate. In our experiments we did
note that the difference estimate does give an improvement
over the classical method when you map n to −1, y to +1,
and u to 0, but in this case all the CI widths are larger.


