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In quantum mechanics, measurements are dynamical processes and thus they should be capable
of inducing currents. The symmetries of the Hamiltonian and measurement operator provide an
organizing principle for understanding the conditions for such currents to emerge. The central role is
played by the inversion and time-reversal symmetries. We classify the distinct behaviors that emerge
from single and repeated measurements, with and without coupling to a dissipative bath. While
the breaking of inversion symmetry alone is sufficient to generate currents through measurements,
the breaking of time-reversal symmetry by the measurement operator leads to a dramatic increase
in the magnitude of the currents. We consider the dependence on the measurement rate and find
that the current is non-monotonic. Furthermore, nondegenerate measurements can lead to current
loops within the steady state even in the Zeno limit.

I. INTRODUCTION

One of the most exciting properties of quantum me-
chanics is the ability to influence the dynamics and
steady-state properties of systems through measurement.
Notable examples include the Zeno effect, where the dy-
namics of a system under constant observation can be
stalled or severely restricted [1–3], the ability to use quan-
tum measurements to entangle qubits [4–8], control quan-
tum computations [9, 10] and dynamics [11–16], and in-
duce currents[17–19]. More recently, the remarkable pos-
sibility that measurements in quantum circuits can in-
duce phase transitions in the nature of the entanglement
has been pointed out [20–27].

Much of the above body of work relies on quantum
measurements disrupting the unitary evolution. How-
ever, a salient feature which is typically ignored is the
symmetries of the measurement operator and their inter-
play with those of the Hamiltonian. In this paper, we
explore the ramifications of symmetries for the question
“Can quantum measurements induce currents, and if so,
how?” For instance, it is interesting to ask whether a
series of measurements of observables with time-reversal
symmetry can create currents due to the irreversibility of
the measurements, or if explicit time-reversal symmetry
breaking is necessary. Throughout the paper, we focus
on local projective measurements and consider the cur-
rent resulting from averaging over an ensemble of such
experiments without post-selection.

To address this, we begin by identifying two distinct
sources of charge transfer. The first is the standard
current operator, which we dub the Hamiltonian cur-
rent. The second is the measurement charge displace-
ment, which occurs at the instant of measurement and is
independent of the Hamiltonian.

Considering first a single measurement applied to a
system in equilibrium, we find that a current can be pro-
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duced only if inversion is broken, either in the Hamilto-
nian H or the observable A (for a measurement, a sym-
metry S is preserved if and only if SAS−1 = ±A). Given
that inversion symmetry is broken, if time reversal is pre-
served then a current can be generated but it either oscil-
lates or decays after the measurement. In sharp contrast,
measurements that break time-reversal symmetry lead to
a DC current [28].
We then turn to investigate an isolated system sub-

jected to repeated measurements. In this case, the steady
state is an infinite temperature state, which we show
not to support currents or measurement charge displace-
ments. This fate is avoided by coupling the system to
a thermal bath, which provides dissipation and leads to
a non-trivial steady state. Then, currents develop pro-
vided that inversion symmetry is broken, and their mag-
nitude is a non-monotonic function of the measurement
rate. Also here the time reversal properties of A play a
central role. If the measurement preserves time-reversal
symmetry then the current requires strong dissipation to
be sizable. By contrast, if A breaks time reversal, a large
steady-state current develops, even for weak dissipation.
In the particular case where the measurement pre-

serves inversion, but the Hamiltonian does not, by anal-
ogy with classical [29–35] and quantum [36–39] ratchets,
we describe the currents as resulting from a quantum-
measurement ratchet effect. This is a novel type of
ratchet effect, where an inversion-preserving measure-
ment, which acts as an unbiased drive, leads nonetheless
to a directed current.
Time-reversal symmetry also plays an important role

in the Zeno limit. It is often stated that a watched pot
never boils [40] to refer to the fact that non-degenerate
measurements lead to frozen dynamics. Here, we inter-
estingly find that local current loops develop when the
measurement breaks time-reversal symmetry. In other
words, a watched pot can convect.
Our analysis considers both stochastic Poisson mea-

surements and periodic ones. In the latter case, we find
resonances when the measurement period matches the
natural dynamical scales of the Hamiltonian.
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FIG. 1. One-dimensional chain with two sites in a unit cell,
with alternating hopping amplitudes t1 and t2, and with a
staggered potential V , which breaks inversion. A measure-
ment consists of acting with a 2 × 2 unitary U on all cells
simultaneously, measuring the location of the particle, and
then acting with the inverse transformation U†.

To make the discussion concrete, we restrict our discus-
sion to one-dimensional lattice systems and demonstrate
our results on a specific example – a single spinless parti-
cle hopping on a dimerized chain with amplitudes t1 ̸= t2
and staggered potential V , with the Rice-Mele Hamilto-
nian (see Fig. 1)

H =

N∑
n=1

[
− t1c

†
2n−1c2n − t2c

†
2nc2n+1 + h.c.

+
V

2

(
c†2n−1c2n−1 − c†2nc2n

) ]
.

(1)

Here, N is the number of unit cells in the chain, and

we assume periodic boundary conditions c†n+2N = c†n.
Inversion symmetry is broken provided V ̸= 0. The
eigenstates of the Hamiltonian are fully specified by the
wavevector k and band-index µ ∈ {+,−} with ener-

gies Ek,µ = µ
√
t21 + t22 + 2t1t2 cos(2k) +

V 2

4 , where k =
nπ
N , n ∈ {0, 1, ..., N − 1}. When appropriate, we will also
consider coupling to a thermal bath.

We consider a measurement that determines the unit
cell that the particle occupies as well as the value of an
operator within the unit cell. This can be written as a
single measurement of an operator,

A =

N⊕
n=1

(
2n+

m̂ · σ − 1

2

)
, (2)

where m̂ is a unit vector that determines the specific
measurement and σx,y,z are the Pauli matrices acting on
the 2-dimensional Hilbert space within a unit cell. Note
that for m̂ = êz, A corresponds to a measurement of
the exact location of the particle, where 2n distinguishes
between different unit cells and (σz − 1)/2 specifies the
site within the unit cell. For general m̂, A can be imple-
mented in practice through an associated 2 × 2 unitary
transformation U which satisfies U†σzU = m̂ · σ. The
unitary U is applied simultaneously on all the unit cells,
as sketched in Fig. 1. The measurement of the observ-
able A is then a composite operation, consisting of the
unitary U , a measurement of location, and the inverse
unitary U†, performed in rapid succession.

The paper is organized as follows. In Sec. II we discuss
different kinds of charge displacements that can occur in

a quantum system with measurements. In Sec. III we use
symmetry arguments to understand the characteristics of
the currents that occur when a measurement is performed
starting in thermal equilibrium. In Sec. IV we consider
the steady state resulting from repeated measurements
on a thermally isolated system. In Sec. V we couple
the system to a thermal bath using the Lindblad formal-
ism and study the case of random Poisson measurements.
Finally, in Sec. VI we study the complementary case of
Floquet measurements.

II. CHARGE DISPLACEMENT IN A
QUANTUM SYSTEM WITH MEASUREMENTS

The current operator on a lattice can be defined from
the continuity equation, ṅ(x) = j(x − 1) − j(x), where
n(x) is the density at site x and j(x) is the current from
x to x + 1. The center-of-mass velocity is equal to the
time derivative of the position operator x̂ =

∑
x xn(x).

This is given by

dx̂

dt
=
∑
x

x ṅ(x) =
∑
x

x [j(x− 1)− j(x)] (3)

=
∑
x

j(x) = J , (4)

where J ≡
∑
x j(x) is the current operator summed over

all space. The average charge displacement in the time
interval (ti, tf ) is thus

∆x =

∫ tf

ti

dt ⟨J⟩ . (5)

Here angular brackets denote an average with respect to
the density matrix.
In a closed quantum system with unitary evolution gov-

erned by the Hamiltonian H, the velocity operator is
given by the Heisenberg equation of motion for x̂. Thus,

JH = −i [H, x̂] , (6)

where we have added the subscript H to indicate that
this is the current resulting from the unitary dynamics.
We call this type of current the Hamiltonian current.
When quantum measurements are added to the mix,

the Hamiltonian current defined above is not enough to
capture all particle motion [41, 42]. A projective mea-
surement of an observable A leads to a sudden change in
the density matrix

ρ 7→ ρ′ =
∑
a

PaρPa , (7)

where Pa is the operator that projects to the eigenspace
of A with eigenvalue a. The sudden nature of projective
measurements renders the definition of a current unnat-
ural. Therefore we consider the average displacement of
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the position of the particle as a result of this measure-
ment, which is given by

∆xA = tr [(ρ′ − ρ)x̂] = tr

[
ρ

(∑
a

Pax̂Pa − x̂

)]
. (8)

This is the expectation value of the operator

Q̂ =
∑
a

Pax̂Pa − x̂ (9)

in the pre-measurement state ρ. We call Q̂ the measure-
ment charge displacement. It describes a charge transfer
that is sudden, to the extent that the measurement is in-
stantaneous. In a system with unitary Hamiltonian dy-
namics interspersed with measurements, the total charge
motion can be obtained from the integral of the Hamil-
tonian current over the periods of unitary evolution, to-
gether with the charge displacement at the instants of
measurement.

In systems with periodic boundary conditions, the po-
sition operator x̂ is ill-defined, rendering the definition of
the measurement charge displacement operator problem-
atic. To sidestep this issue, Q̂ can be rewritten as

Q̂ =
1

2

∑
a

(Pa [x̂, Pa]− [x̂, Pa]Pa) . (10)

This involves only the commutator of x̂ with a local op-
erator, which is well-defined.

Note that the definition of Q̂ depends only on the
choice of measurement operator A, and is independent
of the Hamiltonian. In the special case where the oper-
ator A is the position itself, Q̂ vanishes exactly, since in
that case Pa commutes with x̂ in Eq. (9).

III. SYMMETRY CONSIDERATIONS FOR A
SINGLE MEASUREMENT

In this section, we will consider the creation of cur-
rents by a single measurement starting from equilibrium.
We will discuss the restrictions that discrete symmetries
place on the charge displacements and currents discussed
in the previous section. We consider three symmetries:
spatial inversion I, time reversal T , and their product
IT (more commonly referred to as PT symmetry). The
results will play an important role later, when we discuss
multiple measurements.

A. Symmetry transformations of the current and
displacement operators

Let us first recall the symmetry properties of the
Hamiltonian current JH = −i[H, x̂]. This current is odd
under time-reversal symmetry T and inversion I, pro-
vided that H is invariant under these symmetries.

SHS−1 = H ⇒

{
SJHS

−1 = −JH , S ∈ {I, T},
SJHS

−1 = JH , S = IT.
(11)

Note that if H is not invariant under these symmetries,
then JH will in general not have simple transformation
rules.
We now turn to the measurement charge displacement

Q̂. For this, we must consider the transformation prop-
erties of the measured observable A under the symmetry
operations. Using a common symbol S ∈ {I, T, IT}, a
special distinction occurs for an observable A that has
well-defined parity (either even or odd) under the action

of S. For such observables, we will show that Q̂ trans-
forms simply under S,

SAS−1 = ±A⇒

{
SQ̂S−1 = −Q̂, S ∈ {I, IT},
SQ̂S−1 = Q̂, S = T.

(12)

so that Q̂ is even under time-reversal and odd under in-
version and IT symmetries. On the other hand, if A
does not have well-defined parity under these symme-
tries, then we cannot make any general claim regarding
the symmetry properties of the measurement charge dis-
placement operator.

To demonstrate Eq. (12) we note that, for an eigen-
state |a⟩ of A with eigenvalue a, the symmetry-related
eigenstate S |a⟩ satisfies

AS |a⟩ = ±SA |a⟩ = ±aS |a⟩ , (13)

so that it belongs either to the same eigenspace with
eigenvalue a or the eigenspace with the complementary
eigenvalue −a. Equation (13) implies that the symmetry
operator maps projectors onto projectors, [43]

SAS−1 = ±A ⇒ SPaS
−1 = P±a . (14)

Hence, for an S-even observable, the projector Pa is in-
variant under the symmetry transformation. For an S-
odd observable, the projector P0 onto the subspace with
zero eigenvalue a = 0 is invariant, whereas the projec-
tors onto nonzero eigenvalues a ̸= 0 are mapped onto the
complementary projectors P−a.

Since the definition of Q̂, Eq. (9), involves a sum over
all projectors Pa, this permutation of projectors leaves
Q̂ unchanged. Hence, the transformation properties of
Q̂ are determined directly by those of x̂, which is odd
under inversion and IT symmetries and even under time
reversal. This implies Eq. (12).

We comment that for the Rice-Mele model, the observ-
able A as defined in Eq. (2) does not have well-defined
parity but can be regarded as a composite operator com-
bining a measurement of the unit cell n and the ob-
servable m̂ · σ within the unit cell. Hence, the projec-
tors Pa are products of projectors in the two subspaces
Pa = PnPσ. The two parts can transform differently
under the action of symmetry. The unit cell projectors
always satisfy IPnI

−1 = P−n and TPnT
−1 = Pn. As-

suming that S(m̂·σ)S−1 = ±m̂·σ, the projectors Pσ are
either left invariant or permuted according to Eq. (14).
Hence, Pa = PnPσ are permuted by the action of the
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symmetries too, and all the reasoning still holds. There-
fore, it is enough to consider the symmetry of m̂ · σ. In
what follows we will write SAS−1 = ±A as a shorthand
for S(m̂ · σ)S−1 = ±m̂ · σ.

With the above insights we now turn to discuss the
role of the symmetries in measurement-induced currents.

B. Currents require breaking of inversion
symmetry

Inversion symmetry plays an important role in restrict-
ing currents. Consider a Hamiltonian that is inversion
symmetric, IHI−1 = H, and suppose that the observable
A has well-defined parity under inversion, IAI−1 = ±A.
If the system starts in thermal equilibrium, then no cur-
rents or measurement charge displacements will develop
after a measurement of A, even if multiple measurements
of A are carried out in succession at different times.

To see this, note that the equilibrium density matrix

ρeq = e−βH

Z at temperature T = 1/β is invariant under

inversion, IρeqI
−1 = ρeq. The state immediately follow-

ing a projective measurement of A is

ρ0 =
∑
a

PaρeqPa. (15)

If IAI−1 = ±A then I leads to a permutation of pro-
jectors, see Eq. (14), which leaves ρ0 invariant. Fur-
thermore, unitary evolution by H preserves the inver-
sion symmetry. We conclude that Iρ(t)I−1 = ρ(t) at
all times. Since the Hamiltonian current is odd under
inversion, Eq. (11), this implies that

⟨JH⟩ (t) = tr (JHρ(t)) = tr
(
IJHI

−1Iρ(t)I−1
)

= −tr(JHρ(t)) = 0,
(16)

i.e. the Hamiltonian current vanishes at all times. Simi-
larly, the measurement charge displacement Q̂ is also odd
under inversion, see Eq. (12), and hence it also vanishes
for all measurements.

In the specific case where the observable is non-
degenerate, there is a simple intuition behind this result.
Inversion-even observables collapse the system to states
that do not carry a Hamiltonian current [44]. Inversion-
odd observables, on the other hand, collapse the system
to current-carrying states. However, these states come
in complementary pairs that carry opposite currents and
that are equally likely to occur in thermal equilibrium,
leading to a vanishing current expectation value.

This result implies that the generation of currents re-
quires the breaking of inversion symmetry, either by A or
H. For the former, we mean that A does not have a well-
defined parity under inversion. In the next subsection,
we will assume that inversion is broken, either by A or
H. Finally, we note that the conclusions are unchanged
even for initial states that are not thermal, as long as
they are invariant under inversion.

C. DC currents require breaking of time-reversal
symmetry

Since currents require time-reversal symmetry break-
ing, one would naively think that T plays an equiva-
lent role to inversion symmetry in preventing currents.
In particular, one might expect currents to vanish if
THT−1 = H and TAT−1 = ±A. However, as we show
now, time reversal allows currents, but constrains their
time dependence.
We will first show that time reversal implies the vanish-

ing of the current immediately after a measurement start-
ing from an equilibrium state. Recall that THT−1 = H
and assume that TAT−1 = ±A. Then, the equilibrium
density matrix is time-reversal invariant, TρeqT

−1 = ρeq.
Immediately after a measurement, the density matrix re-
mains time-reversal invariant, since according to Eq. (14)
T only permutes the projectors in the sum in Eq. (15).
This implies that the Hamiltonian current immediately
post-measurement vanishes. The intuition for this result
is similar to that leading to the lack of currents for ob-
servables with a well-defined inversion parity. This would
not be the case if TAT−1 ̸= ±A.
However, the current does not remain zero because the

evolution of the state after the measurement breaks time
reversal, as will be seen. This produces currents, but we
now show that they are either oscillating or decaying in
nature, so that the net displacement after a long time is
finite. To see this, we write the density matrix as

ρ(t) =
∑
k,α,β

cαβk (t) |k, α⟩ ⟨k, β| (17)

where |k, α⟩ is an eigenstate of the Hamiltonian with en-
ergy ϵk,α. Here k is a crystal momentum and α is a band
index arising from orbital degrees of freedom so that it is
not changed upon time reversal. Here, we have assumed
translational symmetry, which ensures that ρ(t) is diago-
nal in k. Immediately following a measurement at t = 0,
Tρ(0)T−1 = ρ(0) implies that the coefficients satisfy

cαβk (0) =
(
cαβ−k(0)

)∗
= cβα−k(0) (18)

where the second equality follows from Hermiticity of ρ.
This condition represents time-reversal symmetry for the

density matrix at t = 0. Time evolution leads to cαβk (t) =

cαβk (0)e−iωk,αβt, where ωk,αβ = ϵk,α−ϵk,β , which disrupts
this condition.
The Hamiltonian current ⟨JH⟩ (t) = tr [ρ(t)JH ] is then

⟨JH⟩ (t) =
∑
k,α,β

cαβk (0)e−iωk,αβt ⟨k, β| JH |k, α⟩ (19)

To proceed, we distinguish between intraband (α = β)
and interband (α ̸= β) terms in Eq. (19). The intraband
terms are time-independent since ωk,αα = 0. They equal

⟨JH⟩intra =
1

2

∑
k,α

[
cααk (0)− cαα−k(0)

]
⟨k, α| JH |k, α⟩ ,

(20)
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where TJHT
−1 = −JH has been used to combine terms

with opposite momenta together. This is zero due to the
balance of the k and −k populations, as follows from the
time-reversal invariance, Eq. (18).

Turning our attention to the interband terms, α ̸= β,
we obtain

⟨JH⟩inter (t) = −i
∑
k,α ̸=β

cαβk (0) sin[ωk,αβt] ⟨k, β| JH |k, α⟩ ,

(21)
where we used Eq. (18) and ⟨k, β| JH |k, α⟩ =
−⟨−k, α| JH |−k, β⟩, as follows from time-reversal sym-
metry. These terms are oscillating in nature. Hence, for
TAT−1 = ±A, currents are allowed, but they are either
oscillating in time or decaying, due to destructive inter-
ference between different frequencies.

To elucidate the role of time-reversal symmetry in pre-
venting DC currents, consider the transition probability
for the system in state |ψ⟩ to evolve unitarily for time t,
be measured, evolve for time t′ and become |ϕ⟩:

Tψ→ϕ
t,t′ =

∑
a

| ⟨ϕ|e−iHt
′
Pae

−iHt|ψ⟩ |2. (22)

If THT−1 = H and TAT−1 = ±A this is equal to the
probability of the time-reversed process,

T ϕ̃→ψ̃
t′,t =

∑
a

| ⟨ψ̃|e−iHtPae−iHt
′
|ϕ̃⟩ |2, (23)

where |ψ̃⟩ and |ϕ̃⟩ are time-reversed partners of states |ψ⟩
and |ϕ⟩. Hermiticity of the projectors P †

a = Pa implies

that, for t = t′ = 0, Tψ→ϕ
0,0 = Tϕ→ψ

0,0 . This, combined with

Tψ→ϕ
0,0 = T ϕ̃→ψ̃

0,0 implies that

T ϕ̃→ψ̃
0,0 = Tϕ→ψ

0,0 . (24)

As a consequence, if there is a balance of populations
between two time-reversed states before a measurement,
the balance will remain after the measurement. This
implies the absence of DC currents, see Eq. (20). If
TAT−1 ̸= ±A, then in general the rates in Eq. (24) would
differ.

In sum, measurements of observables that are T -
eigenoperators cause oscillating or decaying currents
when the initial state is time-reversal even. On the other
hand, measurements that are not T -eigenoperators can
lead to DC currents.

Turning our attention to Q̂, time-reversal symmetry
does not prevent a measurement charge transfer since Q̂
is even under T . On the other hand, IT symmetry does
prevent it, see Eq. (12). Below, this will be illustrated in
the Rice-Mele model.

As in the previous section, the limitations on the exis-
tence of currents are unchanged even if the initial state is
not thermal, as long as it is time-reversal symmetric and
translationally invariant. In Appendix A we show that in
the special case when A is time-even and non-degenerate,
the conclusions remain valid regardless of the initial state.

D. Summary and numerical illustration

Table I summarizes the conclusions of the symme-
try analysis for the current after a single measurement.
Starting from an equilibrium state, if the Hamiltonian
is inversion symmetric and the observable A is an in-
version eigenoperator, then no currents or measurement
charge displacements develop. Therefore, currents re-
quire breaking of inversion symmetry in either H or A.
When one of these occurs, then the time-reversal prop-
erties of A determine whether there are DC currents or
not, and also whether the Hamiltonian current immedi-
ately following a measurement vanishes or not.

IHI−1 = H ✓ ✓ ✓ ✗ ✗

IAI−1 = ±A ✓ ✗ ✗ ✓ ✓

TAT−1 = ±A any ✓ ✗ ✓ ✗

⟨JH⟩ (0+) 0 0 # 0 #
⟨JH⟩ (t) 0 # # # #
⟨JH⟩DC 0 0 # 0 #

⟨Q̂⟩ 0 # #∗ #† #

TABLE I. Constraints on currents arising from spatial inver-
sion and time reversal symmetries, following a measurement
starting from the equilibrium state. The symbols ✓ and ✗ in-
dicate whether the conditions on the leftmost column are sat-
isfied. A value of 0 indicates that a given quantity vanishes by
symmetry, while # means it is symmetry-allowed. ⟨JH⟩ (0+)
is the Hamiltonian current immediately after a measurement.
The measurement charge displacement ⟨Q̂⟩ is permitted by
symmetry if inversion symmetry is disrupted, either by H or
A. However, two exceptions are observed: (∗) an observable
that is not an eigenoperator of I or T , but has IT -symmetry
will lead to ⟨Q̂⟩ = 0. In addition, ⟨Q̂⟩ = 0 always for mea-
surements of position (†).

We illustrate the role of symmetries in constraining the
currents using the Rice-Mele model. Figure 2 shows the
total displacement,

∆x(t) = ⟨Q̂⟩+
∫ t

0

dt′⟨JH⟩(t′) (25)

as a function of time for a measurement starting from
equilibrium. Four different cases are considered. In pan-
els (a) and (b), the Hamiltonian is inversion invariant,
IHI−1 = H, while IAI−1 ̸= ±A. Conversely, in panels
(c) and (d), IHI−1 ̸= H while IAI−1 = ±A. In panels
(a) and (c), TAT−1 = ±A, whereas in panels (b) and
(d), TAT−1 ̸= ±A. It is important to note that in all

scenarios, a measurement displacement occurs (⟨Q̂⟩ ≠ 0),
which is succeeded by oscillatory currents. Furthermore,
the disruption of inversion symmetry by eitherH or A re-
sults in similar behavior. However, a qualitative distinc-
tion exists between measurements that are not eigenop-
erators of T and those that are: only measurements that
are not T -eigenoperators permit DC currents.
To see the dependence of current on the parameters,

Fig. 3 shows the currents for a measurement starting
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(a)

time

(b)

time(c)

time

(d)

time

FIG. 2. Total displacement as a function of time. The
measured observables and staggered potential for the graphs
are: (a) my = 0, mx = mz = 1√

2
; V = 0; (b) mx =

my = mz = 1√
3
, V = 0; (c) mx = 1, V = 3; and (d)

mx = 0, my = −mz = 1√
2
, V = 3. The dashed line shows

the charge displacement at the instant of measurement. In
panels (a) and (b) the Hamiltonian has spatial inversion, but
the measured observable breaks it. The oscillating part of
the current is always present, while there is also a DC com-
ponent in (b) when time reversal is broken by the measured
observable. In panels (c) and (d) the Hamiltonian doesn’t
have spatial inversion symmetry, but observables do. If a
time-reversal symmetric observable is measured (as in (c)),
there is no DC component, while if it is broken as in (d) it is
present.

from equilibrium, as a function of m̂ on the Bloch sphere.
Panel (a1) displays the Hamiltonian current immediately
following the measurement, ⟨JH⟩(0+), while panel (b1)

shows the measurement displacement, ⟨Q̂⟩, both in the
case where no staggered potential is present, V = 0.
Then, the Hamiltonian has time-reversal and inversion
symmetries, as does the equilibrium state. As a con-
sequence, currents are only expected for IAI−1 ̸= ±A.
Time reversal T corresponds to complex conjugation in
the position basis, thus changing the sign of σy while
leaving the other two matrices unchanged since they only
have real elements. On the other hand, inversion I ex-
changes the left and right sites within a cell and is hence
represented by σx. IT symmetry is a combination of
these two symmetries and therefore can be represented
as σxK, whereK is a complex conjugation operator. The
current and measurement displacement vanish along the
planes and axes of these symmetries.

Panels (a2) and (b2) show ⟨JH⟩(0+) and ⟨Q̂⟩ for V ̸= 0,
when the equilibrium state is not inversion invariant. The
locus of points that are T -even or T -odd still have van-
ishing Hamiltonian currents ⟨JH⟩(0+) as shown in (a2).
However, inversion is no longer a useful guide to deter-
mine the locations of zero current. In this case, the cur-
rent vanishes when the inversion breaking of the observ-

(a1) (a2)

⟨JH⟩ (0+)

(b1) (b2)

⟨Q⟩

FIG. 3. Transferred charge for every bond observable rep-
resented on the Bloch sphere. The parameters of all plots
are t1 = 1, t2 = 0.5, while the spatial inversion is controlled
by a staggered potential V . For Hamiltonian current imme-
diately after the measurement, the measurement of T and I
eigenoperators leads to the vanishing of the current (shown
in (a1)) if Hamiltonian has spatial inversion. In (a2), the
non-zero staggered potential breaks spatial inversion. Then,
only time-reversal symmetry gives a simple condition for zero
current. The zero-current line shown in green is a result of
dynamic balance, rather than symmetry. In (b1) and (b2) we
show similar results for the measurement displacement. If the
Hamiltonian has a center of symmetry as in (b1), the symme-
tries to consider are spatial inversion and IT -symmetry. If the
Hamiltonian breaks this symmetry as in (b2), the only point
at which displacement is guaranteed to vanish corresponds to
the measurement of position, for which the displacement op-
erator is identically zero.

able and that of the staggered potential counteract each
other. For the measurement displacement in panel (b2),
when inversion is broken, IT -symmetry is also broken
as default. Then, the only point at which the measure-
ment displacement is guaranteed to vanish is the position
measurement mz = 1 for which the displacement is iden-
tically zero.

IV. STEADY STATES OF THERMALLY
ISOLATED SYSTEM

We now turn our attention to systems that are mea-
sured repeatedly. We consider multiple measurements
of the same observable A that occur at a series of arbi-
trary times. If this is continued for a sufficiently long
time, then under fairly generic conditions, the system
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reaches an infinite-temperature steady state [21, 45–48].
We show that currents vanish in this state irrespective of
symmetry considerations.

To see that the steady state of a measured quantum
system is an infinite-temperature state, we recall that a
projective measurement when averaged over all possible
outcomes causes the von Neumann entropy of a system
S(ρ) = −tr[ρ log ρ] to increase (or stay the same) [46, 49].
The infinite-temperature density matrix, being propor-
tional to the identity matrix, is a steady state of both
unitary evolution (U1U† = 1) and of projective measure-
ments (

∑
a Pa1Pa = 1). Therefore, to the extent that

the dynamics is ergodic, the steady state under repeated
measurements has infinite temperature. This fate can be
avoided by two different mechanisms for non-ergodicity.
First, if the observable A commutes with the Hamilto-
nian, states with different eigenvalues of A are prevented
from mixing during the evolution. Second, when mea-
surements are performed infinitely fast, they effectively
freeze the unitary evolution between measurements lead-
ing to the quantum Zeno effect [50].

The tendency of measurements to lead the system to-
ward infinite temperature can be further clarified by look-
ing at the transition rates that are induced by it. For two
energy eigenstates |E1⟩ and |E2⟩, the transition probabil-
ities caused by the measurement of an observable A are
identical,∑

a

| ⟨E1|Pa|E2⟩ |2 =
∑
a

| ⟨E2|Pa|E1⟩ |2. (26)

This implies that the steady state has equal occupation
of energy eigenstates, independent of their energy.

A. Absence of currents in infinite temperature

Given that the steady state is generically an infinite-
temperature state, we now show that currents vanish in
this state. There are well-known statistical mechanics
systems, such as the Asymmetric Simple Exclusion Pro-
cess (ASEP) [51], which support steady-state currents
even with a uniform probability distribution. In this
case, the currents arise due to asymmetry in the hopping
amplitudes, and one may expect that inversion-breaking
measurements could also generate currents through a
similar mechanism. We now show that measurements
cannot lead to such currents.

We first consider the Hamiltonian current. Writing the
infinite-temperature density matrix as ρ∞ = 1

N 1 (here,
N is the dimensionality of the Hilbert space), the expec-
tation value of the Hamiltonian current is

⟨JH⟩∞ =
1

N
tr (−i[H, x̂]) = 0, (27)

as follows from the cyclic property of the trace.

We turn our attention to the measurement charge dis-
placement. In the infinite-temperature state, ρ = 1/N ,

⟨Q̂⟩∞ =
1

N
tr

(
x̂
∑
a

PaPa

)
− 1

N
tr (x̂) . (28)

where we used the cyclic property of the trace. This is
seen to vanish identically, since

∑
a P

2
a =

∑
a Pa = 1.

Hence, projective measurement cannot result in charge
transfer at an infinite temperature. [52]
A natural way to avoid the infinite-temperature state

is to couple the system to a heat bath. This allows the
system to reach a non-trivial steady state that emerges as
a consequence of a balance between the bath that cools
the system and the measurement apparatus that heats it
up. We consider this in the next section.

V. COUPLING TO A THERMAL BATH

We model the dissipative dynamics through the
Markovian quantum master equation (Lindblad equa-
tion) where the dynamics of an open quantum system
is generated by the Lindbladian L0,

LHD[ρ] = −i[H, ρ] +D[ρ] , (29)

where D is the dissipator which accounts for the coupling
to a thermal bath,

D[ρ] =
∑
α

(
LαρL

†
α − 1

2
{L†

αLα, ρ}
)
. (30)

We choose jump operators Lα so that, in the absence
of measurements, they thermalize the system at a tem-
perature T . This means that the steady state of this

Lindbladian is a Gibbs state ρeq = e−
H
T /Z.

We now imagine that the system is being measured.
We start by considering measurements that occur at ran-
dom uncorrelated times (a Poisson process) with a mea-
surement rate 1/τ [53–55]. Later, in Sec. VI, we will
consider time-periodic measurements. In this case, the
measurement process can be described by introducing an
additional term in the Lindbladian (see Appendix B),

L = LHD +
1

τ
Lm, (31)

where Lm acts on the density matrix as

Lm[ρ] =
∑
a

(PaρPa)− ρ. (32)

We observe that the Kraus map PA[ρ] =
∑
a PaρPa, cor-

responding to measurements is a super-projector. We
can define the complementary projector QA = 1 − PA,
so that PAQA = 0. The measurement term in the Lind-
bladian (Eq. 31) is 1

τLmρ = − 1
τQAρ which causes any

elements that are off-diagonal in the measurement basis
to decay with a characteristic decay time τ .
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It is interesting to note that the same Lindbladian can
be obtained for a system under continuous weak mea-
surement of an observable A, see Ref. 54. There, the
measurement strength takes on the role of the measure-
ment rate 1/τ in our analysis. Therefore, our discussion
of currents in the Poisson measurement scheme is also
relevant to such systems.

The steady state can be determined from the condition
L[ρst] = 0, or

(Lm + τLHD) [ρst] = 0. (33)

It is interesting to see how the Lindblad equation pre-
dicts an infinite temperature state in the absence of dis-
sipation. Then, Eq. (33) becomes,

−QAρst − iτ [H, ρst] = 0 . (34)

Multiplying this by ρst and computing the trace gives 0 =
−iτ tr [ρst[H, ρst]] = tr [ρstQAρst] = tr

[
(QAρst)

2
]
, where

we used tr [(PAρst)(QAρst)] = 0. This impliesQAρst = 0,
i.e. ρst commutes with A. If QAρst = 0, then Eq. (34)
implies that ρst commutes with H as well. For generic
A and H, ρst must therefore be the infinite temperature
state. [56]

We now turn to define and study the steady-state cur-
rents.

A. Currents in Measured Open Quantum Systems

In an open quantum system undergoing Lindblad dy-
namics, the Hamiltonian current does not satisfy the con-
tinuity equation. The presence of measurements and dis-
sipation in the master equation forces us to consider new
types of currents: measurement currents and dissipative
currents. Only the total current, which is the sum of
all three, is conserved. As we will show below, the mea-
surement current is directly related to the measurement
charge displacement Q̂.

We use the generalized definition of current between
sites x and y for a quantum master equation [42],

jx→y =
1

2

{
Px,

dPy
dt

}
− 1

2

{
Py,

dPx
dt

}
, (35)

where Px and Py are projectors onto x and y and {, }
is the anticommutator. The current is defined so that it
explicitly satisfies the continuity equation. The current,
integrated over all space, is then

J =
∑
x<y

(y − x)jx→y (36)

where the factor of (y−x) takes into account the distance
traveled by a particle in the transition from x to y[57].
Equation (35) is a Heisenberg picture expression, written
in terms of the time derivatives of the projectors Px. A

more explicit expression for the current can be obtained
using [42]

d

dt
Px = L† [Px] (37)

where L† is the adjoint Lindbladian,

L† [Θ] =i[H,Θ] +
1

τ

(∑
a

(PaΘPa)−Θ

)

+
∑
α

(
L†
αΘLα − 1

2
{L†

αLα,Θ}
)
. (38)

Replacing dPx

dt by L†[Px] (and similarly for Py) in Eq. (35)
gives the expressions for the Hamiltonian, measurement,
and dissipative currents, depending on which term of the
adjoint Lindbladian is used.
The Hamiltonian part of the evolution leads to the

Hamiltonian current, discussed in Sec. II. The space-
integrated current takes the form

JH = −i
∑
x,y

PyHPx (y − x) = −i[x̂, H] . (39)

The measurement part of the Lindbladian Lm gives the
measurement current,

jx→y
meas =

1

2τ

∑
a

({Px, PaPyPa} − (x↔ y)) . (40)

Integrating over space gives

Jmeas =
1

τ

(∑
a

Pax̂Pa − x̂

)
=
Q̂

τ
, (41)

where Q̂ is defined in Eq. (9). This relation describes the
fact that charge displacements occur on average at a rate
1/τ .
Finally, the last term in Eq. (38) is a source of a dis-

sipative current that comes from thermal bath jump op-
erators [42]. This gives

Jdis =
1

2

∑
n,m

jn→m
dis (m− n)

=
∑
α

[
L†
αx̂Lα − 1

2
{x̂, L†

αLα}
]
.

(42)

The second equality relies on the locality of jn→m
dis . For

the Hamiltonian and measurement currents, locality is
guaranteed by the short-range interactions and local
measurements. By contrast, to ensure equilibration it is
often convenient to work with a bath that spans the whole
system, rendering the definition of dissipative currents
problematic. For this reason, we focus on a sufficiently
weak dissipation rate, compared to the Hamiltonian scale
and to the measurement rate 1/τ . Then, the dissipative
current can be neglected. We comment that the use of a
Lindblad master equation to describe the coupling to a
thermal bath is only justified in this limit [58].
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B. Measurement-induced steady-state currents in
the Rice-Mele model

We will demonstrate the existence and properties of
steady-state currents on the Rice-Mele model defined in
the introduction. As will become clear, much of the in-
tuition comes from the single-measurement results. We
model the thermal bath by choosing jump operators that
connect energy eigenstates,

Lα = Lk,µ;q,ν =
√
γk,µ;q,νc

†
k,µcq,ν , (43)

with the decay rates chosen to satisfy detailed balance at
temperature T ,

γk,µ;q,ν =

{
γ0
N for Ek,µ < Eq,ν ;
γ0
N e−

Ek,µ−Eq,ν

T for Ek,µ ≥ Eq,ν ;
(44)

where k and q are wavevectors, µ and ν band indices,
and γ0 sets the overall timescale of relaxation. The factor
1/N is added since we allow transitions between all pairs
of energy levels. This ensures that the relaxation rate of
the system remains finite as N → ∞. The dissipation is
inversion symmetric if the Hamiltonian is, so we do not
have to consider its symmetry properties independently.

The steady state of the Lindbladian – consisting of
the Hamiltonian dynamics together with dissipation and
measurements – is found numerically. Throughout we
assume a weak dissipation rate compared to the Hamil-
tonian scale, γ0 ≪ ||H||.

Figure 4(a) shows the total (Hamiltonian plus mea-
surement) current for an inversion-odd observable, as
a function of τ . The current is obtained from the ex-
pectation value of the corresponding operators with re-
spect to the steady-state density matrix. The presence of
steady-state currents is a demonstration of the quantum-
measurement ratchet effect, where the combination of
an inversion-invariant measurement and an inversion-
breaking Hamiltonian give rise to currents. The ratchet
effect occurs only for V ̸= 0 since a non-zero staggered
potential (ratchet potential) is necessary to break the in-
version symmetry. In addition, changing the sign of the
potential reverses the direction of the current.

By contrast, Fig. 4(b) shows the total current for an
observable that is not an inversion eigenoperator, mx =
my = −mz = 1/

√
3. Here, a current is created even in

the absence of a staggered potential, and the current is
not odd in V .

The currents in Fig. 4 display a pronounced peak at
τ ≈ 1/γ0, which is the typical equilibration time of the
bath. To understand the origin of this peak, we begin
from the rare measurement limit τ ≫ 1/γ0. There, the
current is expected to approach zero, since the system is
only rarely perturbed from equilibrium. Then, the cur-
rents are given by the cumulative displacement following
a single measurement before returning to equilibrium, di-
vided by the time between measurements τ .

In this context, it is important to distinguish be-
tween measurements that are time-reversal eigenopera-
tors, TAT−1 = ±A, and those that are not. In the

(a)

1/γ0

(b)

1/γ0

(c)

FIG. 4. Steady-state currents as a function of average mea-
surement time. In panel (a) the measured observable is
inversion-odd and it is given by my = mz = 1/

√
2, and

mx = 0. Note that the τ -axis is logarithmic in all plots. The
total current dependence is shown for three values of the stag-
gered potential as the staggered potential V is varied. The
relaxation scale, τ ≈ 1/γ0, is marked by dashed lines, where
γ0 = 10−3. The current changes direction when the staggered
potential is tilted in the opposite direction (V → −V ). This
is clearly not the case when the measured observable is not an
inversion eigenoperator, as seen in panel (b) where the mea-
sured observable is given by mx = my = −mz = 1/

√
3. In

insets we plot the dependence of total current on staggered
potential for τ = 1/γ0. In panel (c) we show how the lo-
cation of the peaks matches the relaxation time scale 1/γ0
where the total current is plotted for different values of γ0
and V = −3.0. The plot is given for the same inversion-odd
observable as the one in panel (a). The parameters of all the
plots are t1 = 1.0, t2 = 0.5, T = 0.1, and N = 3.
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latter case, measurements starting from equilibrium give
rise to DC currents, JDC . Due to dissipation, such cur-
rents decay on a time scale of order 1/γ0. Hence, the
cumulative displacement per measurement is ≈ JDC/γ0,
and the average current in the rare-measurement limit
is ≈ JDC/(γ0τ). As τ is decreased from the rare mea-
surement limit, significant heating occurs as a result of
the measurements, as will be shown below. This heat-
ing suppresses the currents, an effect that becomes im-
portant when measurements are closer together than the
relaxation time τr = 1/γ0. The net effect is that a peak
in the current is obtained at τ ≈ τr, whose height is
≈ JDC/(γ0τr) = JDC , which is independent of γ0, as
seen in Fig. 4(c).

By contrast, for TAT−1 = ±A, no DC currents are
created starting from equilibrium. This implies that, in
the rare measurement limit, the charge displacement be-
tween each pair of measurements is of order 1, and that
the average current is of order 1/τ . Then, the current for
τ = τr is of order 1/τr = γ0, which is negligible for weak
dissipation. Furthermore, as τ is decreased below τr, the
heating is found to prevent currents from developing. For
this reason, in order to induce sizable steady-state cur-
rents in the weak dissipation limit, measurements must
not be time-reversal eigenoperators.

Irrespective of the heating, the current is also expected
to approach zero in the Zeno limit, τ ≪ τZ, where
τZ = γ0/||H||2 is the Zeno onset scale, derived in Ap-
pendix C. Here, ||H|| is the characteristic energy scale
of the system. The emergence of the Zeno onset scale
can also be understood intuitively. When A is measured
twice in close succession, the system is with high prob-
ability determined to remain in the same state. The
Zeno effect comes about since the Born rule implies a
quadratic time-scaling of the effective evolution – which
is of order ||H||2τ2 [50]. The dissipation, on the other
hand, evolves the density matrix according to classical
probability, which means that it has a usual linear scal-
ing γ0τ . For sufficiently small τ , the dissipation always
wins in this competition, and the Hamiltonian evolution
is irrelevant. The turnaround point is at τZ which is the
mean measurement time at which the two scales become
comparable. For larger times the evolution is dominated
by the Hamiltonian, which together with the measure-
ments drive the system toward the infinite-temperature
state since the dissipation can be neglected. Then the
conclusions of Sec. IV apply.

In the Zeno limit, currents are small because rapid
local measurements tend to freeze particle motion, as will
be analyzed in detail in the following section.

To further understand the suppression of currents be-
low the peak at τ ≈ 1/γ0, it is useful to study the von
Neumann entropy S of the steady-state density matrix
as a function of τ , see Fig. 5(a). For rare measurements,
τ ≫ 1/γ0, the system has time to equilibrate to the
bath temperature, which is low in our simulation. Hence,
the entropy becomes small. As τ is decreased, when the
measurement time becomes comparable to the relaxation

time 1/γ0, S rises rapidly. For τZ ≪ τ ≪ 1/γ0, the bath
struggles to remove the entropy created by the measure-
ments, and therefore the entropy plateaus close to the
infinite temperature value log(2N). This is the origin of
the current suppression, since the current is guaranteed
to vanish in the infinite-temperature state, see Sec. IV.
Finally, for τ ≪ τZ, the system enters the Zeno limit,
in which the Hamiltonian has no effect and the steady
state is determined by the interplay between measure-
ments and dissipation. Then, the entropy saturates be-
low the infinite temperature entropy, at a value that is
independent of γ0.
Note that as the dissipation is made weaker, the high-

entropy plateau in Fig. 5(a) becomes broader. This is
consistent with the fact that, in the absence of dissipa-
tion, the steady state is an infinite temperature state, as
discussed in Sec. IV. At a finite value of γ0 the range
of the plateau extends from τZ to 1/γ0, as argued above.
The distance to the infinite temperature state can be seen
more clearly from the normalized difference between the
von Neumann entropy of the system S, and the maximum
entropy Smax = log(2N). The normalized difference,

∆s =
Smax − S

Smax
, (45)

is plotted as a function of measurement time τ on a log-
log scale in Fig. 5(b). We see that the steady-state en-
tropy reaches a maximum at τ∗, which is of order 1/||H||
and independent of γ0. On either side of τ∗, the maxi-
mum entropy displays a power-law behavior over a large
window, with ∆s ∝ τ−2 for τZ ≪ τ ≪ τ∗ and ∆s ∝ τ+2

for τ∗ ≪ τ ≪ 1/γ0. An analytic derivation for this be-
havior is given in Appendix C.

C. The Zeno limit and local current loops

In the Zeno limit measurements are fast relative to
the Hamiltonian and dissipative timescales [59]. Then
the system stays very close to the measurement subspace
(the space of density matrices that are block-diagonal in
the measurement basis). Therefore, if measurements are
local and non-overlapping in space, charge cannot escape
the measurement subspace, thus forbidding global cur-
rents. Interestingly, we will show that the Hamiltonian
and measurement charge displacements do not individu-
ally vanish but their sum does. Furthermore, despite the
absence of charge displacements, we will show that in the
Zeno limit steady-state currents can form loops within
each measurement subspace, even when the measurement
subspace is non-degenerate. These current loops show
that motion can occur when a system is continually ob-
served, in a counterpoint to the Zeno effect. While the
Zeno effect implies only that transitions between states
are very slow, a current of order one is still found.
For simplicity, throughout we assume that the mea-

surement operator A is non-degenerate. When this is not
the case, one may expect interesting dynamics within the
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(a)

τZ 1/γ0

(b)

FIG. 5. The von Neumann entropy as a function of aver-
age measurement time. The measured observable is given by
my = mz = 1/

√
2, and mx = 0. In panel (a) we show the

entropy as a function of measurement time τ . The maximal
entropy Smax of an infinite-temperature state is almost satu-
rated near the middle of the plot. In panel (b) the relative
distance of the entropy from the maximal entropy (Eq. (45))
is plotted on the log-log scale. The parameters of the plots
are the same as in Fig. 4.

degenerate Zeno subspaces [3, 11–13, 50, 60], which we
do not consider here.

In the Zeno limit, the density matrix will be nearly di-
agonal in the basis of measurement outcomes. The prob-
abilities of the outcomes are determined by balancing
transitions between them by the coupling to the bath.
To represent this analytically we treat the measurements
as the dominant part of the Lindbladian, and the uni-
tary evolution and the coupling to the bath as pertur-
bations. Then, using the perturbation theory derived in
Appendix C, we find that to zeroth order in τ ,

ρ
(0)
st =

∑
a

w(0)
a |a⟩ ⟨a| , (46)

where w
(0)
a is the occupation of the eigenstate |a⟩. This

is given by the balance equation∑
a′ ̸=a

w
(0)
a′ T

a′→a = w(0)
a

∑
a′ ̸=a

T a→a′ , (47)

where T a→a′ =
∑
α | ⟨a′|Lα|a⟩ |2 is the transition rate

from the state |a⟩ to the state |a′⟩ and Lα are the quan-
tum jump operators, see Eq. (30). Note that, even
though the dissipation is weak, it determines the steady
state in the strict Zeno limit, whereas the Hamiltonian
appears only at higher orders in τ .

1. Hamiltonian and measurement currents in the Zeno
limit

Since the density matrix in Eq. (46) is diagonal in
the measurement basis it is unaffected by measurements.
Therefore, the expectation value of the measurement cur-
rent with respect to the zeroth order density matrix van-
ishes, ⟨Jmeas⟩ρ(0)st

= 0. The first contribution to ⟨Jmeas⟩

then arises from ρ
(1)
st , which is linear in τ , and is given

by (see Appendix C, Eq. C24)

⟨Jmeas⟩ρ(1)st
= tr

(
−i[H, ρ(0)st ]Jmeas

)
τ , (48)

up to corrections of order γ0/||H|| which can be neglected
for weak dissipation. The measurement current operator,
Eq. (40), has an overall factor of 1/τ in its definition,
making this contribution of the same order as the Hamil-

tonian current at zeroth order, ⟨JH⟩ρ(0)st
= tr

(
ρ
(0)
st JH

)
.

For a generic observable we find that both currents are
non-zero individually. However, their sum cancels

⟨Jmeas⟩ρ(1)st
+ ⟨JH⟩ρ(0)st

= 0 , (49)

up to corrections of order γ0/||H||, as proved in Ap-
pendix D. This follows intuitively since we perform mea-
surements that are local and non-overlapping in space.
Then, in the strict Zeno limit, particles cannot leave the
domain over which the local measurements act, e.g. one
of the unit cells in the Rice-Mele model, and therefore
the total current must be zero. This cancellation is born
out by numerical results in the Rice-Mele model, as seen
in Fig. 6. This cancellation is discussed in more detail in
Appendix E.

2. Local current loops in the Zeno limit

Thus far we have focused on dimerized Hamiltonians
with bond measurements. It is also interesting to con-
sider Hamiltonians with a three-site unit cell acted on by
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FIG. 6. Hamiltonian, measurement, and total current de-
pendence on measurement time τ . The τ -axis is logarithmic.
The parameters of the plot are t1 = 1.5, t2 = 1.0, V = 3.0,
γ0 = 0.01, T = 0.1, N = 3, and the measured observable is
specified by mx = my = −mz. When τ is very small, we are
in the Zeno limit, and the measurement current compensates
for the Hamiltonian current.

(a)

(b)

FIG. 7. Illustration of the three-site model. The measure-
ments of an observable are performed on three-site unit cells,
shown as dashed boxes in panel (a). Particles hop between
sites with amplitudes t1,2,3. In the Zeno limit, measurements
prohibit charge transfer between the unit cells. This implies
that the net current vanishes. However, as illustrated in (b),
this does not prohibit the existence of loop currents within
the unit cell (drawn in red).

three-site measurements. Here we consider,

H =

N∑
n=1

[(
− t1c

†
3n−2c3n−1 − t2c

†
3n−1c3n − t3c

†
3nc3n+1

+ h.c.
)
+
V

2

(
c†3n−2c3n−2 − c†3nc3n

)]
. (50)

The model is pictorially represented in Fig. 7(a). Each
unit cell contains two bonds with hopping integrals t1
and t2 and the bond connecting two cells has hopping
integral t3. We choose the measured observable as a
non-degenerate operator whose eigenstates are restricted
within the unit cell. Following the argument for the Rice-
Mele model, the net charge transfer has to vanish in the
Zeno limit. However, this does not prohibit current loops
within each unit cell, as shown in Fig. 7(b).

To show that loop currents can emerge we choose, for

concreteness, a measurement operator whose eigenstates
within the unit cell are,

|Ψ1(α)⟩ =
1√
3

(
|1⟩+ eiα |2⟩+ |3⟩

)
, (51)

|Ψ2(α)⟩ =
1√
2

(
|1⟩ − eiα |2⟩

)
, (52)

|Ψ3(α)⟩ =
1√
6

(
|1⟩+ eiα |2⟩ − 2 |3⟩

)
. (53)

If the parameter α is not an integer multiple of π, com-
plex phases are present. Then, the measured observable
is not even under time reversal, and currents are not pro-
hibited by symmetry.

The steady-state currents are computed in Appendix
E. There, it is found that the currents between sites sat-
isfy j1→2 = j2→3 = −j1→3 = jℓ, where

jℓ =
1

54

[
− (t1 + 2t2)

(
3u(0)(α)− 2

)
+ 3 (t1 − t2)∆u

(0)(α)
]
sin(α) .

(54)

Here u(0) and ∆u(0) are population parameters deter-
mined by solving the balance equation, Eq. (47), and
which depend on α. Hence, the integrated total current
vanishes for any value of α, j1→2 + j2→3 + 2j1→3 = 0,
as expected. However, the nonvanishing of jℓ signals the
presence of loop currents in the Zeno limit, as advertised.

VI. FLOQUET MEASUREMENTS

We now consider a Floquet measurement scheme, in
which measurements are performed periodically in time
with a fixed period τ [11, 12]. In contrast to the Poisson
measurement scheme, the system now lacks a true steady
state. Instead, the steady state is stroboscopic, with a
time-periodic density matrix with period τ . As we now
show, this allows Floquet measurements to probe the dy-
namics of the current following a measurement.

Figure 8 shows the total current for Floquet measure-
ments of an inversion-preserving and time-reversal break-
ing observable in a system with broken inversion symme-
try (V ̸= 0). The results were calculated by numerically
evolving the density matrix and evaluating the expecta-
tion value of the Hamiltonian current once the system
reaches a stroboscopic steady state. Panel (a) shows the
current in the rare-measurement limit τm ≫ 1/γ0. In
this limit, the system has time to relax to equilibrium
between measurements. Then, the evolution of the cur-
rent created by the measurement is revealed to oscillate
on a time scale controlled by the Hamiltonian parame-
ters and to decay with a rate of order γ0. There is a net
charge transfer which we show by integrating the current
over time, as seen in the inset of the figure. This indicates
a non-zero average current, J̄H , defined as the integrated
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FIG. 8. Expectation value of the Hamiltonian current as a
function of time in the Floquet measurement scheme. The
measured observable is given by my = mz = 1/

√
2, and

mx = 0. The parameters of the plot are t1 = 1.0, t2 = 0.5,
V = 1.5, T = 0.2, N = 4, and γ0 = 0.5. In panel (a), the
time between measurements is τ = 20, which is large com-
pared to the relaxation time of the system and the system
has enough time to relax until close to thermal equilibrium
between measurements. In the inset, we show that for the
given parameters, the particle moves to the left on average
by time-integrating the Hamiltonian current and adding the
measurement displacement. In b), τ = 0.05 and the evolution
time dependence of the Hamiltonian current can be well ap-
proximated by taking low orders of expansion in τ . Near the
Zeno limit the measurement charge displacement, not shown,
is roughly compensated by the Hamiltonian current.

charge transfer divided by the measurement period τ ,

J̄H =
1

τ

∫ τ

0

dt tr[ρ(t)JH ] (55)

Panel (b) shows the Hamiltonian current near the Zeno
limit. Similar to the Poisson case, in the Zeno limit, the
Hamiltonian current is compensated by the measurement
charge displacement to give net zero displacement.

Figure 9(a) shows the current as a function of τ and
compares it to the Poisson measurement protocol. In
both the Zeno and rare measurement limits, the two pro-
tocols converge to each other. Both schemes display a
broad peak at τ ≈ 1/γ0. However, the Floquet measure-
ment scheme reveals a series of narrow resonances which,
as shown in Fig. 9(b) are almost periodic in τ . The ori-
gin of these resonances is the current oscillations induced

cu
rr
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t
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en
t

(a)

(b)

τ

τ

Poisson
Floquet

Poisson
Floquet

FIG. 9. Dependence of current on measurement time scale
τ . Floquet and Poisson measurement schemes are compared.
The plot parameters are t1 = 1.0, t2 = 0.5, V = 3.0, T =
0.1, N = 3, and γ0 = 0.01. For Floquet measurements, J̄H is
shown. Measurements are of my = mz = 1/

√
2, and mx = 0.

Note that the Floquet measurement scheme displays reso-
nances when the measurement period matches some of the
internal system frequencies, as shown in (b), which focuses
on a small window of panel (a) but on a linear scale.

by measurements, as seen in Fig. 8. This suggests that
Floquet measurements might be used as a method for
probing the dynamics of quantum systems.

VII. DISCUSSION

Our paper provides a framework for analyzing currents
in monitored quantum systems. We showed that, beyond
the usual Hamiltonian current, there is a measurement
current, which can be comparable in magnitude. The
central topic has been the interplay of the symmetries of
the Hamiltonian and the measurement observable, which
dictates whether currents can exist, and their magnitude.
In particular, currents can be generated whether the mea-
surement operators are time-reversal symmetric or not,
due to the irreversibility of the system. However, time-
reversal breaking observables give rise to enhanced cur-
rents. It would be interesting to investigate to what ex-
tent these differences based on symmetry survive in more
general systems, such as ones including interactions for
example. Similar considerations about symmetry may in-
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fluence other properties of monitored quantum systems,
beyond currents. In particular, monitoring a particle in
this way could be an interesting way of generating quan-
tum active matter [61–64].
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Appendix A: Non-degenerate T -even observables

In Section III C we showed that a measurement opera-
tor A that is either even or odd under the action of time
reversal (TAT−1 = ±A) does not give rise to DC cur-
rents, provided the measurement is done on a state that
is time-reversal symmetric. In this Appendix we show
that, in the special case that A is non-degenerate and
time-reversal even, TAT−1 = A, then there are no DC
currents after the measurement, regardless of the initial
state.

When these conditions are satisfied, then each mea-
surement induces a state that is time-reversal invariant,
thereby precluding the occurrence of DC currents. To see
this observe that, in this scenario, the eigenstates of A
are also eigenstates of T , T |a⟩ = |a⟩. These eigenstates
therefore have no current initially, and as in Sec. III C,
they also do not carry any DC currents because they have
balanced occupation numbers at k and −k. Thus even if
the system starts out in a state that is carrying a current,
the measurement switches off the current by forcing the
system into a time-reversal symmetric state.

Appendix B: Derivation of the measurement
Lindbladian

We derive the Lindbladian for a system that undergoes
repeated measurements of an observable A at random
and uncorrelated times with a rate 1/τ .

We begin by discretizing time into short intervals ∆t
and consider how the density matrix changes between
tn and tn+1 = tn + ∆t. In the small time ∆t the den-
sity matrix evolves with the Lindbladian LHD [defined in
Eq. (29)] into eLHD∆t[ρ(tn)]. At the end of the interval it
is measured with probability ∆t

τ causing it to change as

in (7), or not measured, with probability 1 − ∆t
τ . (The

measurement may be regarded as occurring at the end
of the interval since the order in which the measurement
and the rest of the evolution occurs does not matter for
a short interval of time, since they both involve infinites-
imal changes to ρ so they commute to first order.) The

density matrix at tn+1 = tn +∆t is

ρ(tn+1) =

(
1− ∆t

τ

)
eLHD∆t[ρ(tn)]

+
∆t

τ
PA
[
eLHD∆t[ρ(tn)]

]
+O(∆t2).

(B1)

In the limit ∆t→ 0 one finds,

dρ(t)

dt
= LHD[ρ(t)] +

1

τ
[PA[ρ(t)]− ρ(t)] . (B2)

This equation describes the evolution of the density ma-
trix averaged over all measurement histories. It retains
the canonical Lindblad form with additional jump oper-
ators that are projectors Pa onto eigenstates of the mea-
sured observable A. When the measured observable acts
on a two-site unit cell, the projectors for the specific cell
can be written as P± = 1

2

(
1± UσzU

†). The term in the
measurement part of the Linbladian for this cell is then
1
2τ

(
UσzU

†ρ(t)UσzU
† − ρ(t)

)
. This has the form of a de-

cohering bath with the decoherence rate 1/2τ . In this
sense, the measurement apparatus is an engineered bath
that picks a preferred basis and eliminates the coherences
within it.

Appendix C: Perturbation theory for the steady
state

In this appendix we develop a perturbation theory to
compute the steady state for the Lindbladian

L = L0 + V (C1)

where V is a small perturbation relative to L0. The
perturbation theory presented here is an application to
Lindbladians of Brillouin-Wigner perturbation theory of
quantum mechanics [65–67]. The reason for using this
approach rather than more straightforward perturbation
theory is that the unperturbed L0 that we will choose
has more than one steady state. The steady state of the
Lindbladian L, which is unique, will be obtained approx-
imately from an effective Lindbladian acting within the
space of steady states of L0, that lifts the degeneracy.
The choice of L0 and V depends on the regime under

consideration. The full Lindbladian in our system is

L = H+ Lm +D . (C2)

Here H[ρ] = −i [H, ρ] generates the unitary evolution,
D is the coupling to the bath, and Lm is the measure-
ment, Lm = − 1

τQA, where QA[ρ] = ρ −
∑
a PaρPa is a

projector onto density matrices that have vanishing diag-
onal elements in the basis of the measurement observable
A. We denote the characteristic scale of the Hamiltonian
by ||H||, which is also the scale of H. The scale of D
is the dissipation rate γ0, which is assumed to be weak,
γ0 ≪ ||H||. In the limit of fast measurements ( 1τ ≫ ||H||)
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we take L0 = − 1
τQA and V = H+D. For slow measure-

ments (τ ||H|| ≫ 1) we take L0 = H and V = − 1
τQA+D.

To develop the perturbation theory, it is useful to think
about L as a superoperator that acts on the vector space
of operators, including the density matrix ρ. The steady-
state condition is then written as Lρst = 0. Define P as a
projector that fixes any steady state of L0, while taking
any eigenvector of L0 with a nonzero eigenvalue to 0, so
that

PL0 = L0P = 0 (C3)

Let Q = 1 − P be the complementary projector. We
will split the steady state of the full Lindbladian into
components in the two complementary spaces, ρst = ρP+
ρQ, where ρP = Pρst and ρQ = Qρst. Then, the steady
state condition is

0 = Lρst = (L0 + V)(ρP + ρQ) = VρP + (L0 + V)ρQ
(C4)

using Eq. (C3). This can be divided into two conditions
by projecting it with P and Q. The latter gives

Q(L0 + V)QρQ = −QVρP (C5)

and can be used to determine ρQ in terms of ρP :

ρQ = −Q[Q(L0 + V)Q]−1QVρP . (C6)

While Q[L0 + V]Q is non-invertible, as it has the same
kernel as Q, the notation Q[Q(L0 + V)Q]−1Q indi-
cates that the inverse is computed only within the com-
plementary space. Projecting Eq. (C4) with P gives
PVρP + PVρQ = 0 which, combined with Eq. (C6) be-
comes

PVρP − PVQ[Q(L0 + V)Q]−1QVρP = 0 (C7)

Hence, ρP is a steady state of the effective Lindbladian

Leff = PVP − PVQ[Q(L0 + V)Q]−1QVP . (C8)

Once ρP is known (based on this effective Lindbladian),
ρQ can be obtained from it using Eq. (C6) to obtain ρst =
ρP + ρQ. To second order in V, the effective Lindblad
operator is

Leff ≈ PVP − PVQ(L0)
−1QVP. (C9)

Perturbation theory is justified provided that there is a
gap from the zero eigenvalues of L0 to the nonzero eigen-
values.

We will next apply this formalism in the limits of fast
and slow measurements, in turn. We will find various
dynamical regimes as the measurement time is varied,
which are summarized in Fig. 10.

FIG. 10. Schematic depiction of the different dynamical
regimes. Different dynamical scales are shown as a function of
measurement time τ . They are: the Hamiltonian scale (||H||τ
or ||H||2τ2 depending on whether measurements are fast or
slow), the dissipative scale (γ0τ), and the measurement scale
(constant in τ), all normalized by the measurement rate. Both
axes are logarithmic. In the Zeno (Z) regime, the Hamiltonian
dynamics is negligible and the steady state is determined by
the interplay of measurements and dissipation. In the near-
equilibrium (NE) regime, the dissipation has enough time to
equilibrate the system between measurements. In the high
entropy (HE) regime, the dissipation is the weakest scale and
the system approaches an infinite temperature state. The pa-
rameters in the plot are ||H|| = 1, γ0 = 10−4.

1. Fast measurement limit ||H||τ ≪ 1

When measurements are fast relative to the Hamilto-
nian timescale, ||H||τ ≪ 1, we take L0 = − 1

τQA as the
dominant term in the Lindbladian, and V = H + D as
the perturbation. In this case, the projector onto the
steady states of L0 is PA = 1 − QA, whose action on ρ
is PA[ρ] =

∑
a PaρPa. This is highly degenerate, as any

density matrix that is diagonal in the measurement basis,

ρ =
∑
a

wa |a⟩ ⟨a| , (C10)

is a steady state of L0, regardless of the value of the
occupations wa. The perturbation V lifts this degeneracy.
Equation (C9) gives

Leff = PAVPA + τPAVQAVPA . (C11)

The unitary evolution vanishes at leading order,
PAHPA = 0, as can be seen by acting on a general den-
sity matrix ρ,

PAHPA[ρ] =
∑
a

Pa

(
−i

[
H,
∑
b

PbρPb

])
Pa (C12)

= −i
∑
a

[PaHPa, PaρPa] = 0 , (C13)
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which vanishes for a non-degenerate observable A.
Therefore, H contributes to Leff starting at second or-
der. To leading non-vanishing order in γ0 and ||H||,

Leff = PA
(
D + τH2

)
PA . (C14)

The condition LeffρP = 0 next fixes the steady-state oc-
cupations wa in the measurement basis, ρP . The off-
diagonal elements of ρst in the measurement basis, ρQ,
are then given by Eq. (C6). They are subdominant in τV
relative to the diagonal elements.

The form of ρst depends on which of the terms in
Eq. (C14) is larger. There is thus a crossover as a func-
tion of τ at τZ ≡ γ0/||H||2. For ultrafast measurements,
τ ≪ τZ, the steady state occupations are determined by

the condition PADPAρ(0)st = 0, which yields the balance
equation∑

a′ ̸=a

w
(0)
a′ T

a′→a = w(0)
a

∑
a′ ̸=a

T a→a′ , (C15)

where T a→a′ =
∑
α | ⟨a′|Lα|a⟩ |2 is the transition rate

from state a to a′. The subscript (0) indicates that these
are the occupations to zeroth order in τ . The von Neu-
mann entropy in this case saturates to a value that is
independent of both γ0 and τ . This is what we refer to
as the Zeno limit.

On the other hand, for τZ ≪ τ ≪ 1/||H||, the Hamil-
tonian plays a dominant role over the dissipation in
Eq. (C14). If the dissipation is fully neglected, then
according to the arguments in Sec. V, the steady state
will be an infinite temperature state, ρ∞ = 1

N . Adding
the dissipation D prevents the system from reaching this
state. Let

ρP = ρ∞ + δρP , (C16)

where δρP is proportional to γ0. The correction can be
found by solving LeffρP = 0 to first order in γ0 for δρP .
This gives

δρP = −1

τ
PA(PAH2PA)−1PADρ∞ , (C17)

which is of order γ0/(τ ||H||2). The complementary part
of the density matrix, ρQ = QAρst, is found to be smaller:

ρQ = τQA(H+D)(ρ∞ + δρP ) (C18)

≈ QADτρ∞ −QAHPA(PAH2PA)−1PADρ∞.

These terms are smaller than δρP by factors of (τ ||H||)2
and (τ ||H||) respectively, so they can be neglected in the
fast measurement limit.

We turn our attention to the von Neumann entropy,

S[ρst] = −tr [(ρ∞ + δρ) log (ρ∞ + δρ)] (C19)

Expanding log(ρ∞+δρ) = log((1+N δρ)/N ) = − logN+

N δρ − N 2

2 δρ
2 + O

(
γ20
)
then, since δρ is traceless, the

entropy is to order γ20

S[ρst] = logN − N
2
tr
[
δρ2
]
. (C20)

The relative entropy as defined in Eq. (45) is then

∆s =
N

2 log (N )
tr
[
δρ2
]
. (C21)

Since δρ is of order γ0/(τ ||H||2), ∆s scales with τ as

∆s ∝ γ20
||H||4τ2

(C22)

in the regime γ0/||H||2 ≪ τ ≪ 1/||H||, explaining the
scaling seen numerically in Sec. VB.
In Appendix D we compute currents in the Zeno limit.

The measurement current is non-zero only in the com-
plement of the measurement subspace,

⟨Jmeas⟩PA[ρ] = 0 . (C23)

Therefore, we need the off-diagonal entries of the density
matrix when τ ≪ 1

γ 0
. Using Eq. (C6), we find

QAρ
(1)
st = τQAHPAρ(0)st

= −iτ [H, ρ(0)st ]. (C24)

where we have neglected terms of order τγ0, and where
the superscript (1) indicates linear order in τ . In the
second line we used QA = 1− PA, PAHPA = 0 and the
expression for H as the commutator with H.

2. Slow measurement limit τ ||H|| ≫ 1

In the opposite limit, when measurements are slow rel-
ative to the Hamiltonian timescale, we take L0 = H and
V = Lm+D = − 1

τQA+D. Any diagonal density matrix
in the Hamiltonian basis is a steady state of L0. The
projector onto the space of steady states is PH , whose
action on density matrices is PH [ρ] =

∑
E PEρPE . Here,

PE is a projector into the subspace of states with energy
E. Equation (C9) then gives

Leff = PH
(
−1

τ
QA +D

)
PH (C25)

where the terms above are nonvanishing and hence the
leading order contributions in V. The condition Leffρst =
0 fixes the steady-state occupations in the Hamiltonian
basis. There is a crossover as a function of τ at τR ≡ 1/γ0.
For τ ≫ τR, the steady state occupations are given by
PHDPHρst = 0, which yields the equilibrium state at the
temperature of the bath.
On the other hand, for 1/||H|| ≪ τ ≪ τR, Leff ≈

− 1
τPHQAPH , whose steady state is the infinite temper-

ature state (since it is simultaneously diagonal in the
Hamiltonian and measurement bases). The dissipation
D prevents the system from reaching infinite tempera-
ture. Writing ρst = ρ∞ + δρ for the steady state of
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Eq. (C25), we find that δρ is of order γ0τ . Plugging
this into Eq. (C22) yields

∆s ∝ γ20τ
2 (C26)

which is the scaling of the relative entropy with τ in the
regime 1/||H|| ≪ τ ≪ τR.

Appendix D: No charge transfer in the Zeno limit

Using the results from Appendix C, we show that the
total current vanishes in the Zeno limit. By Eq. (39), the
total Hamiltonian current is −i[x̂, H] and its expectation
value for the density matrix of the Zeno limit, Eq. (46),
is

⟨JH⟩
ρ
(0)
st

= i
∑
a

w(0)
a tr ([H, x̂]Pa) . (D1)

The measurement current is non-zero only in the com-
plement of the measurement subspace, ⟨Jmeas⟩PA[ρ] = 0

(see Eq. (41)) Therefore, we evaluate the expectation
value with respect to ρQ. This part of the density matrix
is smaller by a factor of τ ||H||. However, its contribution
to the total current is of the same order as the Hamil-
tonian current at leading order, since the measurement
current has an overall factor of 1/τ in its definition, see
Eq. (40). By Eq. (C24)

QAρ
(1)
st = −i

[
H, ρ

(0)
st

]
τ +O (γ0)

= −i
∑
a

[H,Pa]w
(0)
a τ +O (γ0) .

(D2)

The expectation value of the integrated measurement
current for this density matrix is

⟨Jmeas⟩ρ(1)st
= i
∑
a,a′

w(0)
a tr

(
[H,Pa] (x̂− Pa′ x̂Pa′)

)
. (D3)

The first term cancels the Hamiltonian current since
tr[H,Pa]x̂ = −tr[H, x̂]Pa. Thus, the current will vanish
if the last term is zero. The last term is

− i
∑
a,a′

w(0)
a tr ([H,Pa]Pa′ x̂Pa′)

= −i
∑
a,a′

w(0)
a tr (HPaPa′ x̂Pa′ − PaHPa′ x̂Pa′)

= −i
∑
a

w(0)
a tr (HPax̂Pa − PaHPax̂Pa) = 0,

(D4)

from the projector identity PaPa′ = δa,a′Pa and the cyclic
property of the trace.

Appendix E: Two-site and three-site measurements
in the Zeno limit

We will now consider local currents in the Zeno limit.
In this limit, for the dynamics we consider [see Fig. 1],

measurements destroy coherence between unit cells. The
lack of coherence between unit cells prevents Hamilto-
nian currents from developing between unit cells. Since
measurements do not connect unit cells, no measurement
currents will develop either. Therefore, in what follows,
we study the dynamics within a unit cell.
To ease notation, given an operator O, we define the

operator Oc

Oc = NPnOPn, (E1)

where Pn is the projector onto a specific unit cell n. The
factor N takes into account the fact that the particle
can be in any of the N unit cells, and ensures proper
normalization. In particular, the density matrix in the
Zeno limit is a sum over unit cells, so no information is
lost by considering ρc for a specific cell. Consequently,
in the calculation of the currents, e.g., the Hamiltonian
current ⟨JH⟩ = i tr ρst[H, x̂], the Hamiltonian may also
be replaced by Hc.

1. Two-site measurements

If the measurement subspace is two-dimensional, as in
Sec. VB, the density matrix projected onto a unit cell
can be written as

ρcst =
1

2

[
1 +

(
2w

(0)
L − 1

)
m̂ · σ

]
, (E2)

where w
(0)
L is the occupation probability of the left site

after the control U is applied. It is determined by
Eq. (C15),

w
(0)
L =

1

1 + T 1→2

T 2→1

, (E3)

where T 1→2 =
∑
α | ⟨2|ULαU†|1⟩ |2 is the transition

probability between state U† |1⟩ and U† |2⟩, where |1⟩
and |2⟩ are the position eigenstates. Consider a general
form for the Hamiltonian projected into the two-site unit
cell:

Hc = h0σ0 + h · σ, (E4)

where σ0 is the identity matrix and the vector h spec-
ifies the subspace Hamiltonian. Then the operator for
the Hamiltonian current, i[Hc, x̂] = i[Hc,−σz

2 ], can be
written as

Jc
H = (h× ẑ) · σ. (E5)

The expectation value of the Hamiltonian current is
then

⟨Jc
H⟩ =

(
w

(0)
L − 1

2

)
tr [(h× ẑ) · σ (m̂ · σ)]

= −2

(
w

(0)
L − 1

2

)
(h× m̂)z .

(E6)
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FIG. 11. Hamiltonian and measurement currents are plotted
on the Bloch sphere in the Zeno limit. The observable that
is measured in Fig. 6 is marked by the white dot. In that
figure, it can be seen that these two currents cancel out in
the Zeno limit and that this cancellation doesn’t persist to
larger measurement times. The parameters are the same as
in Fig. 6.

The effective two-site measurement current operator
can be found by inserting the projectors onto the mea-
sured states P± = 1

2 (1± m̂ ·σ) into the general measure-
ment current expression (Eq.(41)). We find

Jc
meas =

1

2τ
(σz −mz (m̂ · σ)) . (E7)

The measurement current expectation value is zero
within the measurement subspace, and the dominant con-

tribution comes fromQAρ
(1)
st , (Eq. (C24)). By projecting

to the measurement subspace we get that the expectation
value of the measurement current is

⟨Jc
meas⟩ = − i

2
tr
[
(σz −mz (m̂ · σ))

([
H, ρ

(0)
st

]c)]
=

(
w

(0)
L − 1

2

)
tr [(σz −mz (m̂ · σ)) (h× m̂) · σ]

= 2

(
w

(0)
L − 1

2

)
(h× m̂)z ,

(E8)

where in the last line we used (h× m̂) · m̂ = 0 and
tr (σi) = 0. Note that the Hamiltonian current is exactly
compensated by the measurement current.

Despite the cancellation, it is interesting to look at the
Hamiltonian and measurement currents separately. In
the Zeno limit, the steady-state currents for the Rice-
Mele model (h = −t1êx + V

2 êz) is

⟨JH⟩ρ(0)st
= −⟨Jmeas⟩ρ(1)st

= 2t1

(
w

(0)
L − 1/2

)
my . (E9)

Figure 11 illustrates these currents. Note that each cur-
rent vanishes separately on the great circle my = 0, cor-
responding to T -even observables. It also vanishes for
measurements of the bond current itself, my = ±1, when

w
(0)
L = 1

2 .

2. Three-site measurements and loop currents

In analogy to the Rice-Mele Hamiltonian, we use a
similar Hamiltonian, but with three sites in the unit cell
instead of two,

H =

N∑
n=1

[(
− t1c

†
3n−2c3n−1 − t2c

†
3n−1c3n (E10)

−t3c†3nc3n+1 + h.c.
)
+
V

2

(
c†3n−2c3n−2 − c†3nc3n

)]
.

We perform measurements within the three-dimensional
unit cell. The measurement subspace Hamiltonian can
be written in the Gell-Mann basis as

Hc = −t1λ1 − t2λ6 +
V

2

(
1

2
λ3 +

√
3

2
λ8

)
, (E11)

where λi-s are Gell-Mann matrices. Similarly we write
the expression for the Hamiltonian current,

Jc
H = t1λ2 + t2λ7. (E12)

In order to obtain nonzero currents the measurements
should act on the three sites of the unit cell. This allows
the density matrix to have coherences between all three
sites in the unit cell, allowing for currents between all
pairs of sites so that a circular current can form. More-
over, for the current to be non-zero, the measured eigen-
states should not have a well-defined parity under time
reversal, indicating that complex amplitudes must be in-
volved. An example of a vector that satisfies these re-
quirements is

|Ψ1(α)⟩ =
1√
3

(
|1⟩+ eiα |2⟩+ |3⟩

)
, (E13)

where α is a phase that is not an integer multiple of π.
We choose the two other eigenvectors to be

|Ψ2(α)⟩ =
1√
2

(
|1⟩ − eiα |2⟩

)
(E14)

|Ψ3(α)⟩ =
1√
6

(
|1⟩+ eiα |2⟩ − 2 |3⟩

)
. (E15)

Measurement of the non-degenerate observable Ac(α) =∑3
i=1 ai |Ψi(α)⟩ ⟨Ψi(α)| where each ai is unique will yield

these eigenvectors. For instance, if α = π
2 the projectors

onto these three eigenstates, Pi(α) = |Ψi(α)⟩ ⟨Ψ(α)|, are

P1

(π
2

)
=

1

3
(1 + λ4 + λ2 − λ7) , (E16)

P2

(π
2

)
=

1

3

(
1 +

√
3

2
λ8 −

3

2
λ2

)
, (E17)

P3

(π
2

)
=

1

3

(
1− λ4 −

√
3

2
λ8 +

λ2
2

+ λ7

)
. (E18)
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Using the discrete translational symmetry of the prob-
lem we write the steady-state density matrix as

ρcst (α) =
1

3

[
1−u

(0) +∆u(0)

2
P1 (α)

−u
(0) −∆u(0)

2
P2 (α)

+u(0)P3 (α)
]
,

(E19)

where u(0) and ∆u(0) are parameters that can be deter-
mined by solving the balance equation, Eq. (47).

The expectation value of the Hamiltonian current is

⟨Jc
H⟩ (α) = 1

18

[
3 (2t2 + t1)u

(0)

− (5t1 − 2t2)∆u
(0)
]
sin (α) .

(E20)

On the other hand, the expectation values of the mea-
surement currents between any of three possible pairs of
sites come out to be (after calculating the traces of the
products of matrices in Eq.(40)):

⟨jcmeas⟩1→2 (α) =
1

18

[
− 2 (t1 − t2)u

(0)

+(4t1 + t2)∆u
(0)
]
sin (α) , (E21)

⟨jcmeas⟩2→3 (α) =
1

18

[
(t1 − 4t2)u

(0)

− (t1 + t2)∆u
(0)
]
sin (α) , (E22)

⟨jcmeas⟩1→3 (α) =
1

18

[
− (t1 + 2t2)u

(0)

+(t1 − t2)∆u
(0)
]
sin (α) . (E23)

If we calculate the total measurement current
⟨jcmeas⟩1→2 + ⟨jcmeas⟩2→3 + 2 ⟨jcmeas⟩1→3 we see that
the charge transferred by measurement is exactly com-
pensated by the charge transferred via the Hamiltonian
current,

⟨Jc
meas + Jc

H⟩ = 0. (E24)

However, the current between pairs of sites does not van-
ish. The Hamiltonian contains only nearest neighbor cou-
plings, which means that ⟨jcH⟩1→3 is zero. This is evi-
dently not the case for the measurement current between
these two sites as seen in Eq. (E23). This indicates that
a steady-state current flows in a loop that encompasses
the three sites. In fact, if the Hamiltonian current is di-
vided into currents between pairs of sites, one finds that
⟨jcmeas + jcH⟩1→2 = ⟨jcmeas + jcH⟩2→3 = ⟨jcmeas + jcH⟩3→1 ̸=
0. This is seen using the expression for the Hamilto-
nian current jx→y

H = i(PxHPy − PyHPx) between pairs
of sites.
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[16] P. Pöpperl, I. V. Gornyi, D. B. Saakian, and O. M. Yev-
tushenko, Phys. Rev. Res. 6, 013313 (2024).

[17] M. Wampler, B. J. J. Khor, G. Refael, and I. Klich, Phys.
Rev. X 12, 031031 (2022).

[18] B. J. J. Khor, M. Wampler, G. Refael, and I. Klich, Phys.
Rev. B 108, 214305 (2023).

[19] J. a. Ferreira, T. Jin, J. Mannhart, T. Giamarchi, and
M. Filippone, Phys. Rev. Lett. 132, 136301 (2024).

[20] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98,
205136 (2018).

[21] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9,
031009 (2019).

[22] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,

https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/18/4/756/19182345/756_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/18/4/756/19182345/756_1_online.pdf
https://doi.org/10.1103/PhysRevLett.120.020505
https://doi.org/10.1103/PhysRevLett.120.020505
https://doi.org/10.1038/s41534-022-00594-4
https://doi.org/10.1038/s41534-022-00594-4
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1038/ncomms6173
https://doi.org/10.1038/s41566-022-01152-2
https://doi.org/10.1038/s41566-022-01152-2
https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1103/PhysRevLett.122.020504
https://arxiv.org/abs/2112.01519
https://doi.org/10.1103/PhysRevLett.131.200201
https://doi.org/10.1103/PhysRevLett.131.200201
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-012-1645-2
https://arxiv.org/abs/2401.01307
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1088/1751-8113/48/11/115304
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevB.107.174203
https://doi.org/10.1103/PhysRevB.107.174203
https://doi.org/10.1103/PhysRevResearch.6.013313
https://doi.org/10.1103/PhysRevX.12.031031
https://doi.org/10.1103/PhysRevX.12.031031
https://doi.org/10.1103/PhysRevB.108.214305
https://doi.org/10.1103/PhysRevB.108.214305
https://doi.org/10.1103/PhysRevLett.132.136301
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009


20

Phys. Rev. B 99, 224307 (2019).
[23] M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl,

Phys. Rev. X 11, 041004 (2021).
[24] C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan,

D. Biswas, M. Cetina, A. V. Gorshkov, M. J. Gullans,
D. A. Huse, and et al., Nature Physics 18, 760–764
(2022).

[25] B. Ladewig, S. Diehl, and M. Buchhold, Phys. Rev. Res.
4, 033001 (2022).
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