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Abstract—Distributed Quantum Computing (DQC) provides
a means for scaling available quantum computation by inter-
connecting multiple quantum processor units (QPUs). A key
challenge in this domain is efficiently allocating logical qubits
from quantum circuits to the physical qubits within QPUs, a
task known to be NP-hard. Traditional approaches, primarily
focused on graph partitioning strategies, have sought to reduce
the number of required Bell pairs for executing non-local CNOT
operations, a form of gate teleportation. However, these methods
have limitations in terms of efficiency and scalability. Addressing
this, our work jointly considers gate and qubit teleportations
introducing a novel meta-heuristic algorithm to minimise the net-
work cost of executing a quantum circuit. By allowing dynamic
reallocation of qubits along with gate teleportations during circuit
execution, our method significantly enhances the overall efficacy
and potential scalability of DQC frameworks. In our numerical
analysis, we demonstrate that integrating qubit teleportations
into our genetic algorithm for optimising circuit blocking re-
duces the required resources, specifically the number of EPR
pairs, compared to traditional graph partitioning methods. Our
results, derived from both benchmark and randomly generated
circuits, show that as circuit complexity increases—demanding
more qubit teleportations—our approach effectively optimises
these teleportations throughout the execution, thereby enhancing
performance through strategic circuit partitioning. This is a step
forward in the pursuit of a global quantum compiler which will
ultimately enable the efficient use of a ’quantum data center’ in
the future.

I. INTRODUCTION

Quantum computers can, in principle, perform tasks that
have previously been impossible or highly inefficient on clas-
sical computers [1], such as factoring large numbers using
Shor’s algorithm [2], [3], or simulating quantum systems [4],
[5]. However, the scaling of monolithic quantum processors
towards doing useful, error free computations is difficult to
achieve [6]. Therefore, companies such as IBM are looking
towards inter-connected distributed quantum processor units
(QPUs) and thus, quantum networking is required to execute
useful circuits, at scale.

Quantum circuits are a visual way to represent the temporal
order of single or multi-qubit gates, to perform a designed
algorithm. Quantum gates are unitary operations that operate
on a logical qubit state |ψ⟩ = α |0⟩+ β |1⟩ [7]. In Distributed
Quantum Computing (DQC) there are three important types of
operations, single-qubit gates (e.g., Pauli rotation, Hadamard),
local CNOT (cx) (control and target qubits within the same
processor), and non-local CNOT (also called telegate). In the
latter, a CNOT operation should be executed between qubits

(a) (b)

Figure 1: Circuits that implement (a) a teleportation operation of a
state |ψ⟩ from QPU 1 to QPU 2, and (b) a teleportation of a CNOT
operation between a control qubit and target qubit that are stored in
different QPUs. Both operations require a Bell state |Φ+⟩ as well as
the transmission of classical bits that correspond to the outcome of
qubit measurements.

that are stored in different QPUs. The Hadamard gate, Pauli
gates, and CNOT operations form a universal set for quantum
computation [8], meaning that any arbitrary unitary transfor-
mation of a quantum state can be expressed by only these three
gates [9], henceforth we will assume that all circuits have been
decomposed into this universal set of operations. The CNOT
gate is a two qubit operator which requires the control of one
qubit by another and is given by the following matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
To execute a distributed algorithm, the logical qubits must

be mapped to physical qubits in the QPUs and a means
for performing operations between non-local qubits must be
established. Two types of non-local operations can occur, qubit
or gate teleportation. Qubit teleportation is the process of
transferring a logical qubit state from one QPU to another
via the use of a Bell state (EPR pair) [10] and some classical
communication. Gate teleportation, on the other hand, does
not move the qubit state but allows one qubit to control the
operation on another, distant qubit. The circuits required to
perform both qubit teleportaions and a teleported controlled
operation between two distant logical qubits [11] are shown in
Figure 1. Both operations make use of Bell states which need
to be distributed by the network (one half to each QPU). This
is a costly procedure and hence there is a need for minimising
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the teleportations in order to reduce the load on the network
and to maximise the likelihood of successfully executing a
quantum circuit before qubits decohere.

When executing a quantum circuit on a single QPU, it’s
crucial for the compiler to dynamically map logical qubits
to neighboring physical positions. This mapping allows gate
operations by enabling direct interactions. Numerous studies
have addressed the challenges and solutions related to quantum
circuit compilation (e.g., [12]–[14]) in the case of a single
QPU. Our work, however, assumes a fully connected archi-
tecture for QPUs, where each qubit can directly interact with
any other. A similar assumption would be the existence of an
efficient compiler that handles the qubit mapping inside each
QPU separately. Such assumptions allow us to abstract away
the constraints of the compilation problem, focusing instead on
optimising the network operations necessary for the distributed
quantum computation. Assuming only gate teleportations as
a means towards DQC, previous works have used various
heuristic methods to minimise solely the number of non-local
(controlled) operations within a circuit [15]–[19].

Although previous works have primarily considered the
minimisation of gate teleporations, this work sets out to jointly
consider gate and qubit teleportations as an enablement of
DQC. Thus, the network cost is associated with the Bell
pairs requested from both teleportation operations. Recently
the authors in [20] introduced a graph partitioning framework
that incorporates qubit teleportations into network cost calcula-
tions. While their work also recognizes the importance of qubit
teleportations in DQC, it differs from ours in its constraint
of equalizing operation counts across QPUs. Our study, in
contrast, views the generation of Bell pairs for network oper-
ations as the primary limiting factor, thereby allowing for more
flexible QPU operation allocations. Recently, [21] employs
Quadratic Unconstrained Binary Optimisation to minimise the
network cost assuming only qubit teleportations. In the latter
work, the authors divide a quantum circuit into predetermined
slices such that each such slice can be run without the need
of gate teleportations. Finally, in [22], the authors employ a
window based partitioning of a quantum circuit considering
also qubit teleportations. Nevertheless, the optimisation over
the latter is realized through a tuning parameter that determines
how ”hard” should be for a qubit to migrate to a different QPU.
In contrast, in our work we optimise over the slicing of the
circuit by allowing gate teleportations within each slice and
qubit teleportations across slices to facilitate the distributed
quantum computation.

Specifically, this paper addresses the problem of modeling
and minimising the network cost of executing a quantum
circuit into a DQC framework. Allowing both gate and qubit
teleportations, we dynamically allocate the logical qubits to
physical qubits into the quantum processors to execute a
quantum algorithm distributedly. Since both teleportation oper-
ations require a Bell pair our goal is to minimise the number
of teleportations needed to complete the execution. For this
purpose, we propose a novel meta-heuristic called Optimised
Distributed Quantum Circuit Execution via Meta-Heuristic
Approach (ODQC-MHA) that uses a genetic algorithm. Our
method significantly enhances the overall efficacy and po-

tential scalability of the DQC framework by dynamically
allocating the qubits across distributed QPUs.

The rest of the paper is organised as follows, in Section II
we introduce the logical qubit allocation problem for static
assignment within a monolithic QPU as well as a straight
forward partitioning heuristic. Section III introduces qubit
teleportations to the qubit mapping problem and we describe
our meta-heuristic for solving this problem approximately.
Section IV shows the results of the performance of our meta-
heuristic against benchmark circuits and randomly generated
circuits. Finally Section V concludes the paper.

II. QUBIT ALLOCATION TO MINIMISE GATE
TELEPORTATIONS

Focusing only on gate teleportations as the means towards
DQC, one way to decrease the network cost is to leverage
graph partitioning algorithms [23]–[25] in an appropriately
generated graph. In this section, we describe such process for
the case of two and multiple QPUs (Section II-B and II-C
respectively).

In this study, we operate under the assumption that there
is complete connectivity both between and within the QPUs.
This means we overlook any compilation within a QPU and
presume that the compiler handles the required swaps in a
non-fully connected QPU to ensure adjacent qubits. Research
has been done on simulating circuits on realistic, constrained
processor architectures by minimising the number of swaps
required to execute controlled operations [26]. In practice
constraints on the connectivity within a processor are likely to
exist, however, one would need a global compiler to be able
to maximise the ability to execute a circuit on NISQ devices.

A. Minimising Gate Teleportation: Model & Problem Descrip-
tion

In the graph representation of a circuit denoted as G =
(V,E), V represents a set of n qubits and E defines connec-
tions between qubits. The edge-weight function

c : V × V → N0,

where N0 denotes the set of natural numbers including zero
represents the frequency of controlled operations between
qubits u and v. Therefore, c(u, v) = 0 indicates the absence
of an edge and thus of a CNOT gate between u and v. The
cost of a partition cost(V1, V2) is defined as the sum of all
weights c(u, v) where u ∈ V1 and v ∈ V2 belong to different
partitions. The aim is to find k partitions of the graph each of at
most size v = n

k such that the capacity of the edges between
partitions is minimised, thus reducing the number non-local
controlled operations, and the number of Bell pairs required.
The constraint of almost equal partitions is to minimise the
maximum number of physical qubits needed from a QPU.

Minimising the number of non-local operations is crucial
because entanglement is a costly resource and distributing it
into a network of QPUs requires extra time steps and is error-
prone [27].
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Figure 2: Example of initial qubit allocation process via graph
partitioning to minimise non-local operations between 3 processors
of sizes: (6,8,12). The edge weight is signified by the line colour,
darker lines represent higher number of non-local operations

B. K-L Algorithm for 2 QPUs

One commonly used heuristic method for bi-partitioning a
weighted graph is the Kernighan-Lin algorithm [23]. The K-L
algorithm works by taking the weighted graph G = (V,E) and
c as the edge-weight function. By swapping pairs of vertices
ui ∈ V1 and vi ∈ V2 with maximum cost improvement, the
swapped pair are locked in place and the same process is
done with another pair until all vertices are locked. The best
configuration is chosen and the algorithm is run again until a
close to optimal configuration is found. The downside of the
K-L algorithm is that it can only be used for bi-partitioning
of a graph. In the next section we propose a similarly simple
heuristic for partitioning a graph, into any size partitions k.
Such extension enables the division of a quantum circuit’s
logical qubits across multiple QPUs, beyond just two, when
available.

C. Greedy Partitioning Algorithm in the case of multiple
QPUs

In this section we describe Greedy Partitioning Algorithm
in the case of multiple QPUs (GPA), a straightforward and
practical heuristic approach for distributing qubits in circuits
with varying numbers of qubits and depth, across any quantity

Algorithm 1 Greedy Partitioning Algorithm (GPA)

1: procedure ASSIGNQUBITSTOQPUS(G,QPUList)
2: Filled← {} ▷ Set to track filled QPUs
3: Allocation← {} ▷ Map of qubits to QPUs
4: QPUOrder ← sort QPUList by capacity, descend-

ing
5: for QPU in QPUOrder do
6: Supernode← {}
7: while Supernode size < QPU capacity and G

has unallocated nodes do
8: TargetNode ← select node in G with max

weighted edge to Supernode, not in Filled
9: Merge TargetNode into Supernode

10: Update Allocation to include TargetNode→
QPU

11: end while
12: Add Supernode to Filled
13: end for
14: return Allocation
15: end procedure

and scale of QPUs. The heuristic works by always contracting
the largest weighted edge to build supernodes - respresenting
QPUs - one by one. Once a supernode (QPU) has been filled
to capacity, none of the nodes within can be swapped later in
the algorithm. The largest weighted edge that is adjacent to the
supernode is always contracted at each step of the heuristic,
with no look-ahead. This method is computationally inexpen-
sive and so can be used as a quick heuristic for qubit allocation
within our proposed meta-heuristic (proposed in Section III).
The pseudo-code for GPA is shown in Algorithm 1. This
heuristic is performed once to produce a good allocation of
qubits to processors where the number of interactions between
each processor is reduced. The algorithm is implemented
in python and utilises the NetworkX framework to do the
edge contractions. Here, an edge contraction is the process of
producing a graph in which two node v1 and v2 are replaced
with a single node, v, such that v is adjacent to the union of
the nodes to which v1 and v2 were originally adjacent, also
called ’vertex identification’.

III. MINIMISING REMOTE OPERATIONS: MODEL &
PROBLEM DESCRIPTION

Thus far, our efforts have concentrated on reducing the
quantity of non-local controlled operations, aiming ultimately
to decrease the necessary number of Bell pairs throughout the
execution of a distributed quantum circuit. However, if instead
we aim to minimise the overall number of Bell pairs, we can
allow for the reallocation of qubits within one application via
qubit teleportation operations. In this section we introduce the
proposed framework, Optimised Distributed Quantum Circuit
Execution via Meta-Heuristic Approach (ODQC-MHA), with
the goal of optimising the partition of a quantum circuit to
distributed QPUs. In this section, we introduce ODQC-MHA
by describing its high level design, introducing the genetic
algorithm being used in the framework and finally analyzing
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in detail every component that it comprises (Sections III-A,
III-B, III-C respectively).

A. Optimised Distributed Quantum Circuit Execution via
Meta-Heuristic Approach (ODQC-MHA) - High Level Design

In this section we introduce the ODQC-MHA framework
by describing its high level design. ODQC-MHA allows the
circuit to be analysed in blocks of varying size, using any
algorithm for k partitioning a graph within each block. For
each block we attempt to minimise the number of gate tele-
portations while allowing qubit teleportations between blocks
to re-allocate the logical qubits when needed. Finding the
optimal blocking is challenging because of the many possible
combinations, however, this problem is to be solved by our
heuristic. Note that each allocation has no information about
the previous block’s allocation and so a meta-heuristic is
required to minimise the gate and qubit teleportations together.

The high level description of the proposed framework is
illustrated in Figure 3. Note that to enhance circuit exe-
cution efficiency, qubit teleportations are allowed between
blocks. Given the vast search space comprising various circuit
partitions and qubit placements, the approach combines any
partitioning algorithm for intra-block qubit placements (this
can be K-L, GPA or any other procedure) with a genetic
algorithm to jointly consider the qubit teleportations. The
proposed genetic algorithm evaluates its utility given a circuit
partition based on the placements suggested by the particular
partitioning algorithm used, focusing on achieving the opti-
misation objective of minimising the network cost. Note that
this is not a joint optimisation but a meta-heuristic that uses
the output of some heuristic (K-L, Greedy algorithm etc.) to
explore the solution space more thoroughly. The problem of
graph partitioning is NP-HARD per block hence the blocking
model proposed in this paper is hard to solve without a novel
heuristic.

In the next sections, a genetic algorithm is proposed to
approximate an optimal ’blocking’ of the circuit to minimise
the total number of Bell pairs required for qubit and gate
teleportations.

B. Optimised Distributed Quantum Circuit Execution via
Meta-Heuristic Approach (ODQC-MHA) - Genetic Algorithm

Genetic algorithms mimic natural evolution by evolving
solutions to problems through a process of selection, mutation,
and crossover [28]. They start with a diverse population of
individuals, where each individual’s ”genotype” encodes a
potential solution, and its ”phenotype” — its performance or
fitness — reflects the solution’s effectiveness. Over successive
generations, individuals with higher fitness are more likely to
pass their genes to the next generation, allowing the algorithm
to ”naturally select” increasingly effective solutions.

In our approach, we utilize a genetic algorithm to optimise
the distribution of computational tasks in a quantum com-
puting network, specifically aiming to minimise the requisite
number of Bell pairs for efficient quantum communication.
The core of our algorithm is defined by a population of
candidate solutions, denoted as P = {p1, p2, ..., pN}, where

 
Figure 3: A high level overview diagram of the proposed framework
(ODQC-MHA) for blocking/partitioning quantum circuits. The circuit
is broken into blocks of arbitrary size (number of layers). Within each
block, logical qubit allocation is performed using graph partitioning
methods in order to reduce the number of Bell pairs required for non-
local operations. After this, between each block, qubit teleportations
are performed to reallocate the logical qubits according to each blocks
allocation.

each candidate solution pi represents a potential configuration
of dividing the target quantum circuit into distinct blocks.

Each candidate solution p ∈ P is characterized by its
genotype, Gp, which in our model is a sequence of integers
Gp = {g1, g2, ..., gK}, where g1, . . . , gk ∈ N and K represents
a predefined maximum number of blocks for the quantum
circuit. Here, gi signifies the depth (i.e., the number of
layers) of the circuit within block i of the network. Note that
large value for K increases the search space exponentially
allowing for more combinations of circuit blockings to be
checked by the algorithm. Intuitively, the configuration of
these blocks is subject to a constraint where the sum of
all gi values must equal the total number of layers in the
quantum circuit. Notably, it is permissible for any gi to be
zero, indicating blocks that are empty and thus not contributing
to the overall division of the circuit. For instance, a genotype
Gp = [12, 42, 64, 38, 203, 0, 34] represents a circuit partitioned
into blocks with respective depths of 12, 42, 64, 38, 203, 34.
Although in this specific example we allow up to 7 blocks for
the circuit, this specific genotype, Gp, utilizes only 6 of them.

The phenotype, Xp, associated with an individual p ∈ P
with genotype Gp, quantifies the total number of Bell pairs
required for the candidate solution’s block configuration. This
total encapsulates both gate teleportations within individual
blocks and qubit teleportations across the network. The phe-
notype thus serves as a measure of the solution’s effective-
ness in optimising quantum communication. To evaluate the
phenotype and thus the viability of each candidate solution,
we introduce a fitness function, evaluateF itness : P → N,
that maps the individual to a natural number. In our case,
this function is counting the total number of Bell pairs and
hence teleportations are needed under the configuration under
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consideration.
Through the iterative processes of selection, crossover, and

mutation, our genetic algorithm seeks to evolve the population
towards configurations that minimise Bell pair usage, thereby
enhancing the efficiency and feasibility of DQC tasks. By
continuously refining the genotypes within the population
based on their fitness scores, the algorithm drives towards an
optimal or near-optimal distribution of computational loads
and quantum communication requirements across the network.
This framework not only provides a method for optimising
quantum network configurations but also offers insights into
the trade-offs between computational depth and quantum
communication resources, laying the groundwork for further
innovations in DQC architectures.

C. Optimised Distributed Quantum Circuit Execution via
Meta-Heuristic Approach (ODQC-MHA) - A Detailed De-
scription

The Optimised Distributed Quantum Circuit Execution via
Meta-Heuristic Approach (ODQC-MHA) makes use of a
genetic algorithm formalism to find a minimum number of
total Bell pairs required for a distributed execution of a
given quantum circuit by finding an arrangement of block
lengths that minimises the total cost. This section provides a
detailed description of the ODQC-MHA components that were
abstracted away in Figure 3, complementing also the overview
provided in Figure 4.

1) Efficient Qubit Teleportation Decisions: For each in-
dividual in the genetic algorithm, the quantum circuit is
segmented into blocks based on the number of layers specified
by the individual’s genotype. To optimise the allocation of
qubits across multiple quantum processors (QPUs), a method
such as graph partitioning (e.g., GPA) is employed. This
step aims to find an approximately optimal distribution of
qubits over the available processors for each block. Given the
allocation for each block, the challenge arises in transitioning
qubits from their configuration in one block to the next. This
transition is not straightforward due to the flexibility in QPU
assignments: any given allocation might correspond to any
QPU. This leads to a complex problem, especially as the
number of QPUs increases, where finding the most efficient
mapping between allocations in consecutive blocks becomes
computationally intensive. To address this, we construct a
bipartite graph G = (I, J, L), where nodes in disjoint set I
represent the processor allocations in block i, and nodes in set
J represent the allocations in block i+1 (Figure 5). The edges
in this graph, L, denote the potential mappings between allo-
cations, with weights reflecting the minimum number of qubit
differences (and thus qubit teleportations) required for each
mapping. By negating these weights and applying a maximum
weighted matching algorithm [29], we identify the mapping
that minimizes the number of qubit teleportations needed
for reallocation between blocks. This approach significantly
reduces the complexity of finding optimal qubit transitions
between blocks.

2) Components of the Genetic Algorithm:
Initialisation (generateIndividuals) - firstly the initial

population is generated. Towards that goal we generate ho-

mogeneous lists of a given length, which corresponds to
the maximum number of blocks available in the solution.
Then applying the mutate function (described later) to each
individual 100, 000 times we generate diverse genotypes for
the initial population. It is important that these individuals are
highly varied due to the size and complexity of the solution
space.

Evaluation of Fitness (evaluateFitness) - the fitness func-
tion evaluates the efficiency of a given qubit allocation and
teleportation scheme. It does so by summing the total number
of gate teleportations within each block (determined by the
initial qubit allocations) and the qubit teleportations between
blocks (as optimised by the bipartite graph matching). The
objective of the genetic algorithm is to minimize this sum,
thereby reducing the overall quantum communication and
computation overhead in the DQC framework. The evalua-
tion process effectively quantifies the ”cost” of a particular
configuration of qubit allocations and transitions, guiding the
genetic algorithm toward solutions that optimise the use of
quantum resources. By focusing on minimizing the combined
total of gate and qubit teleportations, the algorithm seeks
configurations that offer the best balance between computa-
tional efficiency and the practical constraints of DQC. This
structured approach allows for a clear understanding of how
qubit teleportation and allocation decisions impact the overall
efficiency of quantum computing operations, providing a solid
basis for optimising DQC architectures.

Crossover Function - the crossover function is the process
of generating offspring from the selected parent genes. These
offspring are generated such that they share some elements
from either parent. The crossover function used is a simple
two-point crossover which chooses a subset of random size
from each pair of parents and swap them. Since the genotype’s
values must sum up to the total number of layers in the
quantum circuit, we employ a rebalancing routine to enforce
that constraint after the crossover.

Mutation Function - The mutation function involves ran-
domly choosing 2 indices i and j, i ̸= j in the individual,
with a predefined probabilty of occurance. Defining a mutation
constant, c, a fair coin is flipped and the mutation constant
is either added to gi and subtracted from gj or vice versa.
Also each mutation has a probability p of introducing a zero
element to the individual, by subtracting a randomly chosen
indices value from itself and spreading the value among the
remaining indices.

Selection Process - The selection process entirely replaces
the parental population, requiring that the selection procedure
is stochastic and allows the same individual to be selected
more than once. We used the selTournament() function as part
of the DEAP framework, which was found to be a suitable
mutation function for searching the solution space thoroughly.

3) Overview: The genetic algorithm adjusts the size of each
block - between which qubit teleportations are done to get
from one allocation to the next - to try and minimise the
total number of Bell pairs required. The size of a block is
allowed to go to zero and if so it is ignored by the calculation
of teleportations. In other words, the optimal ’blocking’ of
the circuit may contain fewer blocks than the initial candidate
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generateIndividuals() 

[12,42,64,38,203,0,34

] 
[45,80,60,55,70,35,48

] 

xN 

 [12,42,64,38,203,0,34] 

evaluateFitness(individual) mutate() 

selection() 

Terminated? 

 [94,0,62,46,0,78,113] 

HoF Winner 

Hall of Fame 

crossover() 

Next  

Generation 

Fitness = Telegates + 

                                                                                                         
Qubit Teleportations 

Start  

Figure 4: Structure of genetic algorithm. generateIndividuals(): create N lists, of a given size, representing the number of layers per block
of a circuit. selection(): ’Hall of Fame’ selection process ensures that the best individual to ever exist is chosen as the optimal. crossover():
randomly chooses two individuals from the mating pool to create each new generation of superior individuals. mutate: individuals are
randomly chosen to mutate, mutate 1 occurs every mutation and mutate 2 occurs with probability 1/10 for each mutation. HoF Winner: the
best individual that has existed throughout the generations is selected as the optimal ’blocking’ solution.

solution. Note that this meta-heuristic can use any algorithm
for the allocation of qubits inside a given block to calculate the
Bell pairs needed for the gate teleportations. For example, if
there are just two QPUs one could implement K-L algorithm
and in a multi-QPU framework the proposed GPA is more
suitable.

In the next section, we implement ODQC-MHA using the
DEAP python framework [30] to execute the genetic algorithm
with these definitions, to converge on a close to optimal
blocking of the circuit that required the minimum number of
gate and qubit teleportations combined for a given quantum
circuit. Hereafter, the term ODQC-MHA(K-L) refers to the
meta-heuristic that applies the K-L algorithm to each block.
Conversely, ODQC-MHA(GPA) denotes the variant where the
GPA is employed for graph partitioning in each block.

IV. PERFORMANCE EVALUATION

As we have discussed, the objective of our heuristic is to
minimise the total number of bell pairs required for distributed
execution, which we believe is the bottleneck in a quantum
network. To evaluate the performance we compare the number
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Figure 5: Bipartite graph representing the re allocation between
multiple QPUs, it is clear to see that there are multiple ways to
map a given allocation to QPU.

of bell pairs required for various circuits using ODQC-MHA
against an existing method of qubit allocation, namely K-L.
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A. Pre-processing

In this section we describe the steps taken to analyse
benchmark circuits in order to evaluate the performance of
ODQC-MHA. Each circuit that is analysed is represented in
a QASM (QUantum ASeMbley) [31] file that contains all of
the logical instruction information in order. The QASM file
is parsed and the circuit is then represented as a directed
acyclic graph (DAG) which shows the dependencies of each
gate and allows us to determine which operations can occur
simultaneously (in the same layer). Given that we have a
circuit in layers, we can split the circuit, by layer, into the
blocks given by an individual’s genotype Gp, as explained
previously. For each block, an interaction matrix is constructed
using the QASM instructions, this matrix is then used to build
a networkx [32] graph object for which the standard graph
partitioning algorithms can be used. ODQC-MHA can be
applied to any circuit of any size, although the execution time
scales with the number of qubits and the maximum number of
blocks. Note that the bottleneck here is the number of qubits
in the circuits as this determines the size of the graph to be
partitioned.

ID Circuit
name

Qubits Depth
(CX only)

Unary
gates

CX gates

1 adder n118 118 4 1107 845
2 sym9 146 12 91 180 148
3 cycle10 2 110 12 3386 3402 2648
4 inc 237 16 3463 5983 4636
5 cm85a 209 14 3818 6428 4986
6 rd84 253 12 4466 7698 5960
7 root 255 13 5354 9666 7493
8 mlp4 245 16 6190 10620 8232
9 clip 206 14 10734 19055 14772
10 dist 223 13 11911 21422 16624

Table I: Benchmark quantum circuits for Section IV-B.

B. Non-random Quantum Circuits (2 QPUs)

Initially, we ran ODQC-MHA(K-L) on quantum circuits
from QASMBench [33]. Information about the benchmark cir-
cuits used is shown in Table I. The results of this analysis are
shown in Figure 6, showing the percentage improvement over
using K-L for the entire circuit i.e. no qubit teleportations. We
compare three configurations of ODQC-MHA(K-L), allowing
for a maximum allowed number of blocks (MAB) of; 10, 50
and 100. While the amount of improvement varies across the
circuits, we see a clear trend. For increasing depth there is a
region for which 100 MAB shows the smallest improvement
while 10 MAB shows the most, in the middle region we see
that 50 MAB shows the most improvement, and for the higher
end of circuit depth, 100 MAB. We identify a likely reason
for this trend, that for smaller circuits it is possible to ’over-
block’, that is, it becomes hard to converge on a solution - on
average - due to the starting size of an individual genotype.
We believe that this analysis on small benchmark circuits is
arbitrary because the performance of the heuristic depends
strongly on the distribution of CNOT gates, in the next section,
we discuss the performance of the algorithm on average, using
large randomly generated circuits.
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Figure 6: Comparison percentage improvement for ODQC-MHA(K-
L) on benchmark circuits for varying maximum allowed number of
blocks (MAB) (10,50,100), across 2 QPUs. The benchmark circuits
are ordered by increasing circuit depth. Each data point is the mean
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The fact that the performance between different config-
urations is inconsistent across different circuits suggests a
limitation with the design of ODQC-MHA. Future work might
include an optimisation of the allowed size of an individual,
the population size and number of generations, dependant
on the circuit at hand. This should allow the algorithm to
search the given solution space more efficiently and prevent
converging on local minima.
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Figure 7: Comparison of ODQC-MHA(K-L) for varying maximum
allowed number of blocks (10,50,100), to ODQC-MHA(K-L) for 1
block on randomly generated circuits, distributed over 2 processors.
Each data point is the mean value of multiple runs of ODQC-
MHA(K-L) on different randomly generated, 16 qubit, circuits. The
percentage difference is plotted.

C. Random Quantum Circuits (2 QPUs)

To demonstrate the effectiveness of ODQC-MHA on aver-
age, we ran qubit allocation on randomly generated circuits
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Figure 8: Comparison of ODQC-MHA(K-L) to K-L on randomly
generated circuits of varying number of qubits (8,16,32) on randomly
generated circuits, across 2 QPUs.

containing only CNOT gates, which are the only universal
gates that are considered in the algorithm. This demonstrates
the average behaviour on large circuits where the distribution
of CNOT gates tends towards homogeneity. In principal, any
bias in the distribution of CNOTs should be exploited by a
good heuristic method.

Firstly, we generated random, 16 qubit circuits of varying
number of CNOT gates, in the same range as the benchmark
circuits used. We ran ODQC-MHA(K-L) to allocate across 2
QPUs for each circuit, this analysis was done 100 times and
the average performance is plotted in Figure 7. This was done
for different initial configurations of ODQC-MHA(K-L) al-
lowing for a maximum number of blocks (length of genotpye)
of 10,50 and 100. It is clear that the genetic algorithm was
able to - on average - converge on a solution with fewer bell
pairs required across all the randomly generated circuits, with
a general trend towards smaller improvement for increasing
number of gates. However, we again observe the same trend as
explained before, a region where each configuration performs
best. This effect is shown dramatically in the first points
(left). This indicates that ODQC-MHA(K-L) requires further
optimisation to select an optimal number of blocks. Due to
resource limitations, we were not able to analyse the limit that
an improvement is shown by increasing the allowed maximum
number of blocks.

Next, we generated random circuits of; 8, 16, and 32 qubits
with up to 100,000 CX gates, in order to test the performance
of ODQC-MHA(K-L) on larger circuits.The results are plotted
in Figure 8. We see a similar improvement trend across differ-
ent number of gates. Interestingly, the reduction in the number
of bell pairs increases for greater number of qubits. This could
be because for the same number of CNOT gates across more
qubits, the interactions are more sparsely distributed and will
likely have shorter depth.
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Figure 9: Comparison of ODQC-MHA(GPA) to GPA on randomly
generated 16 qubit circuits, for different maximum allowed number
of blocks (10,50,100)

D. Random Quantum Circuits (3 QPUs)

Finally, to demonstrate the performance of ODQC-MHA
using a different heuristic for graph partitioning within each
block, we performed the same analysis but distributing each
circuit across 3 QPUs using ODQC-MHA(GPA) 1 within each
block. Here we observe a similar trend as across 2 QPUs,
however, the first point for maximum allowed blocks of 100
shows anomalously high improvement. We can attribute this
to the smallest circuits having larger variance in distribution
of CX gates and so the genetic algorithm may get ’lucky’ on
certain circuit configurations.

E. Discussion

In the limit that the number of gates is large, we would
expect that the performance of the K-L algorithm at allo-
cating the qubits across two processors would tend to the
performance of randomly allocating the qubits across two
processor. This would mean that half of the CNOT gates are
executed remotely. However, for any finite circuit depth, the
optimal solution will always be better than half of the CNOT
gates. This also applies to our meta heuristic, because the
genetic algorithm can always find a block length where the
performance of K-L is better than half and so - if allowed to
execute properly - will be able to exploit sections of the circuit
where K-L performs well at allocating the qubits.

V. CONCLUSIONS

Compiling circuits for DQC will be paramount to the future
and scaling of quantum computers, within a ’quantum data
center’. In this letter we addressed the problem of qubit
allocation within a compilation, using a meta-heuristic which
optimises for the minimum number of qubit and gate teleporta-
tions. The results when comparing our method to the standard
method of graph partitioning using the K-L algorithm shows
a significant improvement.
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