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Sensors for mapping the trajectory of an incoming particle find important utility in experimental
high energy physics and searches for dark matter. For a quantum sensing protocol that uses projec-
tive measurements on a multi-qubit sensor array to infer the trajectory of an incident particle, we
show that entanglement can dramatically reduce the particle-sensor interaction strength θ required
for perfect trajectory discrimination. Within an interval of θ above this reduced threshold, any un-
entangled sensor requires Θ(log(1/ϵ)) repetitions of the protocol to estimate the particle trajectory
with ϵ error probability, whereas an entangled sensor can succeed with zero error in a single shot.

Introduction.—A particle’s trajectory through space
and time is a fingerprint concealing its unique history
and some of its most important properties. For example,
the momentum and charge of high energy particles pro-
duced in colliders is revealed from the curvature of their
paths through a magnetic field [1, 2]. Additionally, the
cosmic origins of particles such as muons, neutrinos, and
possible dark matter candidates can be traced from snap-
shots of their motion taken with detectors such as bubble
chambers [3]. In biology and chemistry, positron emis-
sion tomography localizes tumors along a line traversed
by emitted gamma photons [4], and mass spectrometers
determine molar masses by filtering charged molecular
fragments according to their trajectories [5]. Further-
more, seismograph arrays and the LIGO experiment re-
spectively infer the propagation of vibrations and gravi-
tational waves to triangulate distant rare events [6, 7].

Given that quantum sensors have previously increased
sensitivities for measurements of forces [8] and elec-
tric/magnetic fields [9, 10], it would be natural to expect
that trajectory sensors may also benefit from the use of
quantum resources. For instance, a quantum version of
the bubble chamber might replace the sensitive medium
of a superheated liquid with an array of qubits. Instead of
leaving bubbles, an incident particle would interact with
the array by applying a local unitary operation to each
qubit that it intercepts along its path, and the possible
trajectories could ideally be distinguished with a single
projective measurement. Such devices could be inter-
preted as distributed quantum sensor networks of qubits
designed to map unknown spatially-structured perturba-
tions and could extend current quantum particle detec-
tion schemes [11–14]. Existing quantum sensor networks
for multiparameter estimation [15], clock synchronization
[16], and telescopy [17] have previously shown that en-

tanglement enables improved measurement of spatially
distributed quantities compared to what is possible clas-
sically. However, it remains unclear whether entangle-
ment might similarly upgrade quantum sensors aiming
to unambiguously distinguish particle trajectories.

The performance of a quantum trajectory sensor can
be quantified by the failure probability of not determining
the correct particle trajectory after a single measurement,
which decreases with the strength θ of the interaction
between the particle and the qubits it perturbs along
its path. Our main question inquires whether entangled
sensor states might exist which reduce the θ required for
trajectory sensing to succeed with low failure probability
using a single-shot measurement.

The concept of using projective measurements to de-
tect various perturbations on an entangled quantum state
is familiar elsewhere as the setting for quantum error cor-
rection, where the goal is instead to preserve the state.
By reimagining codes as sensors rather than a means
to protect information, our question equivalently asks
whether quantum codes exist which allow the “errors”
imposed by different particle trajectories to be distin-
guished using a syndrome measurement.

In this work, we formulate a noiseless, idealized version
of the quantum trajectory sensing (TS) problem in which
every qubit along the particle’s path is rotated by the
same angle θ ∈ [0, π] around some fixed axis of the Bloch
sphere, where θ parameterizes the particle-qubit interac-
tion strength. We solve this problem and show for some
threshold θmin that for all θ ∈ [θmin, π), there exist entan-
gled sensor states that perfectly discriminate trajectories
in a single shot while any unentangled sensor must in-
stead fail with nonzero probability. For θ ∈ [θmin, π), an
unentangled sensor requires Θ(log(1/ϵ)) separate parti-
cles to repeatedly pass through the array along the same
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path to estimate their common trajectory with ϵ error
probability; in contrast, an entangled sensor could per-
fectly determine the trajectory with just one particle. We
begin by developing intuition through a minimal example
and introducing a mathematical framework for trajectory
sensing. We then derive θmin for two TS scenarios and
characterize the TS enhancement possible with entangle-
ment.

A minimal example.—The following example provides
a helpful concrete instance of a quantum trajectory sen-
sor. Let Z and X be Pauli operators and denote the ±1
eigenvectors ofX with |+⟩ and |−⟩, respectively. Suppose
an array of two qubits is prepared to some initial state
|ψ⟩, and an incoming particle rotates one of the qubits
by RZ(θ) = e−iθZ/2. If θ = π and |ψ⟩ = |++⟩, the
possible output states |+−⟩ and |−+⟩ can be perfectly
distinguished in a single measurement because they are
orthogonal. However, if θ < π instead (a “weak” inter-
action regime), the outputs of |ψ⟩ = |++⟩ are no longer
orthogonal, and therefore they can only be distinguished
with some nonzero probability of failure. For θ = π

2 ,
the entangled input |ψ⟩ = 1√

2
(|01⟩+ |10⟩) can in fact be

verified to produce two possible orthogonal outputs, and
thus a single measurement will perfectly determine the
rotated qubit. Hence, this example demonstrates that
output orthogonality is a requirement for a perfect tra-
jectory sensor and suggests that an unentangled input
state cannot perfectly distinguish all trajectories if θ < π,
whereas an entangled input possibly can.

Trajectory sensing problem.—We next formalize the
TS problem. Suppose we are given an array of n qubits,
each labeled 1 to n, as well as a fixed positive integer m
wherem ≤ n. A trajectory is defined to be a size-m set of
qubit indices, and the particle will interact with the array
by rotating all of the qubits in its trajectory by RZ(θ)
for some fixed, precisely known interaction strength θ.
The set of all allowed trajectories for the particle is rep-
resented with T . In the example above, n = 2, m = 1,
and T = {{1}, {2}}. Given an n-qubit input sensor state
|ψ⟩, each trajectory T ∈ T yields a distinct output state
R(T )(θ) |ψ⟩, where R(T )(θ) is the operation of applying
RZ(θ) to each of the qubits in T . The TS problem asks
for what values of θ there exists an input state |ψ⟩ such
that all the outputs R(T )(θ) |ψ⟩ for T ∈ T are mutually
orthogonal and therefore perfectly distinguishable—with
zero probability of failure—via a single projective mea-
surement. These criteria can be represented mathemati-
cally by the following orthogonality conditions:

⟨ψ|R†(T )(θ)R(T ′)(θ) |ψ⟩ = δT,T ′ (1)

for all T, T ′ ∈ T . Any |ψ⟩ satisfying these conditions at a
particular θ will be called a TS state; however, note that
in general |ψ⟩ is not guaranteed to satisfy these criteria
at interaction strengths other than θ.

Symmetric trajectory sensors.—We now introduce a
general class of TS problems and provide a working ex-

ample to illustrate how to systematically determine the
range of θ for which a valid TS state exists. A TS prob-
lem is fully determined by the values of n,m, and T ; here
we let T = Tsym, where Tsym includes all of the

(
n
m

)
size-

m subsets of the indices {1, . . . , n} (see Figure 1). The
symmetric TS problem seeks any TS state that yields or-
thogonal outputs for each trajectory in Tsym, which we
call a TSsym state.

FIG. 1. Allowed particle trajectories (black lines) for TSsym

(left) and TScyc states (right) when n = 4 and m = 2.

The existence of a TSsym state at a particular θ can
be determined by substituting the naive general ansatz
|ψ⟩ =

∑
j cj |j⟩ (where the cj ∈ C and the |j⟩ are Z-

eigenbasis states) into Eq. (1) for all T, T ′ ∈ Tsym and
checking if the resulting system admits a solution of cj .

A trivial solution is evident at θ = π (i.e., |ψ⟩ = |+⟩⊗n
),

so we inquire whether a nontrivial solution exists at any
weak θ < π. For general n and m, however, this system

would include |Tsym|2 =
(
n
m

)2
equations in 2n complex

variables, which is computationally intractable for large
n.
Two symmetries of the symmetric TS problem can be

leveraged to greatly simplify this system. The first is a
permutation symmetry: Tsym does not change after per-
muting the index labels assigned to each qubit. Conse-
quently, a TSsym state continues to satisfy Eq. (1) under
any permutation of the indices.
A bit-flip symmetry also holds. Note that the complex

conjugation of Eq. (1) gives

δT,T ′ =
(
⟨ψ|R†(T )R(T ′) |ψ⟩

)∗
= ⟨ψ|

(
R†(T )R(T ′)

)†
|ψ⟩

= ⟨ψ|X⊗n
(
R†(T )R(T ′)

)
X⊗n |ψ⟩ (2)

for any T, T ′ ∈ Tsym, since each R(T )(θ) operator is a
tensor product of single-qubit RZ(θ) and identity oper-

ators and XRZX = R†
Z . Eq. (2) implies that X⊗n |ψ⟩

also satisfies Eq. (1) if |ψ⟩ does.
The fact that Eq. (1) remains satisfied under the

action of these two symmetries ultimately enables the
search for TSsym states to be restricted to a much smaller
symmetrized subspace; specifically, a TSsym state exists
if and only if there exists a TSsym state which is per-
mutation and bit-flip invariant [18]. Thus, the TS state
ansatz can be simplified to span only this invariant space.
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In particular, a symmetrized basis is given by the unnor-
malized states

|k⟩ = |wtn(k)⟩+ |wtn(n− k)⟩ (3)

for k = 0, . . . ,
⌊
n
2

⌋
, where |wtn(w)⟩ is the unnormalized

sum over all n-qubit Z-eigenbasis states with Hamming
weight w (e.g., |wt3(1)⟩ = |001⟩+ |010⟩+ |100⟩) and the
amplitude of the k = n/2 state is halved if n is even to
avoid double-counting. These states can equivalently be
viewed as superpositions of Dicke states [19].

The specific case of n = 4 and m = 2 illustrates
how these symmetry-based simplifications can be ap-
plied to cleanly determine bounds on the interval of fea-
sible θ. Substituting the symmetrized TS state ansatz

|ψ⟩ =
∑n/2

k=0 ck |k⟩ into Eq. (1) gives a system in just 3
variables ck ∈ C as opposed to the 24 variables used in
the naive approach, and all but 3 of the equations be-
come redundant. Accordingly, the existence of a TSsym
state for a given value of θ is determined by the existence
of a solution to a 3-by-3 linear system:





1 = |c0|2 + 4|c1|2 + 3|c2|2

0 = |c0|2 + 2|c1|2(1 + cos θ) + |c2|2(1 + 2 cos θ)

0 = |c0|2 + 4|c1|2 cos θ + |c2|2(2 + cos 2θ).

(4)

Assuming θ ̸= 0, this system transforms into a normal-
ization condition along with the two constraints |c0|2 =

cos(2θ)|c2|2 and |c1|2 = − cos(θ)|c2|2. Because the |ck|2
must be nonnegative, a solution requires cos 2θ ≥ 0 and
cos θ ≤ 0. Subsequently, a TSsym state exists solving this
n = 4, m = 2 problem if θ ≥ 3π

4 , proving that nontrivial
TSsym states indeed exist in the weak interaction regime
where θ < π.

For general even n with m = n/2, the analogous sym-
metrized system has a solution if the ck similarly obey

|ck|2 = (−1)m−k cos [(m− k) θ] |cm|2 (5)

for all k = 0, . . . , n/2, and the requirement that |ck|2 ≥
0 bounds the achievable θ per the following theorem
(proved fully in [18]):

Theorem 1. For arbitrary n and m, a sufficient crite-
rion for the existence of a TSsym state is

θ ≥ (n− 1)π

n
. (6)

Furthermore, when m =
⌊
n
2

⌋
or

⌈
n
2

⌉
, Eq. (6) becomes a

necessary criterion.

Theorem 1 confirms that arbitrarily sized TSsym states
exist at some nontrivial θ < π. However, it also suggests
that for a TSsym state to perfectly distinguish trajecto-
ries, θ must increase towards its maximum value of π as
the number of qubits n grows. This loss of “sensitivity”
is intuitively a consequence of the fact that the number

|Tsym| =
(
n
m

)
of trajectories to be distinguished generally

scales much faster than the number of qubits n in the sen-
sor. This observation suggests that the sensitivity of a
TS state to the interaction strength θ might be increased
by systematically reducing the number of trajectories in
T .
Cyclic trajectory sensors.—Since particles like neutri-

nos and dark matter likely interact with lower θ than
achievable with TSsym states, it would be desirable to find
alternative TS states that succeed at even smaller values
of θ. Note that Tsym includes many trajectories which
may be unphysical in a practical setting (e.g., where
the constituent qubits are not localized together along
a continuous curve). In fact, many experimental applica-
tions may require relatively few trajectories—for exam-
ple, neutrino paths might only comprise straight lines.
For these reasons, we now restrict T to only include

“continuous” trajectories where the m constituent qubits
have consecutive indices modulo n (see Figure 1). Equiv-
alently, T = Tcyc with Tcyc = {zj({1, . . . ,m}) : j =
1, . . . , n}, where z = (1 . . . n) is the cyclic permutation
of n indices. Observe that Tcyc ⊆ Tsym and |Tcyc| = n
as opposed to

(
n
m

)
in the symmetric case. The cyclic

TS problem concerns finding any TS state distinguishing
Tcyc, which we will call a TScyc state. As before, we ask
for what θ there exists a TScyc state satisfying Eq. (1)
for all T, T ′ ∈ Tcyc; however, the naive approach using a
completely general TS ansatz still remains computation-
ally intractable for large n.

The key insight is that there exist TScyc states which
can be decomposed as the tensor product of multiple
identical, smaller TS states, and this observation will
allow for the system of Eq. (1) to be greatly simpli-
fied. The n = 4, m = 2 example illustrates this sim-
plification. For a given θ, define |ϕ⟩ to be the two-
qubit TSsym state that yields orthogonal outputs for the
smaller n′ = 2, m′ = 1 problem from the earlier minimal
example. Preparing each of the qubit pairs {1, 3} and
{2, 4} into the state |ϕ⟩, we then assert that the resulting
4-qubit state |ψ⟩ = |ϕ⟩1,3 ⊗ |ϕ⟩2,4 is a TScyc state with
n = 4, m = 2 at the same value of θ.

This assertion is justified by considering the action of
two trajectories T = {1, 2} and T ′ = {2, 3} on |ψ⟩. To
show the left side of Eq. (1) equals zero, the expression
can be factored as

⟨ψ|R†(T )R(T ′) |ψ⟩
= ⟨ψ| (R†

Z ⊗R†
Z ⊗ I ⊗ I)(I ⊗RZ ⊗RZ ⊗ I) |ψ⟩

=
(
⟨ϕ|1,3 (R

†
Z ⊗RZ) |ϕ⟩1,3

)(
⟨ϕ|2,4 (I ⊗ I) |ϕ⟩2,4

)
= 0

(7)

due to the fact that (RZ ⊗ I) |ϕ⟩ and (I ⊗ RZ) |ϕ⟩ are
orthogonal by the definition of |ϕ⟩. A similar argument
holds for any other choice of T, T ′ ∈ Tcyc, from which
we conclude that |ψ⟩ is indeed the desired TScyc state.
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Moreover, since this |ψ⟩ exists if a suitable |ϕ⟩ exists,
the desired range of feasible θ includes the range of θ for
which the smaller n′ = 2, m′ = 1 symmetric TS problem
can be solved. Thus, by Theorem 1, a TScyc state |ψ⟩
with n = 4, m = 2 exists if θ ≥ π

2 . Limiting the set of
allowed trajectories from Tsym to Tcyc therefore expands
the range of feasible θ from

[
3π
4 , π

]
to

[
π
2 , π

]
, supporting

the intuition that decreasing the number of trajectories
should also lower the minimum particle-qubit interaction
strength needed to distinguish them.

This method of constructing TScyc states generalizes
to show that, so long as n = cm for some positive integer
c > 1, a TScyc state exists which decomposes into m
identical copies of a smaller TSsym state with n′ = c,
m′ = 1 [18]. Since the larger TScyc state exists over
the range of θ for which the smaller TSsym state exists,
this decomposition permits the range of feasible θ to be
expressed entirely in terms of the size parameter c of
the smaller symmetric problem. Solving Eq. (1) for this
smaller problem using the symmetries introduced earlier
leads to the following theorem (also proved fully in [18]):

Theorem 2. Let n = cm for some positive integer c > 1.
Then a sufficient criterion for the existence of a TScyc
state is

θ ≥ arccos

(
−1 +

⌈ c
2

⌉−1
)
. (8)

In contrast to Theorem 1, Theorem 2 shows that so
long as n is a constant multiple of m, the required θ
needed for a TScyc state to perfectly distinguish trajecto-
ries remains constant as the number of qubits and trajec-
tories (both equal n) grows. For example, when n = 2m,
a TSsym state requires θ ≈ 0.95π to distinguish about a
million trajectories, whereas a TScyc state only requires
θ = 0.5π!

Quantum enhancement from entanglement.—The
powerful ability of TSsym and TScyc states to perfectly
distinguish trajectories in one shot for weak θ < π is a
direct consequence of entanglement. Intuitively, entan-
glement allows the θ-rotations applied to each qubit in
a trajectory to add constructively such that Eq. (1) can
be satisfied. The following theorem rigorously asserts the
proposition established in our earlier minimal example
that there are no unentangled TS states if θ < π:

Theorem 3. For arbitrary n,m, and T with |T | > 1,
a fully unentangled TS state of the form

⊗n
i=0 |ψi⟩ for

some single-qubit states |ψi⟩ exists if and only if θ = π.

Proof. “ =⇒ ” direction: The expression obtained by
substituting

⊗n
i=0 |ψi⟩ into the left side of Eq. (1) can be

expanded as a product of terms that look like ⟨ψi|Ai |ψi⟩,
where Ai = I,RZ(θ), or R

†
Z(θ). Eq. (1) for any T ̸=

T ′ hence implies that some ⟨ψi|RZ(θ) |ψi⟩ = 0, which
requires that θ = π. “ ⇐= ” direction: if θ = π, then
|+⟩⊗n

is a TS state.

It follows that the TSsym and TScyc states constructed
above must be entangled if θ < π. Hence, entangled
TS states can perfectly distinguish trajectories at lower
θ than unentangled TS states can.
For the problem of distinguishing a fixed set of tra-

jectories, this quantum enhancement can be appreciated
visually by comparing, as a function of θ, the single-shot
failure probabilities of a quantum protocol utilizing an
entangled TS state against a “classical” protocol which
instead uses an unentangled state as a sensor (see Sup-
plemental Material [20] for details). Figure 2 shows for
the case of n = 4, m = 2, and T = Tsym that the
quantum protocol succeeds with lower failure probabil-
ity for all nontrivial values θ ∈ (0, π) of the interaction
strength. Furthermore, the quantum protocol succeeds
with zero failure probability for all θ ≥ 3π

4 satisfying Eq.
(6) (depicted in the highlighted region), since Theorem 1
guarantees the existence of a TS state over this interval
of θ. In contrast, so long as θ < π, the classical pro-
tocol fails with some nonzero probability because The-
orem 3 guarantees that no unentangled TS state exists
over this range of θ. More generally, for arbitrary n and
m, entanglement-enhanced trajectory sensing can suc-
ceed perfectly in one shot over an interval of θ ∈ [θmin, π)
where a protocol without entanglement cannot; θmin is
the bound given by Eq. (6) or (8) when T = Tsym or
Tcyc, respectively.

FIG. 2. Single-shot failure probabilities of classical and quan-
tum TS protocols vs. particle-qubit interaction strength θ
when n = 4, m = 2, and T = Tsym. Inset shows number of
TS protocol repetitions required to estimate trajectory with
error probability ϵ when θ = θmin = 3π

4
.

Entangled sensors exhibit decisive benefits even when
we expand the TS protocol to allow for multiple re-
peated measurements. Suppose r particles sequentially
pass through the array along the same trajectory T , and
we measure and reinitialize the TS state between each
particle interaction. We then perform a majority vote
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on the r measurement outcomes to estimate T . The in-
set plot to Figure 2 shows for the protocols in the above
example how large r must be for the majority vote to pro-
pose T with ϵ error probability when θ = θmin = 3π

4 . For
an unentangled sensor with θ ∈ [θmin, π), the probability
that the majority vote fails is given by the lower tail of a
binomial distribution in r trials, whose size is well-known
to decrease exponentially with r. Subsequently, r must
be on the order of Θ(log(1/ϵ)) for the majority vote to
succeed with error probability ϵ. On the other hand, an
entangled sensor has perfect one-shot success probabil-
ity over this range of θ and would only require a single
particle to determine T with zero error.

Connection to error correction.—A simple shift of per-
spective allows trajectory sensing to be understood as a
quantum error correction scenario and reveals that the
existence of these TS states is no accident. Given n,m,
and a set of trajectories T , consider the quantum “error”
channel

E(ρ) = 1

|T |
∑

T∈T
R(T )(θ)ρR†(T )(θ), (9)

which corresponds to the action of picking an unknown
trajectory T ∈ T uniformly at random and applying it
to the input state density matrix ρ. Note that any TS
state ρTS is actually a code state which corrects this error
channel, since a single syndrome measurement can pre-
cisely reveal which error R(T ) was applied to ρTS, and ρTS

can then be recovered by applying the operator R†(T ).
In fact, the existence criteria for a TS state given by
Eq. (1) correspond exactly to a special case of the Knill-
Laflamme error correction criteria for the channel E and
one-dimensional code {|ψ⟩} [21]. Although many con-
ceivable codes can recover the errors from E , TS codes
are distinguished by the additional ability to perfectly
identify and discriminate all possible errors.

It is natural to inquire whether the existing vast liter-
ature on quantum codes can be used to solve the TS
problem. Indeed, the n = 4, m = 2, θ = π

2 TScyc
state |ψ⟩ = 1

2 (|0011⟩ + |0110⟩ + |1100⟩ + |1001⟩) con-
structed earlier spans a stabilizer code with generators
⟨−Z1Z3,−Z2Z4, X1X3, X2X4⟩; this code is a subcode
of the [[4, 2, 2]] CSS code [22], which is the smallest
toric code [23]. However, TSsym states with θ < π and
the same n,m instead constitute a new variety of non-
stabilizer permutation-invariant codes, suggesting that
such codes might be useful for discriminating highly cor-
related non-Pauli errors.

Conclusion.—The single-shot trajectory sensing made
possible by entangled TS states is particularly promising
for experimental applications where the desired particles
rarely interact with the sensor. Realistically, very weakly
interacting particles such as dark matter may require a
θ too small for TSsym or TScyc states to exist. How-
ever, for many applications, these classes of TS states
may support more trajectories than needed, and further

restricting T should continue to decrease the achievable
θ. We also note that the sensors sought here determine
a particle’s trajectory assuming it has already positively
entered the device; as such, it would be desirable to aug-
ment these TS states with another sensor for simple par-
ticle detection. Additionally, although TS states may be
particularly susceptible to decoherence due to their en-
tanglement, they are fortunately typically not maximally
entangled and in fact must utilize unusual multipartite
entanglement. Finally, given that TS states are special
quantum code states, we ask how known families of quan-
tum codes might enable new trajectory sensing capabili-
ties.
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This Supplemental Material explains the classical and
quantum trajectory sensing (TS) protocols whose failure
probabilities are plotted in Figure 2 of the main text.

Classical protocol.—The following classical TS proto-
col does not use entangled sensors and serves as a per-
formance benchmark in Figure 2. Let the notation |ψθ′⟩
represent a valid TS state which satisfies the orthogo-
nality conditions for an arbitrary value θ′ of the interac-
tion strength. The protocol takes a set of allowed trajec-
tories Tsym and interaction strength θ as known inputs
and proceeds as follows. First, the unentangled sensor
state |ψπ⟩ = |+⟩⊗n

is prepared on the qubit array. As-
sume that an unknown trajectory T is chosen uniformly
at random from Tsym, transforming the sensor state to
R(T )(θ) |ψπ⟩. Each qubit of this output state is subse-
quently measured in the {|+⟩ , |−⟩} basis; let S be the set
of qubits which were measured to be |−⟩. The proposed
estimate for T is selected uniformly at random from the
set T ′, where T ′ = {T ′ ∈ Tsym : S ⊆ T ′}.

Quantum protocol.—The following quantum trajectory
sensing protocol is used in Figure 2 to illustrate the
TS enhancement possible with entangled sensors. Let

θmin = (n−1)π
n be the bound given by Theorem 1. First

suppose that θ ≥ θmin. Then the TS state |ψθ⟩ guar-
anteed to exist by Theorem 1 is prepared and an un-
known, uniformly random trajectory T ∈ Tsym takes
the state to R(T )(θ) |ψθ⟩. The output state is measured
in the orthonormal (partial) basis of possible outputs
{R(T ′)(θ) |ψθ⟩ : T ′ ∈ Tsym}, allowing T to be deter-
mined exactly with unit probability.
Now suppose that θ < θmin. Then Theorem 1 no longer

guarantees the existence of a TS state yielding orthogonal
outputs. In this case, |ψθmin⟩ is thus always chosen as
the input. The output state R(T ) |ψθmin

⟩ resulting from
T is then subjected to the projective measurement with
projectors



PT ′ ∀T ′ ∈ Tsym, I −

∑

T ′∈Tsym

PT ′



 , (1)

where

PT ′ = R(T ′)(θmin) |ψθmin
⟩⟨ψθmin

|R†(T ′)(θmin) (2)

for all T ′ ∈ Tsym. If the measurement returns some PT ′ ,
then T ′ is proposed as the estimate for T . Alternately, if
the measurement returns I −∑

PT ′ , then a trajectory is
proposed uniformly at random from Tsym.
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