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Abstract. Model-checking techniques have been extended to analyze
quantum programs and communication protocols represented as quan-
tum Markov chains, an extension of classical Markov chains. To spec-
ify qualitative temporal properties, a subspace-based quantum temporal
logic is used, which is built on Birkhoff–von Neumann atomic proposi-
tions. These propositions determine whether a quantum state is within
a subspace of the entire state space. In this paper, we propose the
measurement-based linear-time temporal logic MLTL to check quanti-
tative properties. MLTL builds upon classical linear-time temporal logic
(LTL) but introduces quantum atomic propositions that reason about
the probability distribution after measuring a quantum state. To facili-
tate verification, we extend the symbolic dynamics-based techniques for
stochastic matrices described by Agrawal et al. (JACM 2015) to handle
more general quantum linear operators (super-operators) through eigen-
value analysis. This extension enables the development of an efficient
algorithm for approximately model checking a quantum Markov chain
against an MLTL formula. To demonstrate the utility of our model-
checking algorithm, we use it to simultaneously verify linear-time prop-
erties of both quantum and classical random walks. Through this verifi-
cation, we confirm the previously established advantages discovered by
Ambainis et al. (STOC 2001) of quantum walks over classical random
walks and discover new phenomena unique to quantum walks.

1 Introduction

Model checking is a formal verification technique that is used to ensure the cor-
rectness of a system based on a given specification [1]. In recent years, model
checking has been applied to quantum systems and has become a powerful tool
for verifying the behaviors and properties of quantum programs or communica-
tion protocols [2,3]. Similar to the classical case, the main components of model
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checking quantum systems are the system model and the temporal logic, which
are used to mathematically describe the evolution of the system and specify its
temporal properties, respectively.

System Model. Quantum Markov Chains (QMCs), which are the quantum
extension of classical Markov chains (MCs), provide an exceptional paradigm
for modeling the evolution of quantum systems in various scenarios, including
quantum control [4], quantum information theory [5], quantum programming [6],
and quantum communication systems [7]. Notably, quantum walks, which are a
special class of QMCs, have been successfully employed in the design of quan-
tum algorithms (for a survey of this research line, see [8, 9]). A QMC Q is
defined as a triple Q = (H, E , ρ0) that corresponds to a classical Markov chain
(S, P, s0), where H is a finite-dimensional Hilbert (linear) state space instead
of the finite state set S, E is a super-operator on H instead of the transition
stochastic matrix P on S, and ρ0, which is a density matrix, represents the ini-
tial state instead of s0. Intuitively, the super-operator E( · ), which is a linear
mapping, models the dynamics of the system and transforms a state (density
matrix) ρ into another state E(ρ). Some special cases of QMCs have emerged,
such as open quantum walks [10] and classical-quantum (super-operator valued)
Markov chains [11], where the latter resemble classical Markov chains but with
the transition stochastic matrix P = {pi,j}i,j∈S being replaced by a transition
set {Ei,j}i,j∈S of super-operators, while still maintaining the finite state set S.

Temporal Logics. The dynamic extension of Birkhoff–von Neumann quan-
tum logic [12] was proposed to specify a wide range of temporal properties of
quantum systems. In this approach, atomic propositions are used to describe
qualitative properties of a quantum system, represented as closed subspaces of
the system’s state Hilbert space (whether or not a quantum state ρ is in a
subspace X of H). Furthermore, QMCs are abstracted as subspace transition
systems, and the temporal properties of interest are represented by infinite se-
quences of sets of atomic propositions (subspaces) [3]. This subspace-based tem-
poral logic allows for the specification of linear-time properties, such as invariants
and safety properties, for quantum automata (a simplified form of QMCs) [13].
Model-checking algorithms have been developed for the subspace-based tempo-
ral logic in [14], and the (un)decidability of model checking quantum automata
has been studied in [15]. However, a limitation of model checking QMCs against
subspace-based temporal logics is that it can only handle qualitative properties,
which means that only simple examples can be checked. Given that the power
of quantum systems lies in their probabilistic nature, it is crucial to be able to
check probabilistic (quantitative) properties.

To address this issue, in this paper we propose a measurement-based linear-
time temporal logic to capture these properties and develop a model-checking
algorithm to check the quantitative properties of QMCs. More specifically, we
observe that the properties of the quantum systems in question can be described
using quantum measurements, which extract classical (probabilistic) information
from quantum states. Building on this observation, we introduce measurement-
based atomic propositions to describe static quantitative properties, namely, the
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measurement outcome probability of a quantum state under a measurement.
This can be seen as a generalization of the subspace-based atomic propositions
of the Birkhoff–von Neumann quantum logic [12], where a quantum state ρ in a
subspace X ⊆ H can be regarded as having a measurement outcome probability
of 1 under the measurement onto X . By combining with standard linear-time
temporal logic (LTL) [1, 16], we obtain MLTL, the measurement-based LTL, to
specify the temporal quantitative properties of quantum systems.

In order to develop an algorithm for model checking QMCs against MLTL
formulas, we extend the Thiagarajan’s approximate verification [17] of a stochas-
tic transition matrix P to encompass more general linear operators in quantum
systems, e.g., the super-operators. The key technique for this generalization is
based on the eigenvalue analysis of QMCs, which simplifies the previous work
based on the Bottom Strongly Connected Component (BSCC) decomposition [1]
of the state space of classical Markov chains [17]. Subsequently, we provide an
effective procedure for the approximate model checking of QMCs against MLTL
formulas. In Section 6, we provide several case studies to illustrate how our
model and algorithm can be applied in a quantum walk. These case studies help
to verify the previously established advantages of quantum walks over classical
random walks, as discovered by Ambainis et al. [18]. Additionally, we explore new
phenomena unique to quantum walks when we verify the same MLTL formulas
on both types of walks.

In summary, this paper makes the following main contributions:

1. Introducing a quantum temporal logic, called measurement-based linear-time
logic (MLTL), which allows for specifying quantitative properties of QMCs.

2. Generalizing symbolic dynamics-based verification techniques of the transi-
tion stochastic matrix given in [17] to more general quantum linear operators
(super-operators) by eigenvalue analysis; based on this, a model-checking al-
gorithm for QMCs against MLTL is developed.

3. Verifying numerous quantitative properties of quantum walks through our
model-checking algorithm as case studies. This serves to validate the estab-
lished advantages of quantum walks over their classical counterparts and
discover new phenomena unique to quantum walks.

1.1 Related Works and Challenges

To provide a suitable context for our work, let us delve deeper into the discussion
of related works and the challenges we encounter in this paper.

Hybrid vs. Quantum Temporal Logic. In a previous study [11], a spe-
cialized type of quantum Markov chain known as super-operator-valued quan-
tum Markov chain was proposed. This model was designed for the purpose of
modeling quantum programs and quantum cryptographic protocols. Addition-
ally, a quantum extension of the probabilistic computation tree logic (PCTL)
called quantum computation tree logic (QCTL) was introduced, along with a
model-checking algorithm specifically tailored for this Markov model.
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However, these hybrid temporal logic approaches heavily rely on the classical
state graph and are not applicable to quantum systems. This is because quan-
tum systems have a continuous state space and an infinite number of states,
making it impossible to obtain a connection graph. In order to address this
limitation and specify the properties of quantum Markov chains, we propose a
measurement-based linear-time temporal logic (MLTL) approach that does not
require a connection graph. This allows us to directly reason about the transi-
tions of measurement outcome probability distributions. Our MLTL approach
adopts classical LTL with quantum physical interpretation, providing the advan-
tage of utilizing existing classical techniques and facilitating contributions from
the classical model-checking community to the field of quantum computing.

Classical vs. Quantum Markov Chains. The main technique used for
model checking classical Markov chains in [17] involves studying the periodicity
of states in sub-chains obtained through BSCC decomposition [1], a widely-used
method in the field of model checking Markov chains. However, when it comes to
the quantum extension of this decomposition, as described in [19], the BSCC de-
composition of QMCs is not unique but there are infinitely many decompositions
due to the continuous state space, unlike the classical case. Consequently, we can-
not directly generalize Thiagarajan’s approximate verification [17]. To overcome
this unique challenge posed by quantum mechanics, we propose a method based
on eigenvalue analysis to directly explore the periodic properties of QMCs. As a
result, QMCs are not always periodically stable like classical Markov chains. We
provide a way to determine the periodic stability depending on the initial states
of QMCs. With these efforts, we successfully extend the idea of approximate
model checking to work for QMCs, pushing the application boundary of such
model-checking techniques to more general linear systems.

Model Checking Quantum Walks. As a result of the phenomenon known
as quantum interference [20], quantum walks can propagate at significantly
faster or slower rates compared to their classical counterparts [18]. Quantum
walks have gained attention due to their potential application in the develop-
ment of randomized algorithms, with various quantum algorithms incorporating
this concept [8,9]. Notably, in certain search problems, quantum walks can offer
quadratic or exponential speedups compared to classical algorithms.

Previously, researchers have conducted case-by-case studies on the dynamic
properties of quantum walks, requiring the introduction of various techniques
depending on the specific property and underlying topological structure of the
walks. In this paper, we introduce a model-checking method that overcomes this
limitation by allowing for the automatic verification of a wide range of proper-
ties of the walks. To model quantum walks, we utilize QMCs, and to specify the
relevant dynamical properties, we employ MLTL formulas. By simultaneously
verifying classical and quantum walks using our model-checking algorithm, we
can confirm the advantages of quantum walks that have already been estab-
lished in [18], as well as discover new phenomena that are distinct from classi-
cal random walks. We anticipate that these new phenomena, discovered by our
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model-checking algorithm, will contribute to the development of more efficient
quantum walk-based algorithms with enhanced speedup capabilities.

2 Preliminaries

In this section, we aim to explain the three components that appear in a QMC
Q = (H, E , ρ0), as well as quantum measurements, an essential part of our MLTL.

Quantum State Space H. The state space of a quantum system is a finite-
dimensional linear space H, which is commonly known as the Hilbert space in
the field of quantum computing. A quantum pure state is represented by a unit
complex column vector ψ in H. In the field of quantum computing, the bra-
ket notation is widely used to represent quantum states, making it easier to
perform calculations that frequently arise in quantum mechanics. This notation
uses angle brackets, ⟨ and ⟩, along with a vertical bar |, to construct “bras” and
“kets” that represent row and column vectors, respectively. The following list
provides the notation used in this paper to represent linear algebra concepts:

1. |ψ⟩ represents a unit complex column vector (quantum pure state) in H,
labeled with ψ;

2. ⟨ψ| := |ψ⟩† denotes the complex conjugate and transpose of |ψ⟩;
3. ⟨ψ1|ψ2⟩ := ⟨ψ1||ψ2⟩ represents the inner product of |ψ1⟩ and |ψ2⟩;
4. |ψ1⟩⟨ψ2| := |ψ1⟩ · ⟨ψ2| denotes the outer product of |ψ1⟩ and |ψ2⟩.

It is important to note that any vector in H can be linearly represented by
a computational basis, which is a set of mutually orthogonal unit vectors. In
order to compare with classical Markov chains denoted as (S, P, µ0), we use the
finite state set S = {s0, . . . , sd−1} to label the computational basis of H, with
dimension d, as {|s0⟩, . . . , |sd−1⟩}. Here, |sk⟩ is a unit column vector with the
k-th element being 1 and the remaining elements being 0 (the index starts from
0). Then H is denoted as H = span{|s0⟩, . . . , |sd−1⟩}.

Using this basis, any quantum state |ψ⟩ inH can be expressed as a linear com-

bination of {|s0⟩, . . . , |sd−1⟩} with complex coefficients ak: |ψ⟩ =
∑d−1
k=0 ak|sk⟩

with the normalization condition ⟨ψ|ψ⟩ =
∑d−1
k=0 aka

∗
k = 1, where a∗k is the com-

plex conjugate of ak. In the case of a 2-dimensional space, we have:

|s0⟩ =
(
1
0

)
|s1⟩ =

(
0
1

)
|ψ⟩ =

(
a0
a1

)
⟨ψ| =

(
a∗0, a

∗
1

)
.

It is evident that a quantum pure state has the capability to depict a superpo-
sition of state set S = {s0, . . . , sd−1} as |ψ⟩ =

∑d−1
k=0 ak|sk⟩. The superposition

is a unique feature of quantum systems and the main reason for the advantages
of quantum algorithms over their classical counterparts [21].

Quantum Mixed State ρ. In quantum mechanics, uncertainty is a common
characteristic of quantum systems, arising from quantum noise and measure-
ments. To describe the uncertainty of possible quantum pure states, the concept

5



of quantum mixed state ρ on H is introduced. It can be represented as

ρ =
∑
k

pk|ψk⟩⟨ψk|. (1)

Here, {(pk, |ψk⟩)}k represents an ensemble, indicating that the quantum state
is at |ψk⟩ with probability pk. This concept can also be used to describe the
uncertainty of a classical probability distribution, where each |ψk⟩ represents sk
by |ψk⟩ = |sk⟩. Specifically, a (row) probability distribution µ = (p0, . . . , pd−1)
over the state set S = {s0, . . . , sd−1} can be represented by a quantum mixed
state. This representation involves a diagonal matrix on H, where the diagonal
elements correspond to the probabilities pk as follows.

ρµ =
∑
k

pk|sk⟩⟨sk| = diag(p0, . . . , pd−1). (2)

Hence, a quantum mixed state ρ is an extension of a probability distribution
µ. Generally, the quantum uncertainty is more complex because the ensemble
decomposition in Eq. (1) of a quantum state ρ can have infinitely many variants.
This means that ρ can represent multiple ensembles {(pk, |ψk⟩)}k simultaneously.

From a mathematical perspective, a quantum mixed state ρ ∈ L(H) is a
linear operator (d-by-dmatrix) onH that satisfies three conditions: 1) Hermitian
ρ† = ρ; 2) positive semi-definite ⟨ψ|ρ|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H; and 3) unit trace
tr(ρ) =

∑
k⟨sk|ρ|sk⟩ = 1, where tr(ρ) is the trace of ρ and represents the sum

of the diagonal elements of ρ. Here, L(H) denotes the set of linear operators on
H. Let D(H) ⊆ L(H) be the set of all quantum mixed states on H. To avoid
any ambiguity, in the subsequent discussion, the term “quantum states” will
specifically refer to quantum mixed states, given that we are considering the
broader scenario.

Quantum Evolution E. In the realm of quantum computing, the evolution
of a quantum system is commonly represented by the equation

ρ′ = E(ρ). (3)

Here, E is referred to as a super-operator. Mathematically, E( · ) is a linear map-
ping from L(H) to L(H), allowing for the transformation of one quantum state
ρ into another ρ′. As stated by the Kraus representation theorem [22], E can be
characterized by a finite set of d-by-d matrices {Ek : 0 ≤ k ≤ m − 1 } ⊆ L(H),

wherem ≤ d2. The expression is given by E(ρ) =
∑m−1
k=0 EkρE

†
k for all ρ ∈ D(H).

This representation also satisfies the trace-preserving condition
∑
k E

†
kEk =

I, where I is the identity matrix on H and † denotes the complex conjugate and
transpose of matrices. In other words, for all ρ ∈ D(H), we have tr(E(ρ)) = tr(ρ)

by tr(E(ρ)) = tr(
∑
k EkρE

†
k) = tr(

∑
k E

†
kEkρ) = tr(ρ).

An example of the use of super-operators can be found in Section 3.1, where
a super-operator is employed to represent the evolution of quantum walks. In the
degenerate scenario, the Kraus operator is simplified to only include a unitary
matrix U on H (where U†U = U†U = I), and E(ρ) = UρU†.
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Quantum Measurement. To extract information from a quantum state,
a quantum measurement is performed. This measurement yields a classical out-
come which is represented as a probability distribution over the possible results.
Mathematically, a quantum measurement is described by a set {Mk}k∈O of posi-
tive semi-definite matrices on the state (Hilbert) space H, where O is a finite set
of possible outcomes. The measurement process is probabilistic: if the quantum
system is in a state ρ before the measurement, the probability of obtaining the
outcome k is given as follows.

pk = tr(Mkρ).

Note that the measurement {Mk}k∈O satisfies the unity condition
∑
kMk = I,

which guarantees that the total probability of all outcomes is equal to 1. In other
words,

∑
k tr(Mkρ) = tr(

∑
kMkρ) = tr(ρ) = 1.

In the case where we want to extract the classical probability distribution µ
encoded in the quantum state ρµ as shown in Eq. (2), we can choose the mea-
surement {Mk = |sk⟩⟨sk|}sk∈S . In this scenario, the measurement probability of
obtaining outcome sk is given by

tr(|sk⟩⟨sk|ρµ) =
∑
l

⟨sl||sk⟩⟨sk|ρµ|sl⟩ = ⟨sk|ρµ|sk⟩ = ⟨sk|(
∑
j

pj |sj⟩⟨sj |)|sk⟩ = pk.

The above equations rely on the mutual orthogonality of the computational basis
{|s0⟩, . . . , |sd−1⟩}, meaning that ⟨sj |sl⟩ = 0 for j ̸= l, and also the fact that each
|sk⟩ is normalized, represented by ⟨sk|sk⟩ = 1.

It should be noted that after the measurement, the state will collapse or be
altered, depending on the measurement outcome k, which distinguishes quantum
computation from classical computation. For instance, in the case of a projection
measurement denoted as {Pk}k∈O, the state after obtaining outcome k is given
by PkρPk/pk with pk = tr(Pkρ). Here, each positive semi-definite matrix Pk rep-
resents a projection operator (P 2

k = Pk), and a specific example of a projection
measurement is the above measurement {|sk⟩⟨sk|}sk∈S . Another concrete exam-
ple is provided in Example 2 for the case of quantum walks. For other scenarios
involving post-measurement states that are not encountered in this paper, please
refer to [21, Section 2.2.3].

3 Quantum Markov Chains

In this section, we present the formal definition of QMCs. For a more detailed
discussion, we refer the interested readers to [3].

Definition 1. A QMC is a tuple G = (H, E , ρ0), where H is a finite-dimensional
Hilbert space, E is a super-operator on H, and ρ0 ∈ D(H) is an initial state.

The execution of G is naturally described by the trajectory of quantum states:

σ(G) := ρ0, E(ρ0), E2(ρ0), . . . . (4)

QMCs are a direct extension of classical Markov chains and can simulate
their execution; see the following example.
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Example 1 (Classical Markov chains as QMCs). Not surprisingly, any classical
Markov chain (S, P, µ0) can be effectively encoded as a QMC. We can use H =
span{|s0⟩, . . . , |sd−1⟩} to encode S, and E can be a super-operator with Kraus
operators {Ek,l =

√
pk,l|sl⟩⟨sk|}sk,sl∈S that encode the probabilities pk,l of P .

It can be easily verified that E is a valid super-operator, i.e.,
∑
k,lE

†
k,lEk,l =

I. Furthermore, let ρ0 =
∑
s∈S µ0(s)|s⟩⟨s| encode the initial probability distribu-

tion µ0. Then, the QMC (H, E , ρ0) can fully simulate the behavior of (S, P, µ0)
in the sense that for all n ≥ 0:

En(ρ0) =
d−1∑
k=0

µn(sk)|sk⟩⟨sk| = (µn(s0), . . . , µn(sd−1)).

Here, µn = µ0P
n, µn(sk) represents the k-th entry of µn, and E0 = idH, which is

the identity super-operator with only one Kraus operator {I}. The proof follows
a straightforward induction on n.

3.1 Quantum Walks

The case study of this paper is to explore the new and advanced properties of
quantum walks compared to classical random walks by model checking QMCs.
This exploration begins with modeling quantum walks using QMCs. Before
presenting this, we introduce one-dimensional quantum walks with absorbing
boundaries in the following example. Furthermore, we also need the bra-ket no-
tation |ψ1⟩|ψ2⟩ := |ψ1⟩ ⊗ |ψ2⟩ ∈ H1 ⊗ H2, which represents the composition
(tensor product) of |ψ1⟩ and |ψ2⟩ in the Hilbert spaces H1 and H2, respectively.

Example 2 (Quantum walk with absorbing boundaries). We consider an unbiased
quantum walk on a one-dimensional lattice indexed from s0 to sd, with the
boundaries s0 and sd being absorbing.

State Space. Let Hp = span{|s0⟩, . . . , |sd⟩} be a (d+1)-dimensional Hilbert
space, where the pure state (unit vector) |sk⟩ represents the position sk for
each 0 ≤ k ≤ d. In order to facilitate the evolution of the quantum walk, an
additional coin space is required. Let Hc be the coin (direction) space, which
is a 2-dimensional Hilbert space with orthonormal basis states |L⟩ and |R⟩,
indicating the directions left and right, respectively. Therefore, the state space
of the quantum walk is H = Hp ⊗Hc.

Initial State. The initial state is ρ0 = |ψ0⟩⟨ψ0| with |ψ0⟩ = |sk⟩|X⟩, indi-
cating the initial position sk and direction X, where 0 ≤ k ≤ d and X ∈ {L,R}.

Evolution. Each step of the walk consists of three operations:
First, measure the current position of the system to determine whether it is

absorbing positions s0 or sd. If the position is s0 or sd, then the walk terminates.
The measurement is described by

{Myes = (|s0⟩⟨s0|+ |sn⟩⟨sn|)⊗ Ic,Mno = I −Myes}.

Here, Ic and I are the identity operators on Hc and H, respectively. According to
the principles of measurements, from the current state ρ, the walk terminates at
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state ρyes with probability pyes , and it continues with state ρno , with probability
pno , where

px = tr(Mxρ) and ρx =MxρM
†
x/px for x = yes,no.

Second, apply an unbiased “coin-tossing” (unitary) operator on the coin space
Hc. This operator, denoted as UH , is given by:

UH =
1√
2

(
1 1
1 −1

)
= |+⟩⟨L|+ |−⟩⟨R|.

Here, |±⟩ = 1√
2
(|L⟩ ± |R⟩). The operator UH represents the Hadamard operator

on Hc, where the probabilities of going left and right are both equal to 0.5.
Third, perform a shift (unitary) operator on the space H. The shift operator,

denoted as US , is given by:

US =

d∑
k=0

|sk⊖1⟩⟨sk| ⊗ |L⟩⟨L|+ |sk⊕1⟩⟨sk| ⊗ |R⟩⟨R|.

The intuitive meaning of the operator US is that the system walks one step left
or right based on the coin state on Hc. Here, ⊕ and ⊖ represent addition and
subtraction modulo d+ 1, respectively.

In summary, in each step, given the current state ρ as the input, the quantum
walk transforms ρ into ρ′ = UρnoU

† with a probability pno, where U = US(Ip⊗
UH) and Ip is the identity operator on Hp. Additionally, the walk terminates at
state ρyes with a probability pyes. The resulting state ρ′ then serves as the input
state for the subsequent step of the quantum walk.

For a better understanding, Appendix A provides a visual representation (Fig. 1)
that showcases the evolution of the quantum walk in Example 2 from a physical
perspective.

Now, we demonstrate how to represent the quantum walk given in Example 2
using a QMC. To begin, we introduce the super-operator E , which incorporates
the unitary operator U representing the combined evolution of the second and
third operations of the quantum walk. For any given ρ ∈ D(H), we let E(ρ) be

E(ρ) = UMnoρM
†
noU

† +MyesρM
†
yes .

It is worth noting that MnoMyes = 0 and M2
yes = Myes , indicating that once

the QMC terminates, its state remains unchanged. By using induction on the
number of steps, we can easily verify that the evolution of the quantum walk
can be modeled by the QMC (Hp ⊗Hc, E , ρ0 = |ψ0⟩⟨ψ0|).

4 Measurement-based Linear-time Temporal Logic

In this section, we introduce a specification language called Measurement-based
Linear-time Temporal Logic (MLTL) for describing the properties of quantum
systems. MLTL is similar to ordinary LTL, but its atomic propositions are inter-
preted in the context of quantum computing. It also expands on the subspace-
based atomic propositions introduced by Birkhoff and von Neumann [12].
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4.1 Measurement-based Atomic Propositions

As mentioned in Section 2, a quantum measurement is the process of extracting
classical information from quantum states. A quantum measurement can be
represented by a finite set {Mk}k∈O of positive semi-definite matrices with the
unity condition

∑
kMk = I. Each matrix Mk is called a measurement operator

and it is associated with the probability tr(Mkρ) of obtaining the outcome k
when measuring the quantum state ρ. Mathematically, a measurement operator
M is positive semi-definite and satisfies M ≤ I, which means that I −M is also
positive semi-definite.

In the following discussion, our main focus is on the measurement operator
Mk and its associated probability tr(Mkρ). Therefore, we will often disregard
the specific outcome value k and simply refer to the measurement operator as
M . Additionally, we will not explicitly mention the measurement consisting of
M , as a binary quantum measurement {M, I −M} can be determined based on
M itself (as seen in Example 2 with the measurement operatorsMyes andMno).

Our atomic propositions are designed to estimate the probability of the out-
come tr(Mρ) after measuring the quantum state ρ, given the measurement op-
erator M .

Definition 2. Given a Hilbert space H,

1. an atomic proposition in H is a pair ⟨M, I⟩, where M represents a measure-
ment operator on H and I ⊆ [0, 1] is an interval;

2. a state ρ ∈ D(H) satisfies ⟨M, I⟩, written ρ |= ⟨M, I⟩, if the outcome prob-
ability of the measurement operator M applied to ρ falls within the interval
I, that is, tr(Mρ) ∈ I.

In terms of the expressive power of our measurement-based atomic propo-
sitions, it is worth noting that they extend the existing atomic propositions in
both the classical and quantum domains.

Classical: the atomic proposition ⟨M, I⟩ of ρ expands upon the proposition
⟨sk, I⟩ of µ in interval linear-time temporal logic. This classical logic has
been used to specify (static) properties of classical Markov chains [17] and
continuous-time Markov chains [23]. The proposition asserts that the prob-
ability of state sk ∈ S in distribution µ over S falls within the interval I.
The extension is achieved by utilizing ρµ =

∑
k µ(sk)|sk⟩⟨sk| in Eq. (2) and

M = |sk⟩⟨sk|, resulting in tr(Mρµ) = µ(sk). Consequently, tr(Mρµ) ∈ I if
and only if µ(sk) ∈ I.

Quantum: furthermore, an atomic proposition ⟨M, I⟩ of a mixed state ρ can
encode the subspace-based proposition X ⊆ H of a pure state |ψ⟩ in the
Birkhoff–von Neumann quantum logic. This proposition asserts that |ψ⟩ ∈
X . This observation is made by setting M = PX , which represents the pro-
jection onto X , I = [1, 1], and ρ = |ψ⟩⟨ψ|. As a result, we can conclude that
ρ = |ψ⟩⟨ψ| |= ⟨PX , [1, 1]⟩ (i.e., tr(PXρ) = 1) is equivalent to |ψ⟩ ∈ X .
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To demonstrate the practicality of our atomic propositions, we will present a
series of specific instances in Example 3 later. These examples will effectively
illustrate the characteristics and properties of quantum walks.

From an algorithmic perspective, we gather a finite number of pairs ⟨M, I⟩
as the set of atomic propositions that are based on quantum measurements. This
set is denoted as AP .

4.2 Quantum Linear-Time Temporal Logic

In this section, we enhance the linear-time temporal logic [1,16] by incorporating
the newly introduced measurement-based atomic propositions. This will result
in the formation of our measurement-based linear-time temporal logic MLTL.

The MLTL formulas, which involve the use of measurement-based AP , are
defined according to the following syntax:

φ ::= true | a | ¬φ | φ1 ∨ φ2 | ⃝φ | φ1Uφ2,

where a = ⟨M, I⟩ ∈ AP . We can also derive additional standard Boolean op-
erators and temporal modalities such as ♢ (eventually) and □ (always) using
conventional methods.

The semantics of MLTL is also defined in a familiar manner. For any infinite
word ξ over 2AP and any MLTL formula φ over AP , the satisfaction relation
ξ |= φ is defined by induction on the structure of φ:

– ξ |= true always holds;
– ξ |= a iff a ∈ ξ[0];
– ξ |= ¬φ iff it is not the case that ξ |= φ (written ξ ̸|= φ);
– ξ |= φ1 ∨ φ2 iff ξ |= φ1 or ξ |= φ2;
– ξ |= ⃝φ iff ξ[1+] |= φ; and
– ξ |= φ1Uφ2 iff there exists k ≥ 0 such that ξ[k+] |= φ2 and for each 0 ≤ j <
k, ξ[j+] |= φ1,

where ξ[k] and ξ[k+] denote the (k + 1)-th element and the (k + 1)-th suffix of
ξ, respectively. The indexes start from zero so that, say, ξ = ξ[0+]. In addition,
the semantics Lω(φ) of φ is defined as the language containing all infinite words
over 2AP that satisfy φ: Lω(φ) = { ξ ∈ (2AP )ω : ξ |= φ }.

Now, let us extend the satisfaction relation ρ |= a to G |= φ between a QMC
G and an MLTL formula φ. To this end, we introduce the labeling function:

L : D(H) → 2AP , L(ρ) = { a ∈ AP : ρ |= a } (5)

which assigns to each quantum state ρ the set of atomic propositions in AP
satisfied by ρ. We further extend the labeling function to sequences of quantum
states by setting L(ρ0, ρ1, . . .) = L(ρ0), L(ρ1), . . . as usual. Then we define:

G |= φ if and only if L(σ(G)) ∈ Lω(φ)

where σ(G) is the state trajectory of G as defined in Eq. (4).
We now exhibit realistic settings where our approach leads to valuable in-

sights for the quantum walk presented in Example 2.
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Example 3 (Quantum walk with absorbing boundaries, continued). Given a finite
set of intervals {Il ⊆ [0, 1]}Ll=0, let

AP = { ⟨Msk , Il⟩ :Msk = |sk⟩⟨sk| ⊗ Ic, 0 ≤ k ≤ d, 0 ≤ l ≤ L }

with the atomic proposition ⟨Msk , Il⟩ asserting that tr(Mskρ) ∈ Il for 0 ≤ k ≤ d
and 0 ≤ l ≤ L. This allows us to trace the probability distribution on all positions
(including boundaries) of the quantum walk.

First, we can discuss the advantages of quantum walks over their classical
counterparts, as discovered by Ambainis et al. in [18]. When given the initial state
|s1⟩|R⟩, the absorbing probability at position 0 tends to 1/

√
2 in the limit as d→

∞, whereas in the classical case, the value is 1. This property can be expressed
as the MLTL formula φ0 = ♢□⟨Ms0 , I0⟩, where I0 = [1/

√
2− γ, 1/

√
2 + γ] and

γ > 0 is a given precision parameter.
Next, we examine two properties of interest that demonstrate significant

differences between quantum walks and their classical counterparts. To the best
of our knowledge, these findings are new.

1. In the classical case, the absorbing probability at position d is always smaller
than 0.5 if the walk starts from the middle position and d is even. However,
this does not necessarily hold for quantum walks. Let φ1 = □⟨Msd , I1⟩,
where I1 = [0, 0.5), be the MLTL formula that expresses this property.
Assuming the initial state is |sd/2⟩|R⟩, we will see in Section 6 that φ1 is
false when d = 20.

2. Let I2 = (0.4, 1] and φ2 = □(⟨Msd−1
, I2⟩ =⇒ ⟨Ms1 , I2⟩), which states that

at any given time point, if the probability at position d−1 is larger than 0.4,
then the probability at position 1 is also larger than 0.4. In the classical case,
φ2 is true due to the symmetry of the distribution over positions. However,
as shown in Section 6, φ2 does not hold in the quantum case. Therefore,
the distribution of the unbiased quantum walk over positions is asymmetric
even when the walk starts from the middle position.

5 Model Checking Algorithm

In this section, we present an algorithm that can be used to approximately verify
the satisfaction of G |= φ. For the convenience of the reader, we put all proofs
of theoretical results in the appendix.

Using the notations in Eq. (5), we can formally define the model checking
problem for σ(G) against MLTL formulas as follows.

Problem 1. Given a QMC G = (H, E , ρ0), a labeling function L, and an MLTL
formula φ, the task is to decide whether G |= φ, which means determining
whether L(σ(G)) ∈ Lω(φ).

Although MLTL extends LTL with quantum atomic propositions, the tra-
ditional model-checking techniques for LTL cannot be directly applied to solve
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Problem 1. This is because the state space of a QMC is continuous and un-
countably infinite, even in the case where the state space is finite-dimensional.
In contrast, classical LTL model checking deals with a discrete and finite state
set. However, QMCs can simulate Markov chains as seen in Example 1, and
interval LTL formulas in [17] can be represented by MLTL formulas as dis-
cussed in Section 4. Despite this, the counter-example presented in [17] shows
that the language {L(σ(G))} is generally not ω-regular. Therefore, the stan-
dard approach [24] of model checking ω-regular languages cannot directly solve
Problem 1 either.

To address this, we turn to the problem of approximate verification for QMCs,
following the techniques introduced in [17]. The main idea in [17] involves study-
ing the periodicity of states in finitely many sub-chains obtained through BSCC
decomposition [1], and a key property of Markov chains known as periodic sta-
bility, which ensures their stability. However, extending this idea to the quantum
setting is not straightforward. It has been proven that the BSCC decomposition
of QMCs is not unique, but rather has infinitely many possibilities [19, 25, 26]
due to the continuous state space. Additionally, we will demonstrate below that
QMCs do not exhibit periodic stability.

Definition 3. A QMC G = (H, E , ρ0) is called periodically stable if there exists
an integer θ > 0 such that limn→∞ Enθ(ρ0) = ρ∗ for some limiting quantum state
ρ∗. The smallest value of θ, if it exists, is referred to as the period of G and is
denoted as p(G). Moreover, { Ek(ρ∗) : 0 ≤ k < p(G) } are called the periodically
stable states of G as limn→∞ Enθ(Ek(ρ0)) = Ek(ρ∗).

In the classical case, any Markov chain (S, P, µ0) is periodically stable [27]. This
means that there exists an integer θ > 0 such that limn→∞ µ0P

nθ = µ∗ for some
limiting distribution µ∗. Furthermore, θ is independent of µ0. However, this
property does not hold for QMCs, as demonstrated by the following example.

Example 4. Let H = span{|s0⟩, |s1⟩} and U = |s0⟩⟨s0| + ei2πψ|s1⟩⟨s1| be a uni-
tary operator on H, where ψ is an irrational number. It can be proven that the
QMC (H, EU , ρ0), where EU (ρ) = UρU†, is not periodically stable for any generic
initial state ρ0. In fact, a simple calculation reveals that

EnθU (ρ0) = ρ00 · |s0⟩⟨s0|+ρ11 · |s1⟩⟨s1|+e−i2πψnθρ01 · |s0⟩⟨s1|+ei2πψnθρ10 · |s1⟩⟨s0|

where ρij = ⟨si|ρ|sj⟩. It is worth noting that since ψ is irrational, the set
{ ei2πψm : m ∈ N } is dense in the unit circle [28]. Therefore, for any integer
θ > 0, the limit limn→∞ EnθU (ρ0) cannot exist, except when ρ01 = ρ10 = 0.

Note that the operator EU in Example 4 has four eigenvalues (with multiplic-
ity taken into account): 1, 1, e−i2πψ, and ei2πψ. The corresponding eigenvectors
are |s0⟩⟨s0|, |s1⟩⟨s1|, |s0⟩⟨s1|, and |s1⟩⟨s0|, respectively. We have proven that the
system (H, EU , ρ0) is periodically stable if and only if the initial state ρ0 does not
have any components in the directions of |s0⟩⟨s1| and |s1⟩⟨s0|. Interestingly, this
is precisely why a QMC cannot be periodically stable (see Appendix B). To put
it in another way, a QMC is periodically stable only if the initial quantum state

13



does not contain any components in the directions defined by the eigenvectors of
the relevant super-operator (linear operator) corresponding to eigenvalues of the
form ei2πψ where ψ is an irrational number. This result also offers an efficient
method to verify the periodic stability of a given QMC G (and determine the pe-
riod p(G)). Specifically, symbolic computation can be used to check whether the
eigenvalues of QMCs are irrational by analyzing their algebraic representations
and mathematical properties. Such a method can be utilized to confirm the pe-
riodic stability of the quantum walk in Example 2. Therefore, the approximate
verification technique described in this paper can be applied to the quantum
walk.

Proposition 1. Given a QMC G = (H, E , ρ0) with dim(H) = d, there is a way
to check whether G is periodically stable with computational complexity O(d8). If
it is indeed stable, we can compute the period p(G) with a complexity of O(d8).

The evaluation process for periodic stability, as described in Proposition 1, in-
volves examining the eigenvalues and eigenvectors of the super-operator E . To
calculate these eigenvalues and eigenvectors of E with Kraus operators {Ek}k,
we can use the matrix representation ME [29] of E , given by ME =

∑
k Ek⊗E∗

k .
Here, E∗

k represents the entry-wise complex conjugate of Ek. The linear operator
(matrix) ME acts on H⊗H. Based on this, we can derive the following lemma:

Lemma 1. For a non-zero A ∈ L(H), A is an eigenvector of E corresponding
to the eigenvalue λ if and only if |A⟩ is an eigenvector of ME corresponding to
the eigenvalue λ. In other words, E(A) = λA if and only if ME |A⟩ = λ|A⟩.

In this context, |A⟩ ∈ H⊗H represents the vectorization of A, denoted by |A⟩ :=
(A⊗ I)|Ω⟩. Here, |Ω⟩ denotes the (unnormalized) maximally entangled state on
H ⊗ H [21]. Assuming H = span{|s0⟩, . . . , |sd−1⟩}, the maximally entangled

state can be expressed as |Ω⟩ =
∑d−1
k=0 |sk⟩|sk⟩. In particular, for a quantum

state ρ ∈ D(H), we write |ρ⟩ = (ρ⊗ I)|Ω⟩.
Now, our attention can be directed towards approximately model checking

the QMC G that is periodically stable. To achieve this with a desired level of
accuracy ε, we can adopt the following approach. First and foremost, we need
to identify the states of the chain that are periodically stable as defined in Defi-
nition 3. After a sufficient number of steps, any state on the trajectory σ(G) will
be close to one of the periodically stable states. This approach can also be ap-
plied to the labeled trajectory L(σ(G)). By doing so, we can obtain an ω-regular
language. Following that, we can utilize the standard Büchi automata approach
of model checking ω-regular languages to analyze the obtained language. There-
fore, in the following subsections, we will outline the step-by-step process for
handling this.

5.1 Periodically Stable States

Given a periodically stable QMC (H, E , ρ0), we can obtain the periodically stable
states by employing a specific super-operator called the stabilizer of G, denoted
by Eϕ. This stabilizer is generated by the super-operator E .
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Lemma 2. If a QMC G = (H, E , ρ0) is periodically stable with period p(G), then
the set {Eϕ(Ek(ρ0))}0≤k<p(G) consists of the periodically stable states of G. The
computational complexity of obtaining such a set is O(d8), where d = dim(H).

The super-operator Eϕ is constructed from E by retaining the eigenvec-
tors corresponding to eigenvalues with a magnitude of one, which do not van-
ish in the evolution En(ρ) as n tends to infinity. Specifically, let ME be the
matrix representation of E with Jordan decomposition ME = SJS−1, where
J =

⊕K
k=0 Jk(λk) =

⊕K
k=0 λkPk + Nk. Here, λk represents the eigenvalues of

ME , Pk is a projector onto the corresponding (generalized) eigenvector space,
and Nk is the corresponding nilpotent part. Furthermore, according to [7, Propo-
sition 6.2], the geometric multiplicity of any λk with a magnitude of one (i.e.,
|λk| = 1) is equal to its algebraic multiplicity, i.e., Nk = 0. Then we de-
fine Jϕ :=

⊕
k:|λk|=1 Pk as the projector onto the eigenspace corresponding to

eigenvalues with magnitude one. By [7, Proposition 6.3], it is confirmed that
MEϕ = SJϕS

−1 is indeed the matrix representation of some super-operator Eϕ.

5.2 Neighborhood of Quantum States

Now we proceed to introduce the concepts of (symbolic) neighborhoods for (se-
quences of) quantum states using the labeling function L.

Definition 4. Let ρ ∈ D(H) be a quantum state and ε > 0. The (symbolic)
ε-neighborhood Nε(ρ) of ρ is the subset of 2AP defined as

Nε(ρ) := {L(ρ′) : ρ′ ∈ D(H), ∥ρ− ρ′∥ < ε },

where ∥A∥ :=
√

tr(A†A) represents the Schatten 2-norm (also known as the
Hilbert–Schmidt norm) for the linear operator A ∈ L(H).

Now we show that, after a certain number of steps, the symbols L(En(ρ0)) will
be enclosed within the ε-neighborhood of one of the periodically stable states.

Lemma 3. Consider a periodically stable QMC G = (H, E , ρ0) with period p(G).
Let ηk = Eϕ(Ek(ρ0)), for each 0 ≤ k < p(G), as the periodically stable states of
G. Then for any ε > 0, there exists an integer Kε > 0 such that for any n ≥ Kε,

L(En(ρ0)) ∈ Nε(ηnmod p(G)).

Moreover, the time complexity of computing Kε is in O(d8), where d = dim(H).

With Lemma 3, we can define the concept of the (symbolic) neighborhood of
trajectories for periodically stable QMCs.

Definition 5. Given a periodically stable QMC G = (H, E , ρ0) and ε > 0, the
(symbolic) ε-neighborhood of the trajectory σ(G) of G is defined to be the language
Nε(σ(G)) over (2AP )ω such that ξ ∈ Nε(σ(G)) if and only if

– ξ[n] = L(En(ρ0)) for all 0 ≤ n ≤ Kε − 1 and
– ξ[n] ∈ Nε(ηnmod p(G)) for all n ≥ Kε,

where the states { ηk : 0 ≤ k < p(G) } and Kε are as given in Lemma 3.
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5.3 Approximate Verification of Quantum Markov Chains

Using Definition 5, we can formulate and address the problem of approximate
model checking for QMCs against MLTL formulas in the following manner.

Problem 2. Given a periodically stable QMC G = (H, E , ρ0), a labeling function
L, an MLTL formula φ, and ε > 0, decide whether

1. G ε-approximately satisfies φ from below, denoted G |=ε φ; that is, whether
Nε(σ(G)) ∩ Lω(φ) ̸= ∅;

2. G ε-approximately satisfies φ from above, denoted G |=ε φ; that is, whether
Nε(σ(G)) ⊆ Lω(φ).

To justify that Problem 2 is indeed an approximate version of Problem 1, we
first note that L(σ(G)) ∈ Nε(σ(G)). Then we have three cases:

1. if G ̸|=ε φ, then Nε(σ(G))∩Lω(φ) = ∅, and hence L(σ(G)) /∈ Lω(φ) (G ̸|= φ);
2. if G |=ε φ, then Nε(σ(G)) ⊆ Lω(φ), and hence L(σ(G)) ∈ Lω(φ) (G |= φ);
3. if neither G ̸|=ε φ nor G |=ε φ, then whether or not G |= φ is unknown.

If we find ourselves in the third scenario (the unknown case), we have the option
to decrease the value of ε by half and then repeat the approximate model-
checking process described in the previous scenarios. We can continue this pro-
cess until we reach either of the first two cases, which will provide us with either
a negative or affirmative answer to Problem 1. In exceptional cases, diminish-
ing ε may not lead to termination. To prevent this, a predetermined number
of iterations can be set for reducing epsilon. Determining when the procedure
terminates seems difficult, and we would like to leave it as future work.

Finally, to solve Problem 2, we represent Nε(σ(G)) in Definition 5 as the
ω-regular expression

Nε(σ(G)) = {L(ρ0)} · {L(E(ρ0))} · · · {L(EK
ε−1(ρ0))} ·

(
Nε(ζ0) · · · Nε(ζp(G)−1)

)ω
where ζk = η(Kε+k)mod p(G), 0 ≤ k < p(G), and for any two setsX and Y ,X ·Y =
{xy : x ∈ X, y ∈ Y }. Thus Nε(σ(G)) is ω-regular and standard techniques [1,30]
can be employed to check Nε(σ(G)) ∩ Lω(φ) = ∅ and Nε(σ(G)) ⊆ Lω(φ).

Theorem 1. The verification problem outlined in Problem 2 can be addressed
using Algorithm 1 within a time complexity of O(2O(|φ|) ·(Kε+p(G))+d8). Here,
d = dim(H), |φ| represents the size of MLTL formula φ, and p(G) and Kε are
as given in Proposition 1 and Lemma 3, respectively.

Algorithm 1 summarizes our techniques proposed above to answer Problem 2.
Starting from lines 1 to 7, we make use of the Jordan decomposition of the matrix
representationME of E to determine the period p(G) and the stabilizer Eϕ. These
computations allow us to obtain the periodically stable states {ηk}p(G)−1

k=0 of G
and their corresponding symbolic ε-neighborhood {Nε(ηk)}p(G)−1

k=0 based on the
given approximation level ε. The steps involved in these computations utilize
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Algorithm 1 ModelCheck(G, AP, L, φ, ε)
Require: A periodically stable QMC G = (H, E , ρ0) with Kraus operators {Ek}k, a

finite set of (measurement-based) atomic propositions AP , a labeling function L,
an MLTL formula φ, and ε > 0.

Ensure: true, false, or unknown, where true indicates G |= φ, false indicates G ̸|=
φ, and unknown stands for an inconclusive answer.

1: Put ME =
∑

k Ek ⊗ E∗
k

2: Get p(G) and MEϕ = SJϕS
−1 by the Jordan decomposition form ME = SJS−1

3: Put |ρ0⟩ = (ρ0 ⊗ I)|Ω⟩
4: for each k ∈ {0, 1, . . . , p(G)− 1} do
5: Set |ηk⟩ to be MEϕM

k
E |ρ0⟩

6: Compute Nε(ηk) by semi-definite programming
7: end for
8: Get Kε by solving some inequalities
9: for each k ∈ {0, 1, . . . ,Kε − 1} do
10: Put ρk = Ek(ρ0) and compute L(ρk)
11: end for
12: Put ζk = η(Kε+k)mod p(G) for 0 ≤ k < p(G)
13: Let Nε(σ(G)) be the ω-regular language

{L(ρ0)}{L(ρ1)} · · · {L(ρKε−1)} · (Nε(ζ0)Nε(ζ1) · · · Nε(ζp(G)−1))
ω

14: Construct the NBA Aφ for φ // standard construction
15: Construct the NBA AG accepting Nε(σ(G))// standard lasso-shaped construction
16: if L(AG) ∩ L(Aφ) = ∅ then // standard Büchi automata operation
17: return false
18: else if L(AG) ⊆ L(Aφ) then // standard Büchi automata operation
19: return true
20: else
21: return unknown
22: end if

Proposition 1 and Lemma 2. Afterwards, in line 8, we determine the truncation
number Kε using Lemma 3. Subsequently, we compute {L(ρk)}K

ε−1
k=0 , which

represents the symbols in AP of the first Kε quantum states in the trajectory
σ(G), from lines 9 to 11. Finally, in lines 12 and 13, we obtain an ω-regular
language Nε(σ(G)) that represents the symbolic neighborhoods of the evolution
σ(G). The Büchi automaton Aφ for the MLTL formula φ is constructed at line 14
by means of a standard construction for an LTL formula φ (see, e.g., [30]) while
the Büchi automaton AG at line 15 is obtained by an ordinary lasso-shaped
construction: it is enough to insert a new state between each letter, make the
state joining the stem and the lasso part accepting, and use the accepting state as
the target of the last action in the lasso. The two operations on Büchi automata
at lines 16 and 18 are standard: intersection and emptiness reduce to automata
product and strongly connected components decomposition, respectively, which
require quadratic time (cf. [30]). Language inclusion, however, in general, requires
exponential time and is PSPACE-complete (cf. [30]); in our case, however, we can
remain in quadratic time by replacing the check L(AG) ⊆ L(Aφ) with L(AG) ∩
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L(A¬φ) = ∅, since constructing the Büchi automata Aφ and A¬φ requires the
same asymptotic effort (cf. [30, Section 4.6.1]).

Remark 1. The complexity of approximately verifying MCs against interval LTL
formulas in the work of Agrawal et al. [17] is challenging to analyze and re-
mains unknown. This is because the BSCC decomposition analysis, which is re-
lied upon, is not an analytical method. Our model-checking algorithm, however,
overcomes this by utilizing the Jordan normal form to create a linear-algebraic
representation of the graph-theoretic (BSCC-based) model-checking algorithm
mentioned in [17]. Consequently, our model-checking algorithm (Algorithm 1)
can effectively verify MC models against interval LTL formulas. This capability
stems from the ability of QMCs to emulate MCs, as illustrated in Example 1,
and the greater expressiveness of our MLTL compared to interval LTL in [17],
as discussed in Section 4. Notably, MCs are inherently periodically stable, which
extends to the modeled QMCs, making our model-checking algorithm suitable
for this context. Additionally, while Agrawal et al. [17] did not offer a complexity
analysis for their algorithm, our method establishes the first upper bound on the
computational complexity of approximate model-checking for MCs against inter-
val LTL specifications from their work. Specifically, when using our algorithm for
model checking MCs, the complexity is reduced to O(2O(|φ|) · (Kε+ p(G))+ d4),
where d represents the number of states in the MC. This reduction is due to
the fact that the complexity of computing the Jordan decomposition of the d-
by-d stochastic matrix P in MCs is O(d4). As a result, the time complexity of
calculating Kε and p(G) is also reduced to O(d4).

6 Case Studies

To demonstrate the utility of the model-checking techniques proposed in this
paper, we conducted case studies on quantum walks to investigate their temporal
linear-time properties. We completed a prototype for implementing our model-
checking algorithm and used it to automatically model check all MLTL formulas
provided in Example 3. The prototype was built using Python for the quantum
part to generate an ω-regular language and Java for the classical part to model
check the language against LTL formulas by calling Spot, a platform for LTL
and ω-automata manipulation [31].

Before conducting the verification process, it is crucial to ensure the periodic
stability of the QMC model for the quantum walk in Example 2. By Propo-
sition 1, this can be achieved by computing the eigenvalues of the model and
confirming that they only have 1 as the eigenvalue with a magnitude of one.
Armed with this information, we can then employ Algorithm 1 to verify the
properties outlined in Example 3. The experimental results for these verifica-
tions can be found in Table 1.

The first experiment in Table 1 confirms the advantages of quantum walks
over classical random walks, which was previously established by Ambainis et
al. in [18]. The remaining two experiments aim to uncover new properties of
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Table 1. The experimental result for position number d = 20 and different initial
states ρ0 = |ψ0⟩⟨ψ0|.

|ϕ0⟩ Formula φ
Parameter ε

0.5 0.25 0.125

|s1⟩|R⟩ ♢□⟨Ms0 , [1/
√
2− 0.1, 1/

√
2 + 0.1]⟩ unknown unknown true

|s10⟩|R⟩
□⟨Ms20 , [0, 0.5)⟩ unknown unknown false

□(⟨Ms19 , (0.4, 1]⟩ =⇒ ⟨Ms1 , (0.4, 1]⟩) unknown unknown false

quantum walks. Moreover, we also utilized Algorithm 1 to verify these same
properties for one-dimensional unbiased classical random walks with absorbing
boundaries, which yielded contrasting results (false for the first experiment and
true for the last two experiments in Table 1). This confirms that these properties
are unique phenomena specific to quantum walks.

7 Conclusion

In this paper, we proposed a new quantum logic called measurement-based
linear-time temporal logic (MLTL) to specify the quantitative properties of quan-
tum Markov chains (QMCs). For model checking MLTL formulas, an algorithm
was developed. The measurement-based atomic propositions of MLTL build
upon the subspace-based quantum atomic propositions introduced by Birkhoff
and von Neumann [12]. Furthermore, we demonstrated the practical applicabil-
ity of our model-checking algorithm in quantum walks. This not only confirms
the previously established advantages discovered by Ambainis et al. [18] of quan-
tum walks over classical random walks, but also uncovers new phenomena that
are unique to quantum walks.

As future work, we note that the quantum walk in Example 2 can also be
written as a while-loop quantum program [29], and the absorbing probabilities
are exactly the termination probabilities of the program. Indeed, any quantum
program written in the While language can be modeled by a QMC [6]. So our
model-checking approach can be naturally applied in the verification of pro-
gram properties specified as MLTL formulas. Therefore, we plan to apply our
model-checking algorithms to verify quantum programs. Moreover, it would be
intriguing to broaden the application of the methods presented in this paper to
verify the behavior of non-periodically stable QMCs. One possible approach is
that any non-periodically stable QMC will be close to a periodically stable one
with arbitrary precision, as any irrational number (eigenvalue) will be close to a
rational number (eigenvalue) with the same precision.
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Appendix

A Visualization of the Evolution of Quantum Walks
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Fig. 1. The dynamics of one-dimensional quantum walk with boundaries in one step

To gain a better understanding of the evolution of quantum walks, it is nec-
essary to introduce the concept of amplitude distribution from quantum physics.
As stated in Section 2, in a Hilbert space H = span{|s0⟩, . . . , |sd⟩}, any quantum

pure state |ψ⟩ can be expressed as |ψ⟩ =
∑d
k=0 ak|sk⟩, where ak is a complex

number and referred to as the amplitude of |ψ⟩. The amplitude distribution
(a0, . . . , ad) is a unit complex vector (a0a

∗
0+ . . .+ada

∗
d = 1) formed by the set of

amplitudes {a0, . . . , ad}. It is important to note that the amplitude distribution
can also be used to represent a probability distribution (a0a

∗
0, . . . , ada

∗
d). Con-

versely, a probability distribution (p0, . . . , pd) can be expressed as an amplitude
distribution (

√
p0, . . . ,

√
pd).

To further illustrate the dynamic nature of the quantum walk, we can exam-
ine the evolution of the state at each step of the walk. This can be visualized
in Fig. 1, where the state at position sk is shown. The cases at other positions
follow a similar pattern. Initially, the current state of the quantum system is
represented as |sk⟩|R⟩ (on the left side of Fig. 1) or |sk⟩|L⟩ (on the right side of
Fig. 1), indicating the state at position sk with the direction either right or left,
respectively.

To begin the walk, we perform a measurement {Myes,Mno} on the current
state to determine if the position sk corresponds to the absorbing positions s0 or
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sd. If it is an absorbing position, the walk terminates. If not, the walk proceeds
to the next two sub-steps, which involve moving the current position.

Next, a coin (Hadamard operator) UH is tossed to decide the direction of
movement. This generates two possibilities with different directions and ampli-
tude distributions, determined by the current state. Specifically, if the current
state is |sk⟩|R⟩ (on the left side of Fig. 1), the amplitude distribution is ( 1√

2
, 1√

2
),

representing the quantum walk moving to the right and left with a probability
distribution of (12 ,

1
2 ). Similarly, for the state |sk⟩|L⟩ (on the right side of Fig. 1),

the amplitude distribution is ( 1√
2
,− 1√

2
), indicating the quantum walk moving

to the right and left with a probability distribution of ( 12 ,
1
2 ).

After determining the direction, the walk moves one position to the right
or left based on the amplitude distribution by performing a shift operator US .
This completes one step of the walk, and the process continues with the updated
current state.

It is important to note that the elements of the amplitude distribution can
be negative, such as − 1√

2
. As a result, when computing the total amplitude of

the walk, subtractions occur, leading to some amplitudes decreasing in absolute
value (probability) while others increase. This phenomenon, known as quantum
interference, results in the quantum walk exhibiting behavior that is significantly
different from classical random walks. For example, the unbiased walk in Exam-
ple 2 starting at the central position will exhibit a non-symmetric evolution. Our
model-checking algorithm has identified and verified several properties related
to this behavior.

B Proof of Proposition 1

In this section, we give an easily checkable characterization of the periodic sta-
bility of QMCs to complete the proof of Proposition 1.

Before proceeding, let us establish some mathematical notations from linear
algebra that will be used later.

Firstly, it should be noted that any linear map T on L(H) can have a maxi-
mum of d2 (where d = dim(H)) complex eigenvalues λ that satisfy T (A) = λA
for some non-zero operator A ∈ L(H). We denote the spectrum of T as spec(T ),
which represents the set of all eigenvalues of T . The spectral radius of T is de-
fined as ϱ(T ) = max{ |λ| : λ ∈ spec(T ) }. In particular, for any super-operator
E on H, it holds that ϱ(E) = 1 [7, Proposition 6.1]. We denote the set of eigen-
values of T with a magnitude of one as κ(T ) = {λ ∈ spec(T ) : |λ| = 1 }. It
is important to note that the calculation of spec(E) can be simplified to the
calculation of spec(ME), as shown in Lemma 1. Furthermore, the support of a
quantum state ρ, denoted as supp(ρ), is a subspace of H spanned by the eigen-
vectors corresponding to the non-zero eigenvalues of ρ. If supp(ρ) = H, then ρ is
referred to as a full-rank state. ρ is considered a stationary state of E if and only
if E(ρ) = ρ. Additionally, a stationary state ρ is classified as maximal if for any
other stationary state σ of E , the support of σ is a subspace of the support of ρ,
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i.e., supp(σ) ⊆ supp(ρ). It is important to note that, for a given super-operator
E , the support of any maximal stationary state of E remains the same [26].

Let (H, E , ρ0) be a QMC where ME represents the matrix E and ME =
SJS−1 is its Jordan decomposition. For each 0 ≤ k ≤ d2− 1 where d = dim(H),
let |sk⟩ be the k-th column vector of S. Since S is invertible, the vectors |sk⟩ form
a basis of the Hilbert space H⊗H. Therefore, for any quantum state ρ ∈ D(H),
its vectorization |ρ⟩ ∈ H⊗H can be uniquely represented as a linear combination
of these vectors: |ρ⟩ =

∑
k ak|sk⟩. Let

κ(ρ) = {λ ∈ κ(E) : ME |sk⟩ = λ|sk⟩ for some k with ak ̸= 0 }

be the set of eigenvalues of ME with a magnitude of one that contribute non-
trivially to |ρ⟩.

We can now state the following proposition, which provides a method to de-
termine whether a QMC G is periodically stable, as mentioned in Proposition 1.

Proposition 2. A QMC (H, E , ρ0) is periodically stable if and only if κ(ρ0) does
not contain any element of the form ei2πψ, where ψ is an irrational number.
Furthermore, the complexity of checking periodic stability is O(d8), where d =
dim(H).

Proof. First, note that for any m > 0 and ρ ∈ D(H), |Em(ρ)⟩ = Mm
E |ρ⟩. Thus

(H, E , ρ0) is periodically stable if and only if there exists an integer θ > 0 such
that limn→∞ Mnθ

E |ρ0⟩ exists. Let |ρ0⟩ =
∑
j aj |sj⟩. For any 0 ≤ j ≤ d2 − 1, if

|sj⟩ is an (generalized) eigenvector of ME corresponding to an eigenvalue with
magnitude strictly smaller than 1, then limn→∞ Mnθ

E |sj⟩ = 0 for any θ. Thus
we only need to care about |sj⟩ corresponding to eigenvalues with a magnitude
of one. Following [32, Lemma 2], P ◦ E shares with E the same eigenvalues with
a magnitude of one and the corresponding eigenvectors, where P(ρ) = PρP for
all ρ, and P is the projector onto the support of the maximal stationary state.
Therefore, w.l.o.g., we assume that E has a full-rank stationary state. This kind
of E is called faithful in [33].

Furthermore, for faithful E , the Kraus operators {Ei} admit a diagonal form
with respect to an appropriate decomposition H = ⊕t−1

k=0Hk [19, 34], where ⊕
denotes the direct sum operation. To be specific, for all i,

Ei = ⊕t−1
k=0Ei,k =


Ei,0

Ei,1
. . .

Ei,t−1


where Ei,k ∈ L(Hk), so ME has the corresponding structure

ME =
⊕
k,l

Mk,l
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where Mk,l =
∑
iEi,k ⊗ E∗

i,l. Furthermore, for any θ > 0 we have

lim
n→∞

Mnθ
E |ρ0⟩ =

⊕
k,l

lim
n→∞

Mnθ
k,l|ρ0,k,l⟩, (6)

where |ρ0,k,l⟩ is the restriction of |ρ0⟩ onto Hk ⊗ Hl, i.e., |ρ0⟩ = ⊕k,l|ρ0,k,l⟩.
Now it is easy to see that limn→∞ Mnθ

E |ρ0⟩ exists if and only if for any k and l,
limn→∞ Mnθ

k,l|ρ0,k,l⟩ exists.
To verify the existence of limn→∞ Mnθ

k,l|ρ0,k,l⟩, let

|ρ0⟩ =
∑
j

aj |sj⟩ =
⊕
k,l

∑
j

aj |sj,k,l⟩,

where |sj,k,l⟩ is the restriction of |sk⟩ onto Hk⊗Hl. Then |ρ0,k,l⟩ =
∑
j aj |sj,k,l⟩.

Define

κ(ρ0,k,l) = {λ ∈ κ(Mk,l) : Mk,l|sj,k,l⟩ = λ|sj,k,l⟩ for some j with aj ̸= 0 }.

For any 0 ≤ j ≤ d2 − 1 and 0 ≤ k, l ≤ m− 1, we have two cases to consider:

– if |sj,k,l⟩ is a (generalized) eigenvector ofMk,l corresponding to an eigenvalue

with magnitude strictly smaller than 1, then limn→∞ Mnθj
E |sj,k,l⟩ = 0 for

any θj ;
– if |sj,k,l⟩ is an eigenvector of Mk,l corresponding to an eigenvalue with a

magnitude of one, then Mn
k,l|sj,k,l⟩ = ei2πψj,k,ln|sj,k,l⟩ for some ψj,k,l. Thus

we have limn→∞ Mnθj
E |sj,k,l⟩ exists for some θj > 0 if and only if ψj,k,l is

rational and θjψj,k,l is an integer [28].

Note that the matrices Mk,l’s have the following spectral properties (cf. [5]):

for any k and l, κ(Mk,l) = ∅ or κ(Mk,l) = {exp(i2π(r + ψk,l)/Nk,l)}
Nk,l−1
r=0 ,

where Nk,l is a positive integer and ψ is a real number. Thus limn→∞ Mnθ
k,l|ρ0,k,l⟩

exists if and only if κ(ρ0,k,l) does not contain any element of the form ei2πψ for
some irrational number ψ. We complete the proof by noting that κ(ρ) = {λ ∈
κ(ρ0,k,l) : 0 ≤ k, l ≤ m− 1 }. ⊓⊔

It is important to highlight that the proof of Proposition 2 offers a method
to check the periodic stability of QMCs. The main computational cost lies in
the Jordan decomposition ME = SJS−1 of ME . It is widely recognized that
the complexity of the Jordan decomposition for an n-by-n matrix is O(n4).
Therefore, for a d2-by-d2 matrix ME , the cost is O(d8). Consequently, the afore-
mentioned proof of Proposition 2 concludes the proof of the first part of Propo-
sition 1.

Corollary 1. Let G = (H, E , ρ0) be a periodically stable QMC with d = dim(H).

– If we express κ(ρ0) as

κ(ρ0) = { e2πipk/qk : pk and qk are coprime positive integers }k,

then p(G) = lcm{qk}k, the least common multiple of {qk}k.
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– For any positive integer θ, limn→∞ Enθ(ρ0) exists if and only if p(G) divides
θ.

Corollary 1 presents a technique for calculating p(G) by determining the Jordan
decomposition of a d2-by-d2 matrix ME and then evaluating κ(ρ0) using its
definition. The time complexity of this method is O(d8). This concludes the
proof of the second part of Proposition 1.

C Proof of Lemma 1

Proof (of Lemma 1). To begin, let us establish the transformation of E on H1

and its corresponding matrix representation on H1 ⊗H2 as shown below:

E(A) = tr2(ME(A⊗ I)|Ω⟩⟨Ω|), for any A ∈ L(H1). (7)

Here, tr2 denotes the partial trace operation on the second Hilbert space [21].
Mathematically, tr2( · ) is a linear map from L(H1 ⊗H2) to L(H1). Given that
H = span{|s0⟩, . . . , |sd−1⟩}, we can express tr2( · ) as follows:

tr2(M) =
∑
k

(I ⊗ ⟨sk|)M(I ⊗ |sk⟩), for all M ∈ L(H1 ⊗H2).

Here, I represents the identity operator on H1. By utilizing the transformation
in Eq. (7), we can readily prove that E(A) = λA if and only if ME |A⟩ = λ|A⟩,
where A ∈ L(H) is not a zero matrix. ⊓⊔

D Proof of Lemma 2

Proof (of Lemma 2). Let θ = p(G). Based on the proof of Proposition 2, Corol-
lary 1, and the construction of the stabilizer Eϕ, we can conclude that

lim
n→∞

Enθ+k(ρ0) = Eϕ(Ek(ρ0)) for any integer 0 ≤ k ≤ θ − 1.

In other words, the set {Eϕ(Ek(ρ0))}0≤k<p(G) consists of the periodically stable
states of G. The process of obtaining this set has the same computational com-
plexity as that of constructing Eϕ, which is O(d8) for the Jordan decomposition
of the d2-by-d2 matrix ME , as discussed in Subsection 5.1. ⊓⊔

E Proof of Lemma 3

To prove Lemma 3, we need to characterize the ε-neighborhoods of the quantum
state ρ ∈ D(H) ⊆ L(H) and the super-operator E ∈ L(L(H)). Here, L(L(H))
represents the set of all linear operators from L(H) to L(H). To do this, we must
introduce norms on L(H) and L(L(H)). The Schatten 2-norm (also known as
the Hilbert-Schmidt norm) on L(H) has already been introduced in Definition 4
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to define the ε-neighborhood of ρ. Now, we introduce an additional norm on
L(L(H)), and we choose to utilize the Schatten 2-norm on L(H) to induce an
operator norm on L(L(H)). It is important to note that the results presented
here are applicable to any other norm because all norms in a finite-dimensional
Hilbert space are equivalent [35].

Definition 6. Given a Hilbert space H, the operator norm ∥ · ∥o on L(L(H))
induced by the Schatten 2-norm ∥ · ∥ is defined as follows:

∥T∥o := sup{ ∥T (A)∥ : A ∈ L(H) with ∥A∥ = 1 } for any T ∈ L(L(H)).

Furthermore, for simplicity, we will refer to ∥ · ∥o as ∥ · ∥ unless there is po-
tential confusion.

Based on the given norm and the fact that ∥A∥ =
√
tr(A†A) =

√
⟨A|A⟩, it

can be easily shown that for any super-operator E ,

∥E∥ = ∥ME∥ = max
λ∈spec(M†

EME)

√
λ.

In other words, ∥E∥ represents the maximum singular value of ME , which is
equal to 1 for the super-operator E (i.e., ∥E∥ = 1). With this, for any super-
operators E1, E2, and F , we have

∥(E1 − E2) ◦ F∥ ≤ ∥E1 − E2∥ · ∥F∥ = ∥E1 − E2∥. (8)

The inequality is a result of the sub-multiplicative property of the operator norm,
which states that ∥T1T2∥ ≤ ∥T1∥ · ∥T2∥.

Furthermore, for any ρ ∈ D(H) and super-operators E1 and E2, we have

∥E1(ρ)− E2(ρ)∥ ≤ ∥E1 − E2∥ · ∥ρ∥ ≤ ∥E1 − E2∥. (9)

The second inequality follows from the fact that ∥ρ∥ ≤ 1.
To prove Lemma 3, an essential result of the asymptotic property of E charac-

terized by Eϕ from [7] is also needed. This result is based on the Jordan condition
number.

It is important to note that the Jordan decomposition ME = SJS−1 is not
unique, and we define

α(E) = inf
S
{ ∥S∥ · ∥S−1∥ : S−1MES is in Jordan normal form }

as the Jordan condition number [7] of E .

Lemma 4 (cf. [7, Theorem 8.23]). For any n > 0 we have

C−1ωnndω−1 ≤ ∥Mn
E −Mn

Eψ∥ ≤ Cωnndω−1

where Eψ = E ◦ Eϕ, ω = sup{ |λ| : λ ∈ spec(E), |λ| < 1 } is the largest modulus
of eigenvalues of E in the interior of the unit disc, dω is the dimension of the
largest Jordan block corresponding to eigenvectors of modulus ω, and

C =

{
α(E) if dω = 1,

α(E)(ω(dω − 1))dω−1 if 1 < dω ≤ n+ 1.

27



Now, we present the proof of Lemma 3.

Proof (of Lemma 3). Let θ = p(G). By Lemma 2, {Eϕ(Ek(ρ0))}0≤k<p(G) are the
periodically stable states of G, i.e.,

lim
n→∞

En(ρ0) = Eϕ(Enmod θ(ρ0)).

Thus for any ε > 0, there exists a positive integer Kε such that for all n > Kε,

∥En(ρ0)− Eϕ(Enmod θ(ρ0))∥ < ε

as desired.
To determine Kε, we recall from Lemma 4 that

C−1ωnndω−1 ≤ ∥Mn
E −Mn

Eψ∥ ≤ Cωnndω−1.

Let n = mθ + k with 0 ≤ k ≤ θ − 1, and note that Emθψ (ρ0) = Eϕ(ρ0) by
Corollary 1. We have

∥Emθ+k(ρ0)− Eϕ(Ek(ρ0))∥ = ∥Emθ+k(ρ0)− Emθ+kψ (ρ0)∥ ≤ ∥Emθ − Emθψ ∥

where the inequality follows from Eqs. (8) and (9). So we can simply set Kε to
be the minimal integer satisfying

CωK
ε

(Kε)
dω−1

< ε and Kε + 1 > dω, (10)

where the second inequality comes from the requirement of C in Lemma 4.
Finally, the computation of C boils down to the Jordan decomposition of E ,
which makes the time complexity of calculating Kε to be O(d8). ⊓⊔

F Proof of Theorem 1

Proof (of Theorem 1). To see the correctness of Algorithm 1, we can proceed
with a detailed examination of its steps immediately following the presentation
of Theorem 1.

To analyze the complexity of Algorithm 1, we first focus on the computation
of the ω-regular language Nε(σ(G)) from lines 1 to 13. The main computational
tasks include determining the period P(G), the stabilizer Eϕ, the periodically

stable state {ηk}p(G)−1
k=0 , and the truncation number Kε. These values can be

obtained using Proposition 1 and Lemmas 2 and 3. The overall complexity is
O(d8), with the main cost being the Jordan decomposition of a d2-by-d2 matrix
ME . It is well-known that the complexity of the Jordan decomposition for an
n-by-n matrix is O(n4). Therefore, for a d2-by-d2 matrix ME , the cost is O(d8).

Once we have obtained the ω-regular language Nε(σ(G)), we can utilize the
standard Büchi automata approach from Line 14 to the end of Algorithm 1 to
perform model checking on Nε(σ(G)) against a LTL (MLTL) formula φ. This
approach allows us to address the verification problem outlined in Problem 2.
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As said in the analysis after the statement of Theorem 1, the main source
of complexity is the model checking of Nε(σ(G)) against the formulas φ and
¬φ: the former is used at line 16 while the latter at line 18 since checking
L(AG) ⊆ L(Aφ) is equivalent to verifying L(AG) ∩ L(A¬φ) = ∅. These oper-
ations are done by constructing the Büchi automata Aφ and A¬φ for φ and
¬φ, respectively, and checking the emptiness of their language intersection with
L(AG), i.e., with Nε(σ(G)). The complexity of model checking an ω-regular
language with a length of Kε + p(G) for a given LTL (MLTL) formula φ′ is
O(2O(|φ′|) · (Kε+p(G))) [1,30]. Thus the two checks at lines 16 and 18 have a to-
tal complexity of O((2O(|φ|)+2O(|¬φ|)) · (Kε+p(G))). Since it is widely accepted
in the model checking community that the Büchi automata Aφ and A¬φ can
be obtained with the same complexity 2O(|φ|) (cf. the automaton construction
given in [1, Theorem 5.37] or in [30, Section 4.6.1]), the term 2O(|φ|) + 2O(|¬φ|)

becomes 2 · 2O(|φ|). Therefore, the complexity for performing model checking on
the ω-regular language Nε(σ(G)) is O(2O(|φ|) · (Kε + p(G))).

In summary, the overall complexity of Algorithm 1 is O(2O(|φ|) ·(Kε+p(G))+
d8), which concludes the proof. ⊓⊔
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