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CNRS-Université Paris-Sud and Paris-Saclay, Bâtiment 510, 91405 Orsay, France and
(4) Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL,
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In this study, we investigate the potential of electronic interferometers for probing the quantum
state of electromagnetic radiation on a chip at sub-nanosecond time scales. We propose to use
single electron excitations propagating within an electronic Mach-Zehnder interferometer in the
Aharonov-Bohm dominated regime. We discuss how information about the quantum state of the
electromagnetic radiation is encoded into the interference contribution to the average outgoing
electrical current. By investigating squeezed radiation and single edge magnetoplasmons probed by
Leviton pulses in a realistic setup, we show that single electron interferometers have the potential to
probe quantum radiation in the time domain with sub-nanosecond to pico-second time resolution.
Our research could have significant implications for probing the fundamental properties of light in
the microwave to tera-Hertz domains at extremely short time scales.
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I. INTRODUCTION

Initiated by the demonstration of on-demand single
electron sources in quantum Hall edge channels [1, 2],
electron quantum optics (EQO) [3] has seen the demon-
stration of several important milestones such as elec-
tronic Hanbury Brown and Twiss (HBT) [4], Hong Ou
Mandel (HOM) [5] experiments, quantitative studies of
electronic decoherence using HOM [6] and Mach Zehn-
der interferometry [7–11]. More recently, a full charac-
terization of the quantum state and coherences of single
electron and hole excitations within a quantum Hall edge
channel has been performed [12]. By demonstrating our
ability to access electronic quantum states in a quantum
conductor at an unprecedented level, these achievements
strongly suggest that EQO is now mature for exploring
its applications. The extreme sensitivity of individual
electronic excitations to their electromagnetic environ-
ment suggests to explore the potential of EQO for the
sensing of electromagnetic fields at the µm spatial scale
and down to a few ps time scale [13].

This would be of great interest in the current effort
to extend the paradigms of quantum coherent nano-
electronics to higher frequencies, possibly up to the THz
range [14] since the electromagnetic wavelength (mm) is
still much larger than the size of the device (from 1 to few
tens of µm). For example, interferometric detection of a
single electron at sub-nanosecond time scale is indeed in-
strumental in a recent proposal for single shot detection
of an electronic flying qubit [15]. In a broader perspec-
tive, solid state systems envisioned for quantum technolo-

gies [16–18] involve quantum electromagnetic fields in the
GHz to THz range. Quantum optics in the THz domain
also offers interesting perspectives for studying quantum
materials [19]. This calls for sensors that can probe the
properties of these fields on the chip and at such short
time scales.
However, sensing and analyzing of local quantum elec-

tric fields on very short time scales is notoriously diffi-
cult. Rydberg atoms based quantum electrometers [20]
have reached record sensitivities but for static fields. Fast
electrical modulation of optical systems enables measur-
ing the electric field up to a THz-bandwidth [21]. Unfor-
tunately, such optical systems are not suitable for quan-
tum mesoscopic devices due to the difficulty of combining
optics and microwave electronics within the same cryo-
stat and the large size of the sensing area. On-chip
systems based on nano-mechanical resonators [22, 23],
rf-capacitive gate based sensing [24], NV-centers in di-
amond [25] as well as quantum dots [26, 27] have been
demonstrated, often as charge sensors able to detect a
single electron charge at a few tens of nm. But their
bandwidth is still limited to 1 to 10MHz at best, obtained
with rf-SETs [28], Quantum Point Contacts (QPCs) [29],
rf-SQUIDS [30] or quantum dots [31]. Moreover, they are
not designed to detect quantum features of the electro-
magnetic field such as non-classical fluctuations.
In this paper, we discuss the electron quantum radar

(EQR) as a way to probe the quantum state of an elec-
tromagnetic radiation using a single electron interferom-
eter. This idea is dual to the one underlying radars and
coherent lidars which are electromagnetic interferometers
probing a material target. Here, the “Electron Quantum
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Radar” (EQR) is an electronic Mach-Zehnder interferom-
eter (MZI) [32] where one branch is capacitively coupled
to a radiation channel in which the external electromag-
netic radiation propagates as depicted on Fig. 1. The
EQR obtains information on the quantum state of the
radiation by comparing ballistic propagation within the
“reference branch” of the MZI and propagation in the
“target branch” coupled to the radiation. This is differ-
ent from the proposal of Ref. [33] in which non-classical
radiation is probed via photo-assisted tunneling. It is
closer to an interferometric probe of a quantum electro-
magnetic field by matter [34] although, here, it is not a
quantum non-demolition measurement since the coupling
operator is a quadrature of the field [35].

As shown in the present work, single electron excita-
tion are the most promising probes of quantum radia-
tion involving single to a few photons because the asso-
ciated quantum electrical current generates a very small
back-action on this radiation compared to electrical cur-
rents involving more electronic excitations. Moreover,
the demonstration of single electron tomography proto-
cols [12, 36, 37] supplemented by quantum current anal-
ysis algorithms [38] as well as the generation of wave
packets in the tens to few ps range in a variety of systems
[14, 39–42] suggest that the versatility of single electron
sources may enable us to probe properties of quantum
radiation both in the time and frequency domains. Most
importantly, a Levitonic MZI has recently been demon-
strated in graphene [43].

Motivated by this perspective, a full theory of the sin-
gle electron quantum radar is presented here. The central
result of this paper is the single electron radar equation
which gives the interference contribution to the average
electrical current in terms of the electronic single elec-
tron wave-packet and the quantum state of the electro-
magnetic radiation. All the dynamics is contained in the
linear response properties of the “‘radiation coupler” cou-
pling the target branch to the radiation.

This equation accounts for the interferometer’s back
action on the incident radiation, which leads to elec-
tronic decoherence [44, 45]. We show that all information
about the state of the incident quantum radiation is con-
tained in a Franck-Condon recoil factor [46] describing
the change of the incident radiation upon the propaga-
tion of a time resolved single electron excitation across
the interferometer. This result is established using the
plasmon scattering matrix related to finite frequency ad-
mittances [47, 48] to describe the coupling between the
external radiation and the plasmon modes within the tar-
get branch of the MZI.

In the case of a classical radiation, this recoil factor
includes a pure phase corresponding to the classical elec-
trical potential seen by the electron during its propa-
gation. When the quantum state of the incident quan-
tum radiation is Gaussian, this recoil factor captures the
time-dependent fluctuations in the mode selected by the
capacitive coupling between the radiation and the elec-
trons. This enables us to give an operational criterion to

test if the fluctuations are sub-vacuum. This result may
be of interest in the light of recent theoretical [49, 50] and
experimental [51] studies of squeezing in quantum Hall
edge channels as well as in tunnel junctions [52, 53]. As
a last example, we discuss the electron radar signature
of single to few edge magnetoplasmons (EMPs) propa-
gating in a nearby quantum Hall edge channel and show
that, when the radiation coupler provides a broadband
filtering of the incoming radiation, the recoil factor in the
time domain is proportional to the instantaneous average
heat current [54] carried by a single EMP.

This paper is structured as follows: Sec. II presents the
basic ideas for sensing classical or quantum electromag-
netic fields with an electronic interferometer. In particu-
lar, we show the importance of the back-action of the in-
terferometer when probing quantum electromagnetic ra-
diation. The theory of a single electron Mach-Zehnder in-
terferometer with one of its branch irradiated by a quan-
tum electromagnetic field is then presented in Sec. III
and its core result – the single electron radar equation –
is derived. Explicit predictions for classical and quantum
radiation (squeezed and Fock states) probed by Levitons
are presented in Sec. IV.

II. SENSING ELECTROMAGNETIC FIELDS
WITH ELECTRONS

In this section, we discuss the physics of the electronic
MZI as a probe of an external radiation at a qualitative
level. Secs. II A and IIB are devoted to estimating the
classical phase shift induced on the probing electron in
the radiation-coupler (or radiation coupler) by a nearby
propagating single electron current and then a classical
time dependent voltage. Then, in Sec. II C, we consider
an incident quantum radiation and we show that, to avoid
decoherence effects, a compromise must be found on the
strength of the electron/radiation coupling. The discus-
sion of back-action effects also explains why single elec-
tron interferometry is appropriate for probing the quan-
tum state of mesoscopic quantum radiation involving a
low average number of photons.

A. Electromagnetic phase shifts

Before modeling the MZI, let us estimate the order of
magnitude of the phase shift induced by a nearby elec-
tron on the electron propagating within the MZI. In Ref.
[13], a “small electron collider” depicted on Fig. 2 has
been considered. The phase shift δϕcoll associated with
Coulomb potential for electrons flying nearby each other
at velocity vF is, up to some geometric factor, of the
order of the effective fine structure constant within the
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FIG. 1. Scheme of principle for sensing electromagnetic fields
with single electron excitations. An electronic Mach-Zehnder
interferometer (MZI) is formed by combining two quantum
point contacts A and B acting as ideal electronic beam split-
ter. It encloses a magnetic flux ΦB inducing an Aharonov-
Bohm phase ϕAB = eΦB/ℏ. The interferometer is fed by a
single electron source S located right before the first beam
splitter A. One measures the Aharonov-Bohm flux depen-
dent part of the average outgoing electrical current ⟨i1out(t)⟩
or ⟨̃ı1out(ω)⟩. The branch 1 is capacitively coupled to external
electromagnetic radiation.

FIG. 2. Collision of two electrons propagating within two
counter propagating 1D channels at velocity vF , separated by
a distance d and feeling Coulomb potential within a region of
length l in a dielectric material of relative permittivity εr.

material

δϕcoll = αeff arcsinh (l/d) (1a)

αeff =
e2

4πε0εrℏvF
=
αqed

εr

c

vF
(1b)

For AlGaAs/AsGa with relative permittivity εr = 12.9
and a typical Fermi velocity vF = 105 ms−1, αeff ∼ 1.7
and therefore, for l = 1 µm and d = 100 nm, δϕcoll/2π ≃
0.81 which is not small compared to unity. Similar phase
estimates have also been discussed in two-electron colli-
sion within an HOM interferometer [55].

This estimate suggests that, using the typical radia-
tion coupler geometry depicted on Fig. 1, a single elec-
tron excitation propagating within the MZI may be able
to detect the time dependent electromagnetic field asso-
ciated with a single electron passing by in the radiation
channel.

B. Sensing a classical voltage drive

To understand how the shape of the probing electron’s
wave packet influences its detection capabilities, we now
discuss more precisely the behaviour of the single electron
MZI depicted on Fig. 1 using single-particle physics.
Two quantum point contacts (QPC) behave as ideal

electronic beam splitters with scattering matrices

Sα =

(√
Tα i

√
Rα

i
√
Rα

√
Tα

)
(2)

for α = A or α = B where Tα and Rα are the transmis-
sion and reflection probabilities (Tα +Rα = 1). A static
perpendicular magnetic field B is applied, generating an
Aharonov-Bohm phase ϕAB enclosed between the arms 1
and 2.
We assume that electrons feel a time dependent classi-

cal potential U(t) along branch 1 and propagate ballisti-
cally along branch 2 with time of flight τ2. The amplitude
for a single electron to enter into branch 1 at time t′ and
arrive at the second beam splitter at time t is then given
by

R(t, t′) = δ(t− t′ − τ1) e
ie
ℏ

∫ t
t′ U(τ) dτ (3)

in which τ1 denotes the ballistic time of flight across
branch 1. The prefactor is the electric phase accumu-
lated by the electron during its propagation. We can
then compute the probability for an electron emitted by
source S in a single particle state φe to be detected in
the outgoing branch 1:

p(1out) = RARB + TATB + Pq (4)

in which the quantum interference contribution Pq is
given by

Pq = Kℜ
(
eiϕAB

∫

R
φe(t− τ1)e

ie
ℏ

∫ t
t−τ1

U(τ) dτ
φe(t− τ2)

∗dt

)

(5)
where K =

√
RARBTATB . In the limit of a very short

electronic wave packet emitted at time te and for τ1 = τ2
we obtain

Pq ∝ ℜ
(
eiϕABeiδϕU (te)

)
(6)

where the phase

δϕU (te) =
e

ℏ

∫ te+τ1

te

U(τ) dτ (7)

is the electric phase accumulated during the time inter-
val [te, te + τ1]. This result corresponds to our intuition
from optics: the interferometer provides a way to access
the phase difference between the two propagation paths
which, in the present case, is directly related to the clas-
sical voltage experienced by the electrons during their
propagation along branch 1.
In order to discuss how an electronic MZI can be used

to probe the quantum state of a radiation, a quantum
description of the radiation/electron coupling is needed.
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FIG. 3. The Elitzur-Vaidman’s interferometer: in the ab-
sence of the bomb, this single photon Mach-Zehnder interfer-
ometer is calibrated so that there is no click in D2. In the
presence of the bomb, the trigger absorbs an incident photon
with 100% efficiency and detonates the bomb. Interferences
are destroyed and there is a probability 1/4 for the traveling
particles to be detected by D2.

C. Interferometric sensing of a quantum system

The simplest way to understand how a quantum in-
terferometer can probe the state of a quantum system
coupled to one of its branches is to discuss a generaliza-
tion of the Elitzur-Vaidman bomb detector [56].

In this work, a quantum interferometer is used to de-
tect the presence of a bomb without triggering its explo-
sion. The bomb’s trigger is activated as soon as a particle
travels across branch 1 of the interferometer (see Fig. 3).
This assumes that the bomb’s trigger is a perfectly ef-
ficient particle detector. The idea is then to tune the
optical paths of the MZI so that, in the absence of the
bomb, the particle exits on one of its outgoing branch
but not in the other. In the presence of the bomb, the
particle exits with probability 1/4 in the branch where
it would never exit in the absence of the bomb. This
provides a sure diagnostic of its presence without inter-
acting with its trigger, hence the commonly used term
“interaction free measurement” to describe this process.

However, in the present context, we are interested into
exploiting the interaction between the particle and the
bomb’s trigger to gain information not only about its
presence of absence but also about its quantum state.

The bomb initially being in the |Idle⟩ state, interac-
tion with the incident photon leads to an entangled state
involving two alternatives: first, as in Elitzur and Wei-
dman’s work, when the photon is absorbed, the bomb
is detonated. But we also account for a fizzling of the
bomb in which the photon is not absorbed although its
quantum state can be altered. The full interaction be-
tween the particle and the bomb is then described by the
quantum coherent process

|Ψ⟩ ⊗ |Idle⟩ −→ A0 |∅⟩ ⊗ |Detonated⟩
+A1 |Ψ′⟩ ⊗ |Fizzled⟩ (8a)

in which |∅⟩ denotes the vacuum state (the particle has
been absorbed) and |Ψ′⟩ the modified state of the photon
in case of fizzling. The Elitzur-Vaidman interaction free

measurement corresponds to |A0|2 = 1 but, here both
alternatives are allowed and thus |A0|2 + |A1|2 = 1. For
balanced beam splitters, the conditional output proba-
bilities are then given by the following expressions :

p(No Particle) =
1

2
(1− |A1|2) (9a)

p(1out) =
1

4
(1 + |A1|2)− Pq (9b)

p(2out) =
1

4
(1 + |A1|2) + Pq (9c)

in which quantum interference effects are contained in

Pq =
1

2
ℜ
(
A1e

iϕAB ⟨Idle|Fizzled⟩ ⟨Ψ|Ψ′⟩
)

(10)

which is sensitive to the (Aharonov-Bohm) phase differ-
ence ϕAB associated with free propagation along the two
branches of the MZI. Information on the quantum state
of the bomb is contained in the product of the two over-
laps ⟨Ψ|Ψ′⟩ and ⟨Idle|Fizzled⟩.
From our perspective, the bomb plays the role of the

incoming electromagnetic radiation and the particle is
the quantum electrical current propagating within the
MZI. The process in which the particle is absorbed and
the bomb is detonated corresponds to a full electronic de-
coherence within the MZI. It occurs whenever Coulomb
interactions lead to the generation of any extra elec-
tron/hole pair within the channel 1 of the MZI compared
to ballistic propagation along channel 2. The resulting
many-body state will then have a vanishing overlap with
the ballistic propagation of a single electron excitation
within branch 2 of the MZI. However, this is not the
case of interest for the electron radar since, in this case,
the interference contribution to the average current van-
ishes and, as in the Elitzur-Vaidman case, nothing can be
learned on the quantum state of the incoming radiation.
By contrast, in the absence of generation of extra elec-

tron/hole pair particles, the state of the electron prop-
agating within branch 1 is altered by its coupling to
the incoming radiation: this corresponds to the change
|Ψ⟩ 7→ |Ψ′⟩ in the above discussion. For a classical radi-
ation, this is the phase shift associated with the voltage
experienced by the electrons (see Sec. II B).
The alteration of the bomb’s state |Idle⟩ 7→ |Fizzled⟩

in the above discussion corresponds to the effect of the
propagating electron on the incident radiation in the sit-
uation where no extra-electron/hole pairs are created.
This is the back action of the interferometer, seen as a
measurement device, on the radiation. The amplitude
⟨Idle|Fizzled⟩ that measure the “quantum recoil” of the
radiation upon propagation of a single electron without
generating extra electron/hole pairs along branch 1 of
the MZI. As we shall see in Sec. III, this is precisely
the part that will contain information on the quantum
fluctuations of the incoming radiation.
When the back-action is too important, the overlap

⟨Idle|Fizzled⟩ may vanish and the interference signal is
then lost. This point explains why quantum electrical
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currents carrying a single electronic excitations are rel-
evant for probing mesoscopic quantum electromagnetic
fields which involve a low average number of photons:
besides decoherence which is generically less important
for them, single electron currents lead to a smaller back-
action than currents carrying more excitations.

In the end, this qualitative discussion suggests that,
extracting information on the incoming radiation thus
requires a compromise: electronic decoherence as well as
back-action on the quantum radiation has to be moder-
ate to ensure an experimentally accessible experimental
signal but strong enough to ensure sensitivity to the in-
coming quantum radiation.

III. THE SINGLE ELECTRON RADAR
THEORY

In this section, we derive the central result of this work
which is the single electron radar equation expressing the
interference contribution to the outgoing average current
in terms of two distinct quantities: firstly, the excess sin-
gle electron coherence of the injected wave packet which
depends only on the electronic source S. Secondly, an
effective single particle scattering amplitude describing
both the effects of electronic decoherence and of the in-
coming radiation. The latter quantity reflects the dy-
namics of the interferometer coupled to its electromag-
netic environment.

Although this result is formally derived in Appendix E
using bosonization of chiral quantum Hall edge channels,
a more intuitive derivation is presented in Secs. III A and
III B.

A. Radiation coupler modeling

The radiation coupler involves a capacitive coupling
between a portion of the upper branch of the electronic
MZI and the external radiation channel which is fed by
the incoming electromagnetic radiation we want to study.
Effect of Coulomb interactions within this region will be
described within the framework of edge-magnetoplasmon
scattering. Originally introduced in the context of finite
frequency quantum transport in 1D [47, 48, 57], it enables
us to describe the scattering between the EMP modes
propagating along the MZI edge channel and the bosonic
modes within the external radiation channel [58].

For simplicity, we assume that the whole upper branch
of the MZI is included in the radiation coupler so that
the EMP scattering matrix will account for the detailed
geometry of the sample. We also assume that only the
EMP modes associated with the b(ω) and b†(ω) destruc-
tion and creation operators and the external radiation
modes associated with the a(ω) and a†(ω) operators ap-
pear in the scattering matrix S(ω):

(
aout(ω)
bout(ω)

)
=

(
Saa(ω) Sab(ω)
Sba(ω) Sbb(ω)

) (
ain(ω)
bin(ω)

)
. (11)

bin bout

aout ain

(a)

bin bout

ain aout

Z(ω)

(b)

bin bout

ain aout

S(ω)

(c)

FIG. 4. (Color online) The edge-magnetoplasmon scatter-
ing approach describes many situations, such as for example
(a) two counter-propagating edge channels capacitively cou-
pled over a distance l, (b) a chiral edge channel capacitively
coupled to a linear external circuit described by a frequency
dependent impedance Z(ω). (c) Solving the equation of mo-
tions leads to a frequency dependent scattering matrix S(ω)
between the channel’s edge-magnetoplasmon modes and the
bosonic modes of the other system.

Depending on the design of the radiation coupler, the
(a, a†) modes may be photonic (case of Fig. 4-(b)) or
edge-magnetoplasmonic (see Fig. 4-(a)). These ma-
trix elements are related to finite frequency admittances
[47, 48, 59]. In principle, they could be inferred from ex-
perimental measurements [60]. Quantitative predictions
can also be made from theoretical models of the radia-
tion coupler. Experimentally relevant examples include
the case of two counter-propagating edge channels (see
Fig. 4-(a)) as well as the case of a capacitive coupling
to a transmission line (see Fig. 4-(b)). Computations
for the case of two counter-propagating edge channels in
total mutual influence (see Fig. 4-(a)) are detailed in Ap-
pendix D. This specific radiation coupler model will be
used all along the present manuscript to illustrate explicit
examples.

B. The single electron radar equation

1. Single particle scattering approach

We now derive the radar equation assuming that elec-
tronic propagation inside the radiation-coupler is de-
scribed in terms of time dependent single particle scat-
tering. We are neglecting electron-hole pairs creation by
Coulomb interactions within the MZI. We also assume
that the two QPCs are ideal electronic beam splitters
with energy independent scattering matrix. Denoting by
R(t, t′) the amplitude for an electron to enter branch 1
at time t′ and exit it at time t ≥ t′, we can compute the
Aharonov Bohm flux dependent contribution to the out-
going time dependent average electrical current ⟨i1out(t)⟩.
In a MZI interferometer, its Aharonov-Bohm phase de-
pendence reduces to

⟨i1out(t)⟩ = −e
(
I0(t) + eiϕABI+(t) + e−iϕABI+(t)

∗) .
(12)

where ϕAB = 2πΦB/Φ0 (Φ0 = h/e being the flux quan-

tum). Denoting by A(S
j−→ 1out) the amplitude for an



6

electron to be emitted by the source S, propagating along
branch j between the two QPCs and be detected in 1out,
we have

I+(t) = vFA(S
1−→ 1out)A(S

2−→ 1out)
∗ (13)

with

A(S
1−→ 1out) =

√
TATB

∫

R
R(t, t′)φe(t

′) dt′ (14a)

A(S
2−→ 1out) = −

√
RARB φe(t− τ2) . (14b)

Note that, in the present context, 2ℜ(I+(t) eiϕAB) plays
the role of Pq in Sec. II. The quantity X+(t) defined by
I+(t) = −

√
RATARBTB X+(t) does not depends on the

properties of the electronic beam splitters and completely
determines the interference contribution to the average
electrical current. It is equal to

X+(t) = vF

∫

R
R(t, t′)φe(t

′)φe(t− τ2)
∗dt′ . (15)

This result is called the electronic radar equation by anal-
ogy with the existing signal processing literature [61]. Its
integral over time

X
(dc)
+ =

∫

R
X+(t) dt . (16)

represents the interference contribution to the total
charge detected on the output 1 of the MZI. For a bal-
anced MZI (TA = TB = 1/2), the average dc current
measured when the experiment is repeated at measure-
ment frequency fm is given by:

⟨i(dc)1out
⟩ = −efm

2

(
1 + ℜ

(
eiϕABX

(dc)
+

))
. (17)

2. Coulomb interaction effects

The discussion of Sec. II C suggests that the result
in presence of Coulomb interactions and of an incoming
quantum radiation is of the same form than Eq. (15) with
an effective single electron scattering amplitude Reff(t, t

′)
that takes into account decoherence effects as well as
the electron’s back-action on the incoming quantum ra-
diation. The formal derivation of this fact is given in
Appendix E but, here, we will proceed along obtaining
the form of the effective scattering amplitude using semi-
qualitative arguments to emphasize its physical meaning.

In the absence of incoming electromagnetic radiation,
the amplitude Reff(t, t

′) is the amplitude for a single elec-
tron to propagate elastically across the branch 1, tak-
ing into account the capacitive coupling to the radia-
tion coupler’s radiation channel. Any process leading to
the generation of an extra electron/hole pair within the
edge channel or of an excitation within the electromag-
netic environment would lead to decoherence in the MZI.
This elastic scattering amplitude has already appeared

in studies of electronic decoherence in the MZI [62–65].
Electronic decoherence in MZI has been experimentally
simulated using a voltage probe in Ref. [8], thereby show-
ing the reduction of the interferometer’s contrast by the
amplitude (square root of the probability) for the elec-
tron to be transmitted across the probe.
In the absence of external radiation, Reff(t, t

′) should
then be the elastic scattering amplitude for an incoming
single electron excitation injected at time t′ in the pres-
ence of the Fermi sea to exit at time t without experienc-
ing any inelastic scattering: Reff(t, t

′) = Θ(t−t′)Z1(t−t′)
where

Z1(τ) =

∫ +∞

0

Z̃1(ω) e
−iωτ dω

2π
. (18)

is the Fourier transform of the elastic scattering am-

plitude Z̃1(ω) for a single electron of energy ℏω > 0
across branch 1 of the MZI. This quantity, computed
in Refs. [45, 58, 66], has recently been reconsid-
ered in the light of recent experimental studies of elec-
tronic relaxation [9, 10, 67]. Going back to the dis-
cussion of Sec. II C, Z1(τ) corresponds to the product
A1 ⟨Ψ|Ψ′⟩ ⟨Idle|Fizzled⟩ when the radiation channel is
fed with the vacuum state.
We now have to discuss the back-action of the elec-

tron in the presence of incoming radiation. The back ac-
tion on the vacuum is already taken into account by the

elastic scattering amplitude Z1(τ) or Z̃1(ω) but here, we
consider the effect of the single electron current on the
incoming photonic excitations.
An outgoing electron at time t corresponds, in terms

of EMP, to a localized current pulse coming out of the
branch 1. Such a current pulse comes from an incom-
ing pulse in the edge channel 1 as well as some coherent
pulse in the radiation channel whose amplitude can be
inferred from the scattering matrix S(ω). Denoting by
Λt(ω) = −eiωt/

√
ω the corresponding amplitude of the

mode bout(ω), the amplitudes of the incoming pulses are
given by:

⟨bin(ω)⟩ = S∗
bb(ω) Λt(ω) (19a)

⟨ain(ω)⟩ = S∗
ba(ω) Λt(ω) . (19b)

Eq. (19b) gives the amplitude of the “back-action kick”
on the incoming radiation associated with the detection
of a electron localized at time t at the end of the up-
per MZI branch. Consequently, the unitary operator
representing the back-action is the infinite dimensional
displacement operator Dain

[S∗
baΛt] (see Eq. (B7) for its

definition) associated with the back-action kick S∗
baΛt.

The full back-action factor is then the average value
of Dain

[S∗
baΛt] in the reduced density operator ρem de-

scribing the state of the incoming quantum radiation
fed into the radiation coupler. But the contribution
in the vacuum state |0⟩ for the ain(ω) modes is al-
ready included in Z1(t). Consequently, the excess back-
action on the incoming radiation is obtained by divid-
ing ⟨Dain

[S∗
baΛt]⟩ρem

by ⟨Dain
[S∗

baΛt]⟩|0⟩. This leaves us
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with the average value of the bosonic normal ordered
back-action displacement operator for the prefactor rep-
resenting the recoil of the incident radiation induced by
a single electron excitation propagating across the upper
branch of the MZI. We thus define the Franck-Condon
factor

Fρem
(t) =

〈
: Dain

[S∗
baΛt] :

〉
ρem

. (20)

by analogy with the Franck-Condon factor that appears
in the spectroscopy of complex molecules [46] or in the
Mössbauer effect [68, 69] where it is called the Lamb-
Mössbauer factor. As noticed in Ref. [70] and explicitly
derived here in Appendix F, the Franck-Condon factor
contains information on the Full Counting Statistics of
charge propagating within the radiation channel. More
specifically, when the radiation channel is a chiral quan-
tum Hall edge channel at ν = 1,

Fρ(t) =
〈
: e2πiN(t) :

〉
ρem

. (21)

in which the N(t) operator represents a filtering of the
charge operator flowing across the interaction region
within the radiation channel.

The quantum interference contribution to the average
outgoing electrical current then has the form

X+(t) = vF

∫ t

−∞
Reff(t, t

′)φe(t
′)φe(t− τ2)

∗ dt′ (22)

in which the effective single particle scattering amplitude
is given by

Reff(t, t
′) = Z1(t− t′)Fρem(t) . (23)

In the case where independent repeated single electron
experiments are performed, one can replace the product
φe(t

′)φe(t− τ2)
∗ by the excess single electron coherence

∆G(e)
S (t′|t− τ2) emitted by the imperfect single electron

sources. This takes into account the statistical fluctua-
tions in the imperfect emission of single electron excita-
tions by the source S. Eq. (22) can then be interpreted as
described on Fig. 5. Appendix G discusses the frequency
domain form of the single electron radar equation and its
interpretation.

Expression (23) takes into account electronic deco-
herence and the effect of the incoming quantum radia-
tion. Together with the expressions for Z1(τ) and for
the Franck-Condon factor, Eqs. (22) and (23) form the
central result of the single electron radar theory. The
factorized form of the r.h.s. of Eq. (23) has an important
consequence: the Franck-Condon factor appears as the
ratio the time-resolved electron radar signal in the pres-
ence of the external radiation to the one in the absence
of it:

[X+(t)]ρem

[X+(t)]|0⟩
= Fρem

(t) . (24)

vF∆G(e)
S (t′, t− τ2) Xt(t)

R(t, t′)

A B
t′

t− τ2

t

FIG. 5. Physical interpretation of the linear radar equation
(22) in the time domain showing the contribution of incom-
ing single electron coherence to the signal the temporal signal
X+(t). The figure presents the product of two quantum am-
plitude: the one with an arrow oriented away from the source
corresponds for a direct amplitude whereas the one, with the
arrow arriving to the source corresponds to the complex con-
jugated amplitudes contributing to X+(t).

However, high precision time domain measurements of
the average current with very large bandwidth are diffi-
cult to perform. We thus have to discuss how Eqs. (22)
and (23) can be used to interpret the experimental data
obtained by recording interference fringes on the dc av-
erage current which is the usual quantity measured with
high precision.

3. The dc-current interference contrast

Assuming that the source could inject a very short
electronic wave packet of duration τe at time te, the
electron radar signal in the presence of external radi-
ation would (naively) be given by (see Appendix H)

[X
(dc)
+ ]ρem

≃ τe Z(τ2)Fρem
(te + τ2). Comparing the re-

sult in the presence and in the absence of electronic ra-
diation (F|0⟩(t) = 1) injected into the radiation channel
then leads to

[
X

(dc)
+

]
ρem

≃
[
X

(dc)
+

]
|0⟩

Fρem(te + τ2) . (25)

Consequently, sweeping the emission time te of the in-
finitely short probe wave packet would sample Fρem(te +
τ2) thereby providing us with a time resolved probe of the
electromagnetic radiation. Note that the τ2 time delay
follows from ballistic propagation along the lower branch
of the MZI. Unfortunately, Eq. (25) can only be seen
as an heuristics since electronic wave packets with only
positive energy components cannot be arbitrarily local-
ized. Nevertheless, short duration Levitons [71] which
are purely electronic provide us with a close analogue to
a perfectly localized electronic excitation. But the issue
of electronic decoherence must be addressed carefully.
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C. Leviton excitations

1. General result

As shown in Appendix I, the simple expression for the
Leviton wave packet in the frequency domain enables us

to derive a convenient form for X
(dc)
+ suitable for numer-

ical evaluations:

X
(dc)
+ =

∫

R
F̃ρem(Ω) e

−iΩ(te+τ2) fτe,τ2(Ω)
dΩ

2π
(26)

in which F̃ρem
(Ω) denotes the Fourier transform of the

Franck-Condon factor. The filter

fτe,τ2(Ω) = 4πτe

∫ +∞

|Ω|/2
Z̃1

(
ω − Ω

2

)
e−2ωτee−i(ω−Ω

2 )τ2
dω

2π

(27)
contains the effects of electronic decoherence along
branch 1 and ballistic propagation along branch 2 of the
interferometer for a Leviton excitation of duration τe.

2. The vacuum baseline

Let us start by the dc contrast in the absence of ex-
ternal radiation (ρem = |0⟩ ⟨0|) which we call the vacuum
baseline:

[
X

(dc)
+

]
|0⟩

= 4πτe

∫ +∞

0

Z̃1(ω) e
−2ωτee−iωτ2

dω

2π
. (28)

This quantity which represents the interference contrast,
is reduced because of two different physical effects.

First of all, even in the absence of electronic decoher-
ence, the asymmetry of times of flights along the target
and the reference branch reduces the interference signal.

For Z̃1(ω) = eiωτ1 which corresponds to ballistic propa-
gation along the target branch with time of flight τ1, we
find

[
X

(dc)
+

]
|0⟩

=
2τe

2τe + iτ12
(29)

where τ12 = τ1 − τ2 characterizes the interferometer’s
imbalance. As expected, the interference signal decays
as soon as |τ12| becomes larger than 2τe.
In the perspective of the electron radar, when using

localized wavepackets in time such as the Levitons, one
wishes to achieve such a time of flight synchronization to
have the strongest information signal. Depending on the
experimental situation, the geometry of the device may
be constrained so that a lower bound τe ≳ min|τ21|/2 > 0
is imposed, thereby intuitively limiting the time resolu-
tion of the interferometer. In other devices, we may be
able to tune τ2 in order to maximize the contrast in the
absence of external situation. This is what we assume in
the rest of this paper but the general expressions given
by Eqs. (26) and (27) enable us to discuss any situation.

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

τevF /l

∣ ∣ ∣X
(d

c
)

+

∣ ∣ ∣

α

1/5

1

15

FIG. 6. (Color online) Contrast |X(dc)
+ | of dc-current interfer-

ence fringes for Leviton of duration τe as function of τevF /l
in the absence of external radiation. The radiation coupler
involves two counter-propagating edge channels in total mu-
tual electrostatic influence over a distance l (see Appendix D).
Curves have been plotted for α = 1/5 (red), 1 (green) and 15
(blue).

The second cause of interference contrast reduction is
electronic decoherence. In the present formalism, elec-
tronic decoherence is associated with the decay of the
electronic quasi-particle which is measured by the inelas-

tic scattering probability σin(ω) = 1− |Z̃1(ω)|2.
Fig. 6 depicts maxτ2

∣∣∣X(dc)
+

∣∣∣ as a function of the Levi-

ton’s width τe. as a function of vF τe/l. These graphs,
obtained for a radiation coupler built from two counter-
propagating edge channels in total electrostatic influence
over a distance l via a geometric capacitance Cg (see
Fig. 4-(a)), are plotted for different values of the dimen-
sionless coupling constant

α =
e2l

hvFCg
(30)

encoding the importance of Coulomb interaction effects
within this radiation coupler (see Appendix D). As ex-
pected, at fixed α, electronic decoherence is stronger for
shorter Leviton pulses due to their high energy compo-
nents. For a given τe, it is also stronger at small α com-
pared to the Coulomb dominated regime (large α), an
effect already predicted [72] and observed [73] when an
electron of energy ℏωe propagates across a metallic is-
land with Coulomb energy EC ≫ ℏωe. Finally, a 50 %
contrast can be achieved when considering Levitons of
durations τe ≳ l/10 vF which, in the case of l = 10 µm
and vF = 105 ms−1 corresponds to pulses of duration
down to 10 ps.

3. Filtering of the Franck-Condon factor

We now consider the effect of the Leviton’s duration as
well as of electronic decoherence on the Franck-Condon
prefactor. Without electronic decoherence, one expects
the duration of the Leviton to be the limiting time reso-
lution for accessing Fρem

(t). In the absence of electronic
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decoherence, using Z1(ω) = eiωτ1 leads to

[
X

(dc)
+

]
ρem

=
[
X

(dc)
+

]
|0⟩

(Kτe,τ21 ⋆ Fρem) (te + τ2) (31)

where [X
(dc)
+ ]|0⟩ is given by Eq. (29) and the kernel

Kτe,τ21(τ) =
1

π

τe + i τ212(
τe + i τ212

)2
+
(
τ − τ21

2

)2 (32)

encodes the way the Leviton’s duration and the MZI’s
imbalance blur the temporal resolution on the Franck-
Condon factor Fρem

(t). Eqs. (31) and (32) show that
the duration τe of the Leviton limits the time resolution
for accessing Fρem

(t).
Electronic decoherence alters the expression of the ker-

nel in Eq. (31). Let us now define τ1 as the Wigner-Smith
time delay associated with the elastic scattering ampli-

tude Z̃1(ω): τ1 = −i[d(ln(Z̃1(ω)))/dω] at ω = 0. We
have to resort to the general filtering expressions given
by Eqs. (26) and (27). As explained in Appendix I, the
filtering function fτe,τ2(Ω) always satisfies

fτe,τ2(Ω ≥ 0) = e−Ωτefτe,τ2(0) . (33)

which only requires the numerical computation of
fτe,τ2(0). But for Ω < 0, one has

fτe,τ2(Ω < 0) = e−|Ω|τeeiΩτ21

× 4πτe

∫ +∞

0

e−2ωτee−iωτ21Z̃1⋆(|Ω|+ ω)
dω

2π
.

(34)

in which, for convenience, we have isolated the τ1 de-

pendence by introducing Z̃1⋆(ω) = e−iωτ1Z̃1(ω). Its Ω
dependence is a priori more involved than in Eq. (33)
and must be evaluated numerically.

Nevertheless, whenever the typical time scale associ-
ated with the radiation is much slower than τe and τD,
defined as the inverse of the energy scale over which
the inelastic scattering probability σin(ω) starts to in-
crease significantly, one may neglect the Ω-dependence

in Z̃1⋆(|Ω|+ ω), thereby leading to

fτe,τ2(Ω < 0) ≃ e−|Ω|τee−i|Ω|τ21fτe,τ2(0) . (35)

Eqs. (33) and (35) then lead to Eq. (31) with the same
kernel Kτe,τ21 as in Eq. (32). Electronic decoherence is

fully encapsulated in the vacuum baseline [X
(dc)
+ ]|0⟩.

Eq. (35) is an “adiabatic radiation approximation” as-
suming that electronic decoherence can be neglected for
the frequencies involved in the Franck-Condon factor.
Note that this approximation does not assume that Levi-
ton wavepackets, which involve much higher frequencies,
experience a weak electronic decoherence. Electronic de-
coherence is indeed accounted for by the vacuum base-
line contrast whose modulus can be much lower than the
modulus of the r.h.s of Eq. (29) which is only valid for
ballistic propagation along the target branch.

Interestingly, for very short Levitons and a balanced in-
terferometer (τ21 = 0), the Kernel converges to the δ(τ)
distribution and we recover the heuristic expression ob-
tained in Eq. (25). The point is that we have an exact ex-
pression for the vacuum baseline given by Eq. (28). More-
over, we know that this is the result of an approximation
which breaks down when electronic decoherence effects
manifest themselves at frequencies similar to the inverse
time scale of variation of Fρem(t). More importantly, the
results presented here enable us to go beyond this ap-
proximation and to consider an imbalanced (τ1 ̸= τ2)
interferometer.

IV. PREDICTIONS FOR CLASSICAL AND
QUANTUM RADIATION

We now consider various types of radiation directly rel-
evant for forthcoming experiments. This includes classi-
cal radiation for which the physics of a time dependent
phase seen by independent electrons of Sec. II B will be
recovered in the voltage locked regime of the radiation
coupler.
We then discuss the ability of the electron radar

to probe non-classical radiation by considered squeezed
states as well as single EMPs. Such quantum states of
radiation cannot be described in terms of a classically
fluctuating voltage and therefore, the full quantum ap-
proach of the previous section will be necessary to obtain
quantitative predictions.

A. Classical radiation

We consider a classical drive Vg(t) applied to a top gate
capacitively coupled to the edge channel along the target
branch |x| ≤ l/2 of the MZI via a geometric capacitance
Cg as depicted on Fig. 7. This corresponds to Fig. 4-b
without dynamical degrees of freedom coupled to the top
gate (Z(ω) = 0). This is the limit of an infinite number
of electronic channels in the top gate’s lead in Ref. [74].
Because there are no external dynamical degrees of

freedom in this top gate model, its dynamics can be de-
scribed by an input/output relations for the edge chan-
nel’s EMP modes of the form:

iout(ω) = t(ω) iin(ω) + Y (ω)Vg(ω) (36)

where t(ω) denotes the EMP transmission amplitude
across the region |x| ≤ l/2 and the admittance Y (ω)
describes the response of the outgoing current to the top
gate potential Vg(ω). Assuming total mutual influence
between the top gate and target branch of the MZI, Y (ω)
is the finite frequency admittance of the electrical dipole
formed by the top gate and the edge channel. It is related
to t(ω) by [45, 48, 59]:

Y (ω) =
e2

h
(1− t(ω)) . (37)
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FIG. 7. A top gate is capacitively coupled to the |x| ≤ l/2
region of a chiral edge channel. It is driven by a time depen-
dent gate voltage Vg(t). Cg denotes the geometric capacitance
between the two conductors.

Predictions for these coefficients can be obtained from the
discrete element model corresponding to Fig. 7 presented
in Appendix C.

Since the gate voltage translates the EMP operator
bin(ω) by −Y (ω)Vg(ω)/e

√
ω, it introduces a phase factor

FVg
(t) = e

ie
ℏ

∫
R Γ(t−τ)Vg(τ) dτ (38)

in front of the fermionic field coming out of the radiation
coupler. The kernel Γ(τ) is the inverse Fourier transform
of −RKY (ω)/iω. This shows that the effective single
particle scattering amplitude retains the form given by
Eq. (23) with Z1(τ) given by Eq. (18) with t(ω) = 1 −
RKY (ω) and FVg

(t) playing the role of Fρem
(t) defined

by (20) in the full quantum theory. In particular, because
the only effect of the external drive Vg(t) is to introduce
a phase, it does not contribute to electronic decoherence
in the time domain.

The importance of Coulomb interactions within the
|x| ≤ l/2 region depends on the dimensionless coupling
constant α = Cq/Cg defined by Eq. (30). For α≪ 1, the
voltage drop at the capacitance vanishes and therefore
the electrons directly see the gate voltage Vg(t). This
is the voltage locked regime. On the other hand, for the
α ≳ 1, Coulomb interactions are so strong that they tend
to block charge accumulation below the top gate. This
is the Coulomb blocked regime.

1. The voltage locked regime

At very small α, the electrochemical capacitance Cµ =
CgCq/(Cg + Cq) ≃ Cq is dominated by the quantum ca-
pacitance Cq ≪ Cg. The voltage drop at the capacitance
is negligible and electrons within the |x| ≤ l/2 region
experience the gate potential Vg(t). Moreover, in this

limit t(ω) ≃ eiωl/vF Consequently, in this limit, the elas-
tic scattering amplitude is Z1(ω) ∼ eiωl/vF and electronic
decoherence can thus be neglected [45]. In other terms,
there is no back-action of the incoming electron on the
edge channel mediated by the top-gate which could lead
to electronic decoherence. The effective scattering am-
plitude can be approximated by

Reff(t, t
′) ≃ δ

(
τ − l

vF

)
FVg (t) . (39)

At very small α, Γ(τ) = 1[0,l/vF ](τ) and therefore, we
recover Eq. (3) with τ1 = l/vF and U(t) = Vg(t) as ex-
pected.

2. Intermediate regime

As α is increased, electronic decoherence starts to ap-
pear but, as long as we keep the energy of the electronic
excitation low enough, it can be neglected [45]. Nev-
ertheless, increasing α modifies the voltage seen by the
electrons below the top gate which becomes a filtering of
Vg(ω) (see Eq. (C19)). Consequently, as long as elec-
tronic decoherence can be neglected, the MZI detects the
accumulated electric phase associated with this filtered
effective time dependent potential.
Nevertheless, for Leviton pulses, the discussion of

Sec. III C shows that as long as the external voltage only
involves low frequencies compared to the ones for which
electronic decoherence starts to be significative, the adia-
batic approximation of Eq. (35) can still be applied. The
ratio of the contrast in the presence of Vg(t) and without
can thus be obtained as

[X
(dc)
+ ]Vg(t)

[X
(dc)
+ ]0

=
∑

n∈Z
Fn[Vg(t)] e

−2πnfτe

× e−2πinf(te+τ2)e−2πinΘ(−n)fτ21 (40)

in which Fn[Vg(t)] are the photo-assisted amplitudes as-
sociated with Vg(t) mediated through the top-gate, id
est the Fourier coefficients of the Franck-Condon factor
given by Eq. (38). Most importantly, the vacuum base-

line [X
(dc)
+ ]0 takes into account electronic decoherence

effects.
Therefore, for an slow enough drive, even when elec-

tronic decoherence effects are strong, quantitative pre-

dictions for the relative dc contrast [X
(dc)
+ ]Vg(t)/[X

(dc)
+ ]0

for Leviton pulses can still be obtained from the simple
formalism discussed in Sec. II B, provided one properly
takes into account the filtering of Vg(t) by the top gate.

3. The Coulomb blocked regime

The limit of large α corresponds to the regime domi-
nated by Coulomb interactions: they are so strong that
no charge can accumulate on either on the |x| ≤ l/2 in-
teraction region of the edge channel nor on the top gate.
As explained in Appendix C 2, the outgoing EMP mode
bout(ω) has a very small response to the external time
dependent voltage. Consequently, the electron radar is
weakly responding to the external voltage applied to the
top gate. Consequently, this is not the proper regime of
operation for the electron radar.
Note that electronic decoherence is not a problem in

this regime. This echoes the results obtained recently
in Ref. [75] in which a similar phenomenon occurs in a
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MZI where the top gate in the strong coupling regime is
replaced by a metallic island with small enough capaci-
tance.

B. Squeezed radiation

Let us now discuss the ability of the electron radar
to detect squeezing by considering a Gaussian squeezed
state.

1. General squeezing criterion

The key observation is that the radiation coupler is
only sensitive to the radiation in a specific filtered mode.
The Franck-Condon factor can then be computed using
a Gaussian approximation for this mode. This leads to:

Fρem
(t) = eiϕ(t) e−(⟨(∆Yt)

2⟩ρem−⟨(∆Yt)
2⟩|0⟩) . (41)

where the phase ϕ(t) is due to the average value can be
viewed as arising from the classical voltage felt by the
electrons within the upper branch of the MZI. The other
contribution comes from the Gaussian fluctuations of the
quadrature

Yt =
i√
2

∫ ωc

0

(
Sba(ω)√

ω
e−iωt aω − h.c.

)
dω (42)

of the mode filtered by the radiation coupler. Here, ωc is
any UV cutoff below which all the incoming radiation is
emitted.

Because this second contribution changes |Fρem(t)|, it
provides a sufficient criterion for squeezing: as soon as
|Fρem(t)| > 1 there is squeezing in the filtered mode since
this is a signature of the fact that, for these values of t,
fluctuations of the quadrature Yt are smaller than in the
vacuum state: ⟨(∆Yt)2⟩ρem < ⟨(∆Yt)2⟩|0⟩.

2. Squeezing around a given frequency

Because of its relevance for experiments, let us discuss
the ability of the electron radar to detect squeezed radi-
ation in an electromagnetic mode around ω ≃ ω0 within
a bandwidth γ0 such that Q0 = ω0/γ0 is significantly
larger than one so that Sba(ω) can be taken as constant
for |ω − ω0| ≤ γ0/2. In Appendix J we obtain show that
for a time-periodic squeezed quantum noise whose power
is concentrated in the narrow band |ω − ω0| ≤ γ0/2, the
Franck-Condon factor takes the form

FSqz
(t) ≃ e

|Sba(ω0)|2
Q0

sinh(2|z|)[cosh(2|z|) cos(2ω0t−ϕ0)−sinh(2|z|)]

(43)
where z is a squeezing parameter and ϕ0 =
2Arg(Sba(ω0)) + Arg(z). Its minimum value is

min
t

∣∣FSqz
(t)

∣∣ = e−
|Sba(ω0)|2

2Q0
(e4|z|−1) < 1 . (44)

Let us recall that the compression factor for quadra-
ture fluctuations for a squeezed mode in |Sqz⟩ is given
by e−4|z|. As of today, a compression of 18% (0.86 dB)
with respect to vacuum fluctuations has been achieved
in quantum Hall edge channels [51]. Assuming a quality
factor Q0 = 5 and no losses (|Sba(ω0)|2 = 1) for the radi-
ation coupler leads to a maximal increase of

∣∣FSqz
(t)

∣∣ by
1.8% whereas a 3 dB squeezing would lead to an increase
by 5.1%.

3. Numerical results and discussion

Let us now discuss whether or not this is observable us-
ing Levitons. We have done it by evaluating numerically
the filtering function fτe,τ2(Ω) as well as the exact Fourier
series of the Franck-Condon factor given by Eq. (43).
To have an intuition of the results, we have ob-

tained analytical expressions within the adiabatic radia-
tion approximation (Eq. (35)) by retaining only the first
harmonics in the Fourier series of the Franck-Condon
factor[76]. Using this approximation, an analytical ex-
pression for the maximum over te of the relative contrast
with respect to the vacuum baseline as a function of |z|
can be derived at the lowest order in Λ = |Sba(ω0)|2/Q0:

max
te

∣∣∣∣∣∣∣

[
X

(dc)
+

]
Sqz[

X
(dc)
+

]
|0⟩

∣∣∣∣∣∣∣
≃ 1 + ΛFη(z) +O(Λ2) (45)

where

Fη(z) = η cosh(2|z|) sinh(2|z|)− sinh2(2|z|) (46)

with η = e−2ω0τe |cos(2ω0τ2)| < 1. The behavior of Fη(z)
governs the observability of squeezing as an increase of
the interference contrast. It starts from 0 for z = 0 and
increases to a maximum positive value

max
|z|

max
te

∣∣∣∣∣∣∣

[
X

(dc)
+

]
Sqz[

X
(dc)
+

]
|0⟩

∣∣∣∣∣∣∣
≃ 1+

Λ

2

(
1−

√
1− η2

)
+O

(
Λ2

)
.

(47)
reached for |z|opt = arctanh(η)/4. It is the maximum
experimental signal expected for squeezing since Fη(z)
decreases for |z| ≥ |z|opt. It becomes negative for
|z| ≥ 2|zopt| meaning that, above 2|zopt|, the interference
contrast for Levitons appears smaller than the vacuum
baseline. This follows from the increase of the average
photon number in |Sqz⟩ with increasing z: as shown in
Appendix J (see Eq. (J17)), randomly injected Levitons
of width τe will experience, on average, an increasing
noise within the radiation coupler. For |z| ≥ 2|z|opt,
this effect compensates the gain in contrast associated
with sub-vacuum fluctuations experienced by the Levi-
ton thereby leading to a decrease of the maximum rela-
tive contrast over te below unity.
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Figure 8 displays the results of the numerical eval-
uation of the contrast in the voltage locked regime
with 15 ps Levitons. Filled black lines correspond to
the full numerical evaluation of the contrast. Dashed
black horizontal lines correspond to the vacuum baseline

|[X(dc)
+ ]|0⟩|. Results are plotted for z ≃ 0.0496 corre-

sponding to 18 % (0.86 dB) noise reduction demonstrated
in Ref. [51], z ≃ 0.0719 corresponding to 1.25 dB (25 %)
noise reduction and z ≃ 0.1733 corresponding to 3 dB
(50 %) noise reduction.

At some operating points, the contrast in the pres-
ence of the squeezed vacuum does exceed the vacuum
baseline. It is a positive signature of squeezing but the
overshoot is small: 0.3 % on a baseline of 57.5 %. The
best numbers are obtained in the voltage locked regime
for 1.25 dB squeezing and ω0l/vF = π. This frequency
choice corresponds to the optimal coupling between the
two edge channels. As expected from the analytics, in-
creasing |z| too much leads to a decrease of the maxi-
mum relative relative contrast and even bring it below
the vacuum baseline. Note also the good agreement be-
tween Eq. (45) and the numerical evaluation of the maxi-
mum absolute contrast. Note also that the best operating
point (ω0l/vF = π and 1.25 dB squeezing) is close to the
optimal maximum contrast given by Eq. (47). Shorter
Levitons are expected to lead to a lower vacuum baseline
(see Fig. 6) and also to shift the detrimental effect of the
average noise towards higher values of |z|. This can be
seen on Fig. 9 where 2.5 ps Levitons are considered, all
other parameters being the same than for Fig. 8. We see
that the maximum absolute contrast still increases with
increasing |z| up to 3 dB squeezing instead of decreasing
at 1.25 dB for 15 ps Levitons. Even if the absolute con-
trast overshoot over the vacuum baseline is not greater
than for 15 ps Levitons, it comes over a 0.225 vacuum
baseline instead of 0.57 and thus represents a two times
increase in terms of the relative contrast increase. This
clearly shows the pros and cons of shorter Leviton pulses:
the filtering associated with their duration is better but
they also lead to a lower vacuum baseline.

C. Fock states

We now consider the problem of detecting Fock states
in a specific EMP mode. This state being non-Gaussian,
the Gaussian result given by Eq. (41) breaks down.

1. The Franck-Condon factor

We consider |N ;χ⟩, the N photon Fock state in the
normalized mode χ. An explicit computation detailed
in Appendix B 2 shows that the Franck-Condon factor
F|N ;χ⟩(t) is then given by

F|N ;χ⟩(t) = LN

(
2π |⟨χ|S∗

baΛt⟩|2
)

(48)
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FIG. 8. The various plots depict the interference contrast[
X

(dc)
+

]
Sq(z)

for Leviton excitations of width τe = 15ps as-

suming a 10 µm long radiation coupler with vF = 105 ms−1

with coupling strength α = 1/5. The plots show the abso-
lute contrast as a function of the dimensionless injection time
vF te/l for different values of the squeezing (expressed in dB)
and ω0l/vF = 1, 2 and π. The dashed black horizontal lines

correspond to the vacuum baseline
[
X

(dc)
+

]
|0⟩

. The dotted

black lines correspond to the maximally optimized maximum
contrast given by Eq. (47) whereas the dotted red lines cor-
respond to the evaluation of Eq. (45) for the actual value of
the squeezing parameter considered in the example.
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FIG. 9. The various plots depict the interference contrast[
X

(dc)
+

]
Sq(z)

for Leviton excitations of width τe = 2.5 ps as-

suming the same parameters and legend than in Fig. 8.

in which LN denotes the N -th Laguerre polynomial and

⟨S∗
baΛt|χ⟩ = −

∫ +∞

0

Sba(ω)√
ω

e−iωtχ(ω)
dω

2π
. (49)

We now focus on the specific example of an EMP mode
chose wavefunction in the frequency domain χ(ω) is cen-
tered at ω0 with Lorentzian lineshape of width γ0. We
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assume that ω0/γ0 is significantly larger than unity, as
expected from spontaneous emission by a two level emit-
ter.

2. Narrow bandwidth approximation

Denoting by x(t) = 2π |⟨χ|S∗
baΛt⟩|2 the argument of

the Laguerre polynomial in Eq. (48), and assuming that
χ(ω) is concentrated around ω0 with a small bandwidth
γ0 ≪ ω0, x(t) can be rewritten as (see Appendix K):

x(t) ≃ 2π
γ0
ω0

|Sba(ω0)|2
⟨JQ(t)⟩|1;χ⟩
γ0ℏω0

. (50)

in which

JQ(t) =
RK

2
: i(t)2 : . (51)

denotes the instantaneous heat current operator injected
in the radiation channel expressed in terms of the electri-
cal current i(t). Consequently, for γ0/ω0 ≲ 1, the expan-
sion LN (x) ≃ 1−Nx+O(x2) for the Laguerre polynomial
leads to:

F|N ;χ⟩(t) ≃ 1− 2πN
ω0

γ0
|Sba(ω0)|2

⟨JQ(t)⟩|1;χ⟩
γ0ℏω0

. (52)

Therefore, within this approximation[77], the Franck-
Condon factor provides a direct measurement of the av-
erage heat current carried by the single EMP. Provided
2πNω0|Sba(ω0)|2/γ0 does not take large values for the
values of N with non negligible pN and noticing that
⟨JQ(t)⟩|N ;χ⟩ = N⟨JQ(t)⟩|1;χ⟩ enables us to average over
N and show that

Fρmix
(t) ≃ 1− 2π

ω0

γ0
|Sba(ω0)|2

⟨JQ(t)⟩ρmix

γ0ℏω0
. (53)

for ρmix =
∑+∞

N=0 pN |N ;χ⟩ ⟨N ;χ|. For such radiation,
the electron radar acts as a time resolved “quantum
bolometer” by converting the incident energy flux within
the radiation channel into the Franck-Condon factor. As
before, assessing the potential for single EMP detection
requires discussing experimentally realistic signals in ex-
perimentally realistic situations.

3. Results and discussion

We consider lorentzian EMP modes of duration γ−1
0 =

1ns = 10 l/vF centered on ω0 such that ω0l/vF = 2, 5.5
and 10 corresponding to respective frequencies 3.2GHz,
8.75GHz and 15.9GHz. Levitons of duration τe = 10ps
have a time resolution of the order of 1 % of the EMP
wave packet duration.

Figure 10 depicts the various numerical estimates for
the relative contrast decrease on the dc average current
in the presence of the single EMP with respect to the
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FIG. 10. (Color online) Plot of the relative contrast decrease

1−
∣∣∣∣[X(dc)

+

]
|1,χ⟩

/
[
X

(dc)
+

]
|0⟩

∣∣∣∣ (dashed line) associated with the

detection of a single EMP with energy ℏω0 and Lorentzian
lineshape of width γ0 = 109 s−1 when using Leviton pulses
of width τe = 10ps injected at times te. The radiation
coupler is described in Appendix D. Red curves correspond
to the voltage locked regime (α = 1/10) whereas the blue
curves correspond to the Coulomb blocked regime (α = 15).
Three different values of ω0l/vF have been considered. The
dotted line corresponds 1 − F|1;χ⟩(t) using the analytic ex-
pression given by Eq. (52) whereas the full line represents
x(t) = 2π |⟨χ|SbaΛt⟩|2.

vacuum baseline. With the parameters considered here,
the latter contrast is expected to be above 50 % (see
Sec. III B 3). The results, presented on Fig. 10, confirm
that an observable relative contrast decrease of a few %
can be expected. The dominant effect in the amplitude
of the effect comes from the transparency of the radiation
coupler in the bandwidth of the incident radiation.
The precise comparison with numerical evaluations

shows that the analytical result given by Eq. (50) is
semi-quantitatively recovered except on short time scales
where higher frequency contributions are expected to
matter. It also departs from the numerical evaluation
of x(t) because of the filtering of high frequencies associ-
ated with the finite duration of the Leviton.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have discussed single electron interfer-
ometric sensing of classical and quantum electromagnetic
fields. The idea is to probe a time dependent, possibly
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quantum, electromagnetic field by coupling it to one of
the branches of an electronic MZI fed by single electron
excitations which provides a very sensitive although mini-
mally invasive probe. Information about the field is then
obtained by measuring the interference contribution to
the average outgoing dc current from the interferometer.

We have developed a general framework describing
such a single electron interferometer in the Aharonov-
Bohm regime for any type of “radiation coupler” realiz-
ing the capacitive coupling between the radiation to be
probed and the electrons propagating within the MZI. In
the limit where the radiation coupler is strongly domi-
nated by its quantum capacitance, the electrons directly
experience the voltage imposed by the external radiation.
A coherent state of the incoming radiation just imprints
a time-dependent phase on the single electron excitations
injected into the MZI, as expected when Coulomb inter-
action effects between electrons can be neglected. How-
ever, our framework goes beyond this simple picture of
time dependent single particle scattering and fully in-
corporates electronic decoherence effects associated with
Coulomb interactions. Although our formalism enables
discussing any single electron excitations, we have for
simplicity focused on Leviton pulses which, when suffi-
ciently short, can be used to sample the external radia-
tion when sweeping their injection time.

Besides the case of a classical drive, we have explored
the potential for sensing quantum features of the probed
radiation by considering two examples of quantum radia-
tion. First, for Gaussian states for the incident radiation,
an operational criterion for squeezing detection via short
duration wave packets is given. Realistic estimates sug-
gest that a 1.15 dB squeezing within a nearby quantum
Hall edge channel could, in principle, lead to an observ-
able increase of the contrast of Aharonov-Bohm interfer-
ence fringes compared to the vacuum baseline when us-
ing 15 ps Levitons. Secondly, we have shown that a single
EMP propagating in the radiation edge channel could be
detected via the transient interference contrast decrease
induced by its quantum noise. Moreover, we have seen
that, as a function of their injection time, the interference
contrast for short enough Levitons semi-quantitatively
images the average instantaneous heat current carried by
the single edge-magnetoplasmon.

These two examples suggest that the single electron
interferometer fed by suitably short Levitons may be
used as a time resolved quantum noise sensor on sub-
nanosecond, possibly down to few picoseconds, time
scales.

Several perspectives are opened by the present work.
First of all, obtaining more quantitative predictions for
forthcoming experiments may require completing the
present study to account for finite temperature and
charging effects as in Refs. [78–80]. Secondly, recent pro-
gresses in the shaping [74] and characterization [12, 38] of
electronic excitations emitted by single electron sources
[81] suggest investigating the potential of well known
techniques from classical radar engineering to improve

our ability to probe very short dynamical time scales of
the incident electromagnetic radiation [82]. An impor-
tant related question is to design a set of single electron
excitations enabling a full reconstruction of the effective
single-particle amplitude induced by the coupling to the
external radiation, thereby mimicking the use of infinite
chirps [83] in radars and sonars to reconstruct the tar-
get’s scattering amplitude by inverse Radon transform, a
technique commonly used in computed tomography scans
[84], quantum optics [85, 86] and for reconstructing the
quantum state of solitary electrons [37]. However, in the
presence of a Fermi sea, infinite chirps cannot be gener-
ated because of the Fermi sea, thereby leaving the prob-
lem of tomographic reconstruction of the effective single
electron scattering amplitude open for further investiga-
tion.

Another important issue consists in studying the signal
to noise radio in such an electronic interferometer. Quan-
titative predictions for the current noise would open the
way to discussing the basic question of quantum metrol-
ogy in the present context: how to choose the source and
the measured quantity in order to discriminate between
various quantum states of the incoming radiation in an
optimal way. This is analogous to the problem of super-
resolution encountered in optics an astronomy [87–90].
The standard methods used in this field can certainly be
transposed but this requires an evaluation of the outgo-
ing current noise. Motivated by the recent work [91], one
could also investigate whether or not injecting few elec-
tron states into the MZI would lead to some quantum
advantage as entangled states do in quantum metrology
[92].

Finally, the present work discusses the information ex-
tracted from repeated experiments in which a precise
synchronization between the source and the external ra-
diation can be established. The potential emergence of
one-shot single electron detection [15, 93, 94] calls for an
adaptation of the present work to these forthcoming de-
tection methods. These very interesting questions, which
go well beyond the scope of the present work, are left for
future investigations.
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Appendix A: Notations and normalizations

This appendix recalls the basic conventions used for
fermionic modes and electronic single particle states
within the present work.

1. Electronic modes and wave packets

The mode decomposition for fermionic fields is defined
by

ψ(t) =

∫

R
c(ω) e−iωt dω√

2πvF
(A1)

so that these modes obey the canonical anticommutation
relations

{c(ω), c†(ω′)} = δ(ω − ω′) . (A2)

Equivalently, we have

c(ω) =

√
vF
2π

∫

R
ψ(t) eiωtdt . (A3)

Given an electronic wave packet described by a normal-
ized wave function φe(x) such that

∫

R
|φe(x)|2 dx = 1 (A4)

Throughout this paper, we will use the notation φe(t) for
φe(−vF t) so that

vF

∫

R
|φe(t)|2 dt = 1 . (A5)

We define

φ̃e(ω) = vF

∫

R
φe(t) e

iωt dt (A6)

so that

1

vF

∫

R
|φ̃e(ω)|2

dω

2π
= 1 . (A7)

The creation operator for the electronic wave packet φe

is then defined as

ψ†[φe] = vF

∫

R
φe(t)ψ

†(t) dt (A8a)

=

∫

R
φ̃e(ω)c

†(ω)
dω√
2πvF

(A8b)

Appendix B: Bosonization and bosonic modes

Here, we briefly recall useful formulae in the bosoniza-
tion of quantum Hall edge channels as well as for dealing
with bosonic excitations.

1. Bosonization of a quantum Hall edge channel

For a right moving quantum Hall edge channel at fill-
ing fraction ν = 1, the charge and current densities are
related to the free chiral right moving field ϕR(x, t) by

ρR(x, t) = − e√
π
(∂xϕR)(x, t) (B1a)

iR(x, t) =
e√
π
(∂tϕR)(x, t) (B1b)

and the right moving field is decomposed in terms of
bosonic destruction and creation operators b(ω) and
b†(ω) for ω > 0 satisfying

[
b(ω), b†(ω′)

]
= δ(ω − ω′) (B2)

by

ϕR(x, t) =
−i√
4π

∫

R+

(
b(ω) eiω(x/vF−t) − h.c.

) dω√
ω
(B3)

This leads to the following mode decompositions for the
charge and current densities

ρR(x, t) = −e
∫

R+

√
ω
(
b(ω)eiωx/v + b†(ω)e−iωx/v

) dω

2πv
(B4a)

iR(x, t) = − e

2π

∫

R+

√
ω
(
b(ω)eiωx/v − b†(ω)e−iωx/v

)
dω .

(B4b)

thereby connecting the finite frequency current to the
EMP creation and destruction operators: iR(ω > 0) =
−e

√
ω b(ω).

The right moving electronic field is then expressed in
terms of the chiral bosonic field by

ψR(x, t) =
Û√
2πa

ei
√
4π ϕR(x,t) (B5)

in which a, which has the dimension of a length, is an UV

cut-off and Û is the operator lowering the total fermion
number in the edge channel. Using the mode expansion
(B3), one arrives at the expression for ψR(x = 0, t) in
terms of an infinite dimensional displacement operator:

ψR(0, t) =
Û√
2πa

Db [Λt] (B6)

in which Λt(ω) = −eiωt/
√
ω. The infinite dimensional

displacement operator with complex valued functional
parameter Λ : ω 7→ Λ(ω) is defined as:

Db [Λ] = exp

[∫ +∞

0

(
Λ(ω) b†(ω)− h.c.

)
dω

]
. (B7)
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2. Conventions for bosonic excitations

A normalized excitation is described by χ(ω) for ω > 0
such that

∫ +∞

0

|χ(ω|2 dω

2π
= 1 (B8)

so that the single particle state

|χ⟩ =
∫ +∞

0

χ(ω) b†(ω) |∅⟩ dω√
2π

(B9)

is normalized. If we define the corresponding creation
operator

b†[χ] =

∫ +∞

0

χ(ω) b†(ω)
dω√
2π

(B10)

and its adjoint b[χ], these operators obey the commuta-
tion relations

[
b[χ1], b

†[χ2]
]
= ⟨χ1|χ2⟩ 1 (B11)

where ⟨χ1|χ2⟩ denotes the scalar product

⟨χ1|χ2⟩ =
∫ +∞

0

χ1(ω)
∗χ2(ω)

dω

2π
. (B12)

on the space L2(R+) of square-summable functions on

R+. Note that with these conventions χ(ω) =
√
2π ⟨ω|χ⟩

where |ω⟩ = b†(ω) |∅⟩ is the single photon state resolved
in energy.

Finally, when given an orthonormal basis of normalized
single particle states |χn⟩ indexed by n, the mode oper-
ators b(ω) can be expressed in terms of the bn = b[χn]
as

b(ω) =
1√
2π

∑

n

χn(ω) bn . (B13)

Starting from a normalized single particle state |χ⟩, we
can express b†(ω) in terms of b†[χ] and of b†[χ⊥] where
|χ⊥

ω ⟩ denotes the normalized projection of |ω⟩ on the
space of single particle excitations orthogonal to |χ⟩:

b†(ω) = ⟨χ|ω⟩ b†[ω] +
√
1− | ⟨χ|ω⟩ |2 b†[χ⊥

ω ] . (B14)

Appendix C: The classically driven edge channel

In this appendix, we discuss two models for a classi-
cally driven edge channel. In the first model discussed
in Sec. C 1, we consider that a classical drive U(t) is di-
rectly applied to the electrons propagating within the
edge channel. However, in experiments, the external
drive is not directly applied to the edge channels but to
a top gate. This leads us to the second model discussed
in Sec. C 2 which involves a capacitive coupling between
a finite length region of the edge channel and a top gate
to which the time-dependent classical voltage is applied.
We then discuss how this second model reduces to the
first one in the regime of weak Coulomb interactions.

1. Direct coupling to the external voltage

Let us first consider electrons propagating within a chi-
ral edge channel with Fermi velocity vF and experiencing
in the 0 ≤ x ≤ l a time dependent U(x, t).

a. EMP scattering

The starting point is the equation of motion for the
chiral bosonic field ϕR(x, t) built from the EMP modes
of the chiral edge channel:

(∂t + vF∂x)ϕR(x, t) =
e
√
π

h
U(x, t) (C1)

This equation can be solved using the method of charac-
teristics:

ϕR(x+ vF τ, t+ τ) = ϕR(x, t)

+
e
√
π

h

∫ τ

0

U(x+ vF τ
′, t+ τ ′) dτ ′ (C2)

which gives the outgoing field ϕR,out(t) = ϕR(l, t) in
terms of the incoming field ϕR,in(t) = ϕR(0, t) and of
the time and space dependent potential U(x, t):

ϕR,out(t) = ϕR,in(t− l/vF )

+
e
√
π

h

∫ l/vF

0

U(vF τ
′, t+ τ ′ − l/vF ) dτ

′ .

(C3)

The field and therefore the EMP modes propagate ballis-
tically at velocity vF and the time and space dependent
voltage adds a source term.
For comparison with subsequent models, let us con-

sider the case where U(x, t) is uniform within the |x| ≤
l/2 region and equal to the time-dependent potential U(t)
and compute how the b(ω) EMP annihilation operator is
scattered. Specializing Eq. (C3), re-expressing it in the
Fourier domain and using the b(ω) operators leads to:

bout(ω) = eiωτlbin(ω) +
iel

√
ω

ℏvF
f

(
ωl

vF

)
U(ω) . (C4)

where τl = l/vF is the electronic time of flight across the
region of length l to which the potential is applied and
f(X) = (eiX − 1)/iX. Rewriting this scattering formula
in terms of incoming and outgoing currents leads to

iout(ω) = eiωτliin(ω)− iωCq(ω)U(ω) (C5)

in which we recognize the ω-dependent dynamical quan-
tum capacitance

Cq(ω) =
e2l

hvF
f

(
ωl

vF

)
(C6)

which, in the present case, reduces to the expected Cq =
e2l/hvF at low frequencies.
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b. Electronic phase

Eq. (C3) can then be used to compute how the elec-
tronic field is propagated using Eq. (B6):

ψout(t) = eiϑU (t)ψin(t− l/vF ) (C7a)

ϑU (t) =
e

ℏ

∫ l/vF

0

U(vF τ
′, t+ τ ′ − l/vF ) dτ

′ (C7b)

This corresponds to a time dependent single particle scat-
tering matrix for the electrons:

S(t, t′) = δ(t− t′ − l/vF ) e
iϑU (t) (C8)

which precisely described the propagation at constant
velocity vF of a particle of charge −e, traveling across
the region where the potential U(x, t) is present between
space-time coordinates (0, t − l/vF ) and (l, t). For such
a particle, the accumulated phase ϑU (t) is the potential
seen along a trajectory that connects (0, t−l/vF ) to (l, t).

2. The classically driven top gate

a. EMP scattering

We now consider a top gate classically driven by a time
dependent voltage Vg(t) and capacitively coupled to a
chiral edge channel. This region is modeled as a capacitor
with geometric capacitance Cg involving the top gate and
part of a chiral edge channel of length l (see Fig. 7) in in
a discrete element description. The two conductors are
in total influence. We want to get the expression of the
outgoing EMPs modes bout in terms of the incoming ones
bin and of Vg.

The basic equations for this system are the equation
of motion for the chiral bosonic field ϕR(x, t), field built
from the EMP modes of the chiral edge channel:

(∂t + vF∂x)ϕR(x, t) =
e
√
π

h
U(x, t) (C9)

U(x, t) is the potential seen by the electrons. If we as-
sume that U(x, t) is uniform in the |x| ≤ l/2 region, it
can be calculated by adding the potential drop across the
capacitor to Vg(t):

U(t)− Vg(t) =
Q(t)

Cg
(C10)

where Q(t) denotes the excess charge in the |x| ≤ l/2 of
the chiral edge channel. Using the bosonization expres-
sion

Q(t) =
e√
π
(ϕR(−l/2, t)− ϕR(l/2, t)) (C11)

in addition of Eqs. (C9) and (C10), we can obtain a closed
differential equation for ϕR(x, t) within the |x| ≤ l/2 re-
gion. This method is identical to the one used to discuss

the Coulomb interaction effects within a chiral edge chan-
nel in Ref. [45].
The final result can be expressed as connecting the

outgoing EMP modes bout(ω) to the incoming EMP
modes bin(ω) and VG(ω). This relation is best expressed
in terms of the incoming and outgoing currents using
i(ω) = −e

√
ω b(ω):

iout(ω) = t(ω)iin(ω) +
e2

h
(1− t(ω))VG(ω) . (C12)

in which, using X = ωl/vF :

t(ω) = eiX
1 + α f∗(X)

1 + α f(X)
(C13)

where as before f(X) = (eiX − 1)/iX and

α =
e2l

hvFCg
(C14)

a dimensionless coupling constant whose physical mean-
ing is discussed in Sec. III C.

b. Impedance & discussion

Folding the edge channel as shown on Fig. 11-a enables
us to consider the quantum RC circuit formed by the top
gate and the folded edge channel. Because of the total
mutual influence, its admittance matrix defined by

Yα,β(ω) =
∂⟨iα(ω)⟩
∂Vβ(ω)

(C15)

where (α, β) ∈ {u, d}2 is both gauge invariant and charge
conserving [95] and therefore determined by a single finite
frequency admittance

Y(ω) = Y (ω)

(
1 −1
−1 1

)
(C16)

with

Y (ω) =
e2

h
(1− t(ω)) =

e2

h

1− eiX

1 + αf(X)
. (C17)

Since t(ω) = eiθ(ω) because of energy conservation and
of the absence of dynamical degrees of freedom in the
classically driven top-gate, RKY (ω) = 1 − t(ω) spans a
circle of radius 1 centered on 1 in the complex plane[96].
Its low frequency expansion

RKY (ω) ≃ −i
ωl/vF
1 + α

+
1

2

(ωl/vF )
2

(1 + α)2
+ · · · (C18)

up to second order corresponds to an RC circuit with re-
sistance RK/2 and electrochemical capacitance Cµ such
that RKCµ = l/(1 + α)vF .
Figure 12 shows the behavior of Arg(t(ω)) as well as of

|RKY (ω)| = |1− t(ω)| as a function of X = ωl/vF . The
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FIG. 11. (a) Folding of the edge channel capacitively cou-
pled to the classical top gate to obtain an electrical dipole.
(b) Drawing of an electrical dipole with Y(ω) its admittance
matrix, Vu, Vd, Iu and Id respectively denote the voltage and
the average electrical current in the two connecting leads. In
panel (a), Vu = Vg, Vd = 0 and Id = iin − iout.

former describes how the phase of the transmission varies
with ω whereas the latter describes the filtering of the
applied voltage Vg(ω) by the top gate. As can be seen on
the bottom panel of Fig. 12, the filtering exhibit a texture
even at low α. However, in this case, it is very similar
to the filtering that would arise from applying Vg(t) to
the electrons in the |x| ≤ l/2 region as in paragraph C1
whereas at large α, this behavior is only recovered for
ω ≳ 1/RKCµ ≫ vF /l whereas for ωRKCµ ≲ 1, filtering
selects frequencies close to ω ≃ 2πnvF /l with n being a
positive integer.

In general, the gate voltage Vg(t) is filtered into an
effective time dependent voltage Ueff(t) via

Ueff(ω) =
Vg(ω)

1 + α f (ωl/vF )
(C19)

The other effect of the top gate is to induce a non lin-
ear EMP transmission phase θ(ω) which is responsible
for electronic decoherence beneath the top gate [45]. On
the other hand, the single particle model discussed in
paragraph C1 does not lead to electronic decoherence
since, in this case, Eq. (C5) corresponds to a dispersion-
less θ(ω) = ωl/vF .

Appendix D: Two counter propagating edge
channels

In this Appendix, we consider the EMP scattering
matrix for a model of radiation coupler involving two
counter-propagating integer Quantum Hall edge chan-
nels, capacitively coupled over a region of length l. The
geometric capacitance of this length l capacitor will be
denoted by Cg. We assume that these two length l con-
ductors are in total mutual influence, an hypothesis en-
suring maximal coupling between them.

This modeling has been used in Ref. [97] for a rect-
angular quantum Hall bar of length l at filling fraction
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FIG. 12. Top panel: Plot of the phase Arg [t(ω)] as a function
of ωl/2πvF in the voltage locked (α = 1/5, blue full line)
and Coulomb blocked (α = 15, red full line) regimes. In each
case, the angle Arg [1−RKY (ω)] for the corresponding RqCµ

circuit is plotted in dashed lines with the same colors. Bottom
panel: plots of |1− t(ω)| for the same examples as in the top
panel (coloring identical to the top panel).

ν = 1. The EMP scattering matrix can thus be directly
extracted from Ref. [98] and we will discuss its various
limiting regimes.

1. The EMP scattering matrix

Denoting by b the EMP modes of the MZI edge chan-
nels and a the EMP modes of the radiation edge channel,
the EMP scattering matrix S(ω) is given by the result of
Sec. III of Ref. [98] specialized for ν = 1:

Sba(ω) = Sab(ω) =
−iXf(X)

2 + αf(X)
(D1a)

Saa(ω) = Sbb(ω) = 1− Sba(ω) . (D1b)

in which X = ωl/vF and f(X) = (eiX − 1)/iX.
The dimensionless coupling α = Cq/Cg is the inverse

ratio of the geometric capacitance Cg to the quantum
capacitance Cq = e2l/hvF of a single edge channel of
length l. It reflects the strength of Coulomb interactions
effects: up to a numerical factor, it is the ratio of the
electrostatic energy e2/2Cg for a single electron charge
in a capacitance Cg to the kinetic energy scale ℏvF /l for
a single electron added in a length l closed edge channel.
The regime of low α (Cg ≫ Cq) is the regime where

the voltage drop at the capacitor formed by the two
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length l facing counter-propagating regions of length l
can be neglected: both channels see the same potential.
On the other hand, α ≫ 1 is the regime of strong cou-
pling in which Coulomb energy is so large that charging
these length l regions is almost impossible. This is the
Coulomb blocked regime.

We shall now discuss the limiting forms of the EMP
scattering region in these two regimes. A key point in
interpreting the results is the relation between the EMP
scattering matrix and finite frequency impedances. Un-
der the hypothesis of total screening, there are no current
leaks to any external grounded conductor. Considering
the bin and bout as the incoming and outgoing modes for
a B lead and the ain and aout modes as the corresponding
modes for the A leads, the finite frequency admittance of
this conductor is

Y (ω) =
e2

h
Sba(ω) (D2)

At low enough frequency, this dipole can be viewed as an
RC circuit with finite frequency admittance

Y (ω) = −iCµω +RC2
µω +O(ω3) (D3)

which leads to

Cµ =
Cq

2 + α
=

CgCq/2

Cq/2 + Cg
& R = RK . (D4)

We recover the expression of the quantum capacitance
as the series addition of two single channel quantum ca-
pacitances (one for the a modes and the other for the
b modes) with the geometric capacitance Cg. The total
resistance RK is the series addition of the two contact
resistances RK/2 for the two folded edge channels.

The total screening hypothesis leads to Sbb(ω) = 1 −
Sba(ω). On the other hand, energy conservation leads to
|Sbb(ω)|2 + |Sab(ω)|2 = 1. Parametrizing

Sbb(ω) =
1

2
(1 + ξ(ω)) (D5a)

Sba(ω) =
1

2
(1− ξ(ω)) (D5b)

thus leads to |ξ(ω)| = 1. Consequently, the parametric
plot of Sba(ω) in the complex plane is a circle of radius
1/2 centered on the point z = 1/2. Note that this is
also the case for an RC circuit with resistance RK and
capacitance Cµ. In the end, the EMP scattering matrix
can be fully characterized by the description of the angle
ϑ(ω) = Arg(ξ(ω)).
Fig. 13 displays the phase ϑ(ω) as a function of ωl/vF

in units of 2π for both the voltage locked and Coulomb
blocked regimes together with the graphs for the RC
circuit reproducing the low frequency behavior of Y (ω).
The probability |Sab(ω)|2 for an EMP to be transmitted
from the radiation channel into the MZI upper arm is
plotted in the lower panel.
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FIG. 13. Top panel: Plot of the angle ϑ(ω) as a function
of ωl/2πvF for two different values of the coupling: α = 1/5
(blue full line) and α = 15 (red full line). For each of these
values of α, the angle for the RKCµ circuit is plotted in dashed
lines with the same colors. Bottom panel: plots of |Sba(ω)|2
for the same examples as in the top panel (coloring identical
to the top panel).

2. The voltage locked regime

The α → 0 limit of the EMP scattering matrix given
by Eq. (D1) is

Sba(ω) = Sab(ω) =
1

2

(
1− eiX

)
(D6a)

Saa(ω) = Sbb(ω) =
1

2

(
1 + eiX

)
. (D6b)

whith therefore implies that ϑ(ω) = ωl/vF . This is con-
sistent with the full blue line behavior displayed on the
upper-panel of Fig. 13 (α = 1/5).
In this regime, the electrochemical capacitance is dom-

inated by the quantum capacitance’s contribution: Cµ ≃
Cq/2 which means that the corresponding RC time scale
is RKCµ ≃ l/2vF . The fact that even at vanishing α,
Sba(ω) is non-zero comes from the fact that this “weak
coupling limit” is not a limit without interactions be-
tween the two counter-propagating edge channels: it only
means that the voltage drop at the capacitance vanishes
and that both edge channels see the same voltage. In this
regime, the transmission probability exhibits sinusoidal
oscillations as a function of ωl/vF just like a micro-wave
directional coupler or two strongly coupled copropagat-
ing edge channels with local interactions would do (see
Ref. [99]).
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Avoiding this physically counter-intuitive behavior in
the α ≪ 1 regime requires considering a model without
the total screening hypothesis. However, note that such
a model would ensure a less efficient coupling between
the external quantum radiation and the electrons propa-
gating within the MZI.

3. The Coulomb blocked regime

Increasing α introduces non-linearities in the phase
ϑ(ω) as shown on the upper panel of Fig. 13. The electro-
chemical capacitance increases since it is not dominated
by the geometric capacitance Cµ ∼ Cg (Cg ≪ Cq). The
RKCµ ∼ RKCg time scale is then much shorter than
the free electron time of flight RKCq = l/vF . As a re-
sult 1/RKCµ increases thus explaining the flatter low
frequency behavior of ϑ(ω) in terms of ωl/vF see on the
upper panel of Fig. 13. The lower panel of this figure
shows a strong distortion of the oscillations in the trans-
mission probability |Sab(ω)|2 for ωRKCµ ≲ 1. It still
reaches unity for ωl/vF ≡ 0 (mod 2π) but with narrow
resonances for frequencies ω/2π close to integer multiples
of vF /l. These resonances become broader with increas-
ing order and the typical oscillations of a micro-wave di-
rectional coupler are recovered for for ωRKCµ ≳ 1.
Consequently, at low energy ω ≲ 2πl/vF , there is al-

most no EMP scattering amplitude in the very large cou-
pling limit and the EMP transmission amplitude corre-
sponds to a vanishing time of flight across the length l
interaction region. This is the result of the zero charge
constraint at infinite coupling: every charge density dis-
turbance has to go out of the interaction region immedi-
ately and leads to no charge density change within the in-
teraction region (hence the vanishing inter-channel EMP
scattering amplitude).

At higher ω, the modulus of decoherence amplitude
goes down at each resonance which becomes broader at
higher ω. This comes from the frequency selectivity of the
radiation coupler for a finite but large α: it can transmit
photons only at the resonances shown on the lower panel
of Fig. 13. This is an interesting feature for building
a frequency selective detector, the narrowest resonance
being the first one for ω/2π = l/vF .

When ωRKCµ ≳ 1, the directional coupler behavior
expected in the voltage locked regime of the previous
Section is recovered. This is the regime where EMP
modes have enough energy to overcome the Coulomb en-
ergy e2/2Cg.

Appendix E: Derivation of the radar equation

In this Appendix, the single radar equation for the
outgoing average electrical current is derived. We will
first derive it within the framework of time dependent

single particle scattering theory (linear electron quantum
optics) using a technique which can then be adapted to
the presence of Coulomb interaction effects which belong
to the non-linear regime of electron quantum optics.

1. Time-dependent single particle scattering
approach

We consider a MZI as depicted on Fig. 1-(a) and dis-
cussed in Sec. II B. Let us recall that the single electron
scattering matrices of the two QPC are assumed to be
energy independent and given by:

Sα =

(√
Tα i

√
Rα

i
√
Rα

√
Tα

)
(E1)

in which Tα and Rα respectively denote the transmission
and reflection probabilities at QPC α = A or B (Tα +
Rα = 1).
The main idea is to express the outgoing electron field

in branch 1 in terms of incoming fields by back-tracing it
from the output to the input of the MZI interferometer.
Assuming free propagation long the branch 2, with time
of flight τ2 leads to

ψ1out(t) =
√
TB ψ1,B−(t) + i

√
RB ψ2,B−(t) (E2a)

= i
√
RB e−iϕAB/2

(√
TA ψ2in(t− τ2)

+ i
√
RA ψ1in(t− τ2)

)
(E2b)

+
√
TB eiϕAB/2ψ1,B−(t) (E2c)

in which ψα,B−(t) denotes the fermionic field right before
the QPC B and ψαin

(t) denotes the incoming fields right
before QPC A. Equation (E2c) involves the outgoing
fermionic field from the radiation coupler. In the case
where propagation within this region can be described
by a time dependent linear scattering, we can relate it
linearly to the incoming field ψ1,A+ by

ψ1,B−(t) =

∫

R
R(t, t′)ψ1,A+

(t′) dt′ (E3)

which assumes that no electron can be injected from
any other channel than the branch 1 of the MZI[100].
This enables us to write down the fully general expres-
sion for the outgoing electrical current i1out(t) = −evF :

(ψ†
1outψ1out) : (t) in terms of the incoming electronic

fields. We obtain the outgoing current operator i1out(t)
as

i1out(t) = Î0(t)− e
(
eiφAB Î+(t) + e−iφAB Î−(t)

)
(E4)

in which, at the operator level
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Î+(t) = −i
√
TBRB

∫

R
R(t, t′)

[√
TAψ

†
2in

− i
√
RAψ1in

]
(t− τ2)

[√
TAψ1in + i

√
RAψ2in

]
(t′) dt′ . (E5)

When computing the average current, only terms that
contain the same numbers of ψ†

αin
and ψαin

are retained
since the MZI is fed by two independent electron sources.
Consequently the AB-flux dependent part of the average
current is ⟨I+(t)⟩ = −e

√
RATARBTB X+(t) where

X+(t) =

∫

R
R(t, t′)

(
G(e)
1in − G(e)

2in

)
(t′|t− τ2) dt

′ . (E6)

This is the time domain electron radar equation given by
Eq. (22). Note that, within the single particle scattering
formalism, this equation is valid for any electron source,
not necessarily emitting a single electron excitation.

2. The interacting case

a. The EMP scattering approach

Let us now consider the case where Coulomb interac-
tions cannot be neglected within the radiation coupler.
We shall model it using the EMP scattering formalism
discussed in Sec. IIIA.

Note that the starting point of Eq. (E2) is still valid.
But, contrary to the previous paragraph, the main chal-
lenge is now to backtrack the fermionic field along the
branch 1 of the MZI. Equivalently, we have to express
ψ1,B−(t) in terms of the incoming fields ψαin for α = 1, 2.
In order to do so, we consider the fermionic field ψ1,B−(t),
expressed it in terms of the outgoing EMP modes and use
the EMP scattering matrix to express it in terms of the
incoming modes into the radiation coupler.

To simplify the notation, the EMP modes along the
branch 1 of the MZI will be denoted by bα(ω) with α = in
or α = out depending whether they are incoming (posi-
tion A+) or outgoing (position B−). In the same way,
the electromagnetic modes within the radiation channel
are denoted by aα(ω). The scattering matrix describing
the coupling between the edge channel and the electro-
magnetic modes is

S(ω) =

(
Sbb(ω) Sba(ω)
Sab(ω) Saa(ω)

)
(E7)

so that
(
bout(ω)
aout(ω)

)
= S(ω)

(
bin(ω)
ain(ω)

)
(E8)

Using the bosonization formula for the fermionic field,
(see Eq. (B6)) and back-propagating the bosonic mode
operators across the radiation coupler, ψ1out(t) can be
expressed as

ψ1,B−(t) = eiΘψ1,A+
(t)Db1 [(S

∗
bb − 1)Λ(t)]⊗Da[S

∗
baΛ(t)]

(E9)

where the phase Θ is independent from t. Therefore, we

need to compute the correlator G(e)
ρi,B−

(1, t|2, t) which is

equal to

⟨ψ†
2,A+

(t− τ2)ψ1,A+
(t)Db1 [(S

∗
bb − 1)Λ(t)]Da[S

∗
baΛ(t)]⟩

(E10)
in which the correlator is taken over the incoming many-
body state ρi = ρS ⊗ ρem which is the tensor product of
the many body electronic state ρS injected by the source
by the incoming radiation state ρem for the a(ω) modes.

b. The Franck-Condon factor

Let us now discuss how the correlator (E10) can be
evaluated. First of all, the part that depends on the
incident radiation state ρem can be singled out thanks to
the identity:

⟨Da[S
∗
baΛ(t)]⟩ρem = ⟨Da[S

∗
baΛ(t)]⟩|0⟩

× ⟨: Da[S
∗
baΛ(t)] :⟩ρem

(E11)

in which we have introduced the bosonic normal order-
ing : · · · :. All the dependence in the incident radiation
state ρem is thus contained in the average value of the
normal ordered displacement operator : Da[S

∗
baΛ(t)] : for

the a(ω) modes. The average value ⟨Da[S
∗
baΛ(t)]⟩|0⟩ is

taken over the vacuum state for the a(ω) modes which
means that it can be reabsorbed into the correlator given
by Eq. (E10) except that this time the quantum average
is taken over the state ρS,0 = ρS ⊗ |0⟩ ⟨0|. This can be
summarized by

G(e)
ρi,B−

(1, t|2, t) = G(e)
ρS,0,B−

(1, t|2, t) (E12a)

× ⟨: Da[S
∗
baΛ(t)] :⟩ρem

(E12b)

since ρS,0 = ρS ⊗ |0⟩ ⟨0| corresponds to a situation where
no incident radiation is sent onto the MZI. Therefore, the

correlator G(e)
ρS,0,B−

(1, t|2, t) is exactly the one appearing

when computing the average current flowing out of the
MZI in the absence of electromagnetic radiation sent onto
it via the a(ω) modes. This problem corresponds to the
problem of electronic decoherence within the MZI.

In the end, the effect of the radiation injected into the
radiation coupler is described by the factor

Fρem(t) = ⟨: Da[S
∗
baΛ(t)] :⟩ρem (E13)

which is the exact analogous of the Franck-Condon factor
that appears in the spectroscopy of complex molecules
[46].
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c. Electronic propagation contribution

The electronic coherence G(e)
ρS,0,B−

(1, t|2, t) is more dif-

ficult to evaluate because it corresponds to the outgo-
ing single electron coherence after propagation across the
MZI in the presence of Coulomb interactions within the
branch 1 of the MZI. It turns out that simple and phys-
ically transparent expressions can be found in the case
where S is an ideal single electron source. In this case,
the state S is of the form

ρS = ψ†
1in[φe] |F ⟩ ⟨F |ψ1in[φe] (E14)

where |F ⟩ corresponds to the Fermi sea with chemical
potential µ = 0 in the two incoming electronic channels

of the MZI and ψ†
1in[φe] creates a single electron excita-

tion with with wave function φe injected into the MZI
(position A−).

Expressing ψ†
1in[φe] in terms of ψ†

1,A+
[φe] and

ψ†
2,A+

[φe] enables us to show that

G(e)
ρS,0,B−

(1, t|2, t) = −i
√
RATA × ⟨F, 0a|ψ2,A+

[φe]ψ
†
2,A+

(t− τ2)ψ1,B−(t)ψ
†
1,A+

[φe]|F, 0a⟩ (E15a)

= −i
√
RATA × ⟨F2|ψ2,A+

[φe]ψ
†
2,A+

(t− τ2)|F2⟩ × ⟨F1, 0a|ψ1,B−(t)ψ
†
1,A+

[φe]|F1, 0a⟩ (E15b)

in which |F, 0a⟩ denotes the tensor product of the Fermi
sea in both branches of the MZI and the ground state for
the environmental modes. Since φe is an electronic exci-
tation above the Fermi level, the contribution associated
with propagation along the branch 2 of the MZI can be
readily evaluated:

⟨ψ2,A+
[φe]ψ2,A+

(t− τ2)⟩|F2⟩ = φe(t− τ2)
∗ . (E16)

We are thus left with evaluating:

⟨ψ1,B−(t)ψ
†
1,A+

[φe]⟩|F1,0a⟩ =∫

R
vFφe(t

′)⟨ψ1,B−(t)ψ1,A+(t
′)⟩|F1,0a⟩ dt

′ . (E17)

The time domain amplitude

Z1(τ) = vF ⟨ψ1,B−(τ)ψ
†
1,A+

(0)⟩|F1,0a⟩ (E18)

is the elastic single electron scattering amplitude across
the branch 1 of the MZI. It is related to the elastic scat-
tering amplitude Z̃1(ω) computed in Refs. [44, 58] by a
Fourier transform:

Z1(τ) =

∫ +∞

0

Z̃1(ω) e
−iωτ dω

2π
. (E19)

Evaluating Z̃1(ω) can be done using the expressions given
in Ref. [45, 101] which we recall here for completeness:

Z̃1(ω) = 1 +

∫ ω

0

B(ω′) dω′ (E20)

in which B(ω) is the solution of the integral equation

ωB(ω) = Sbb(ω)− 1+

∫ ω

0

B(ω′)(Sbb(ω
′)− 1)dω′ (E21)

with initial condition B(0+) = (dSbb/dω)(ω = 0+). Fi-
nally, we obtain:

⟨ψ1,B+(t)ψ
†
1,A+

[φe]⟩|F1,0a⟩ =

∫

R
φe(t

′)Z1(t− t′) dt′ .

(E22)

The correlator ⟨ψ2,A+
[φe]ψ

†
2,B−

(t − τ2)⟩|F2⟩ could also

rewritten in a similar way

⟨ψ2,A+
[φe]ψ

†
2,B−

(t)⟩|F2⟩ =

∫

R
φe(t

′)∗Z2(t− t′)∗ dt′

(E23)
using the elastic scattering amplitude Z2(τ) = δ(τ − τ2)
corresponding to ballistic propagation during time of
flight τ2.

Note that this form of the correlator
⟨ψ2,A+

[φe]ψ2,B−(t)⟩ remains valid in the presence
of electronic decoherence along branch 2 of the MZI pro-
vided it is not caused by direct or indirect interactions
(bath mediated) between the two branches of the MZI.
This means that there must be no crosstalk between the
two branches: each of these branch do interact with their
own environment which are prepared in their ground
states. In this case, we should use the elastic scattering

amplitude Z̃2(ω) for ω > 0 to define Z2(τ). The elastic

scattering amplitude Z̃2(ω) can be computed in terms
of the finite frequency admittance of the branch 2.

d. General result

Let us finally collect the general result for the inter-
branch coherence GρS,0,B−(1, t|2, t) right before the sec-
ond QPC in the general situation where each of the
branches involves Coulomb interactions, and possibly a
coupling to its own radiation channel fed by the vacuum
state. In the absence of external radiation, the expression
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vFG(e)
ρS,0,B−

(1, t|2, t) =
∫

R2

vFφe(t− τ1)φe(t− τ2)
∗ Z1(τ1)Z2(τ2) dτ1 dτ2 (E24)

has a physically transparent interpretation: each wave
packet gets propagated according to the elastic scattering
amplitude Zα(τ) along the corresponding branch.

In the presence of incoming radiation arriving on each
radiation coupler of each branch α in independent respec-
tive quantum stated described by the density operators
ρem,α, Eq. (E12) generalizes to

G(e)
ρi,B−

(1, t|2, t) = G(e)
ρS,0,B−

(1, t|2, t)×
∏

α=1,2

〈
: Daα

[(
S
(α)
ba

)∗
Λ(t)

]
:
〉
ρem,α

(E25a)

In the end, the interference signal X+(t) is given by

X+(t) = vF

∫

R2

φe(t− τ1)φe(t− τ2)
∗×

Reff,1(t, t− τ1)Reff,2(t, t− τ2) dτ1,dτ2 (E26)

in which the effective single particle scattering ampli-
tudes are given by the product of the elastic scattering
amplitude by the Franck-Condon factor:

Reff,α(t, t
′) = Zα(t− t′)Fρem,α(t) (E27)

thus leading to the single electron radar equation (22)
which reduces to Eq. (23) in the case of ballistic prop-
agation in time τ2 along branch 2 and no coupling to
external radiation on this branch.

Last but not least, in the presence of Coulomb inter-
actions, the radar equation is valid only for an incoming
single electron excitation injected into the electronic MZI!

Appendix F: Connection to full counting statistics

In the context of experiments performed on Al-
GaAs/AsGa systems in the quantum Hall regime, the
radiation channel may also be a chiral quantum Hall edge
channel, as depicted on Fig. 14-(a). In this case, Fρem

(t)
can also be interpreted in terms of a form of full counting
statistics for electronic transport in the radiation chan-
nel as noticed in Ref. [102]. Since this work relied on
a specific interaction model as well as on single particle
scattering, we present here a full many body derivation
independent on the details of the Coulomb interaction
model.

When the radiation channel is a single integer quan-
tum Hall edge channel, the incoming electrical current
arriving into the interaction region via this edge channel
is, for ω > 0:

iin(ω) = −e
√
ω ain(ω) (F1)

FIG. 14. (Colors online) Sample design of the electron
radar using chiral edge channels in the integer quantum Hall
regime (2DEG in green). The blue region where two counter-
propagating quantum Hall edge channels are facing each other
at short (≲ 100 nm) distance forms a radiation coupler be-
tween the channel 1 of the MZI and the radiation channel in
which the radiation to be analyzed is sent. The quantity of in-
terest is the average outgoing current from the MZI and more
precisely the first harmonic in the Aharonov-Bohm phase.

Introducing

Γba(τ) =

∫ +∞

0

Sba(ω)

−iω
e−iωτ dω

2π
+ c.c. (F2)

the normalized filtered charge operator

N(t) =

∫

R
Γba(t− τ)

iin(τ)

−e
dτ (F3)

associated with the windowing function τ 7→ Γba(t − τ)
can be used to provide a compact expression for Fρem

(t):

Fρ(t) =
〈
: e2πiN(t) :

〉
ρem

. (F4)

The 2πN(t) operator represents the quantum phase kicks
associated with the incoming electrical current felt by a
localized electron propagating within the MZI. Note that
the exponential of this quantum phase kick operator is
normal ordered with respect to the bosonic modes ain(ω).
One can then connect this ordering to the time ordering
in order to establish the precise connection to time or-
dered electrical current correlators.
Finally, let us comment on the interpretation of the

windowing function Γba(t−τ). Since Γba(ω) = iSba(ω)/ω
for ω > 0, the relation between the EMP scattering ma-
trix and finite frequency admittances [45, 48, 59, 60] leads
to

Γba(ω) =
Sba(ω)

−iω
=
RK

−iω

∂I
(out)
b (ω)

∂V
(in)
a (ω)

(F5)
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in which I
(out
b (ω) denotes the average total current going

out from the interaction region within the MZI interfer-
ometer – the propagation channel for the b EMP modes –

and V
(in)
a (ω) denotes a classical voltage drive applied to

the incoming channel of the radiation channel in which
the EMP a modes propagate. This equation thus con-
nects Γba(ω) to the finite frequency admittance of the
electrical dipole associated with the interaction region.
Since the coupling is purely capacitive, one expects this
finite frequency response to be capacitive, that is of the
form

∂I
(out)
b (ω)

∂V
(in)
a (ω)

= −iω C
(eff)
ba (ω) (F6)

in which the effective frequency dependence capacitance

C
(eff)
ba (ω) goes to a non zero capacitance in the low fre-

quency limit. Consequently, Γba(τ) appears as the effec-
tive response rate associated with this capacitance

Γba(τ) =

∫ +∞

0

RKC
(eff)
ba (ω) e−iωτ dω

2π
+ c.c. (F7)

Appendix G: The radar equation in the frequency
domain

Let us introduce

R̃(ω+, ω−) =

∫

R2

R(t, t′) ei(ω+t−ω−t′)dtdt′ (G1)

which is directly proportional to the amplitude for scat-
tering an incoming electron at energy ℏω− to the energy

ℏω+. Denoting by X̃+(ω) the Fourier transform of the
signal X+(t) at frequency ω/2π, Eq. (22) then takes the
form

X̃+(ω) =

∫

R2

vF ∆̃G
(e)

S (ω−, ω+ − ω)

ei(ω−ω+)τ2R̃(ω+, ω−)
dω+ dω−

(2π)2
(G2)

in which

∆G̃(e)
ρ (ω+|ω−) =

∫

R2

∆G(e)
ρ (t|t′) ei(ω+t−ω−t′)dtdt′ (G3)

denotes the excess single electron coherence in the fre-
quency domain. Eq. (G2) determines the interference
contribution to the finite frequency average electrical cur-
rent in the 1out branch of the MZI.

Its physical interpretation is quite clear: for ω > 0,
the average finite frequency current ⟨i1out

(ω)⟩ probes the
outgoing electronic coherence beween ω+ and ω+−ω for
all ω+. The latter is propagating along the branch 2 of
the MZI with time of flight τ2, hence picking a phase
ei(ω+−ω)τ2 . Since it appears in the complex conjugated
amplitude, this leads to the phase factor ei(ω−ω+)τ2 in

vF∆G̃(e)
S (ω−, ω+ − ω)

X̃+(ω)

ω+

ω+ − ω

ω− ω+ω− ω+

R̃(ω+, ω−)

(ei(ω+−ω)τ2)∗

A B

FIG. 15. Physical interpretation of the linear radar equation
(G2) in the frequency domain showing the contribution of
incoming single electron coherence in the frequency domain

to X̃+(ω) for ω > 0. Definition of the two paths is the same
as in Fig. 5.

Eq. (G2). On branch 1 of the MZI, the electron enters
the radiation coupler with energy ℏω− and exits with

energy ℏω+ with an amplitude R̃(ω+, ω−). Therefore,
the contribution of the outgoing coherence between ω+

and ω+ − ω comes from an incoming coherence between
ω− and ω+ − ω emitted by the source S as summarized
on Fig. 15.

Appendix H: Limiting regimes of the single radar
equation

We now discuss the limiting regimes of a time or of
a frequency resolved single electron excitation. The re-
sulting limiting form of the electron radar equation will
be relevant whenever the time (resp. frequency) exten-
sion of the probe is much smaller than the typical time
(resp. frequency) length scales of the effective scattering
matrix. As expected, time resolved wave packets are well
suited to explore the time dependence of the scattering
whereas energy resolved excitations gives access to the
scattering amplitude in the frequency domain.

1. Energy resolved probes

We consider an resolved excitation with Gaussian line-
shape, centered at energy ℏωe and with linewidth γe ≫
|ωe|. Its wave function in the energy domain, defined by
Eq. (A6) is:

φ̃e(ω) = NΘ(sign(ωe)ω) e
−(ω−ωe)

2/2γ2
e (H1)

where the normalization condition (A7) gives[103]

N 2γe/vF
√
4π ≃ 1. For ωe > 0 we are dealing with an

electronic excitation, whereas for ωe < 0 we are dealing
with a hole excitation. In the limit where γe ≪ |ωe| is
much smaller than the scales of variation of R̃(ω+, ω−),
the electron radar signal in the frequency domain given
by Eq. (G2) then gives

X̃+(ω; τ2) ≃
γe√
π
e−iωeτ2R̃(ω + ωe, ωe) . (H2)
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Whenever ωe and ω + ωe have the same sign, we are
accessing the electron to electron or hole to hole effective
scattering whereas whenever ωe and ω + ωe do not have
the same sign, we are accessing electron to hole or hole
to electron effective scattering.

2. Time resolved probes

We consider a normalized Gaussian single electron
wave packet:

φtr(t) =
1√

vFσe
√
π
e−(t−te)

2/2τ2

(H3)

with te the emission time and τe the duration of the single
electron wave packet. Using Eq. (22) to compute the
average time dependent current and brutally taking the
limit σe → 0 leads to, at first order in σe:

X+(t) ≃ τeR(te + τ2, te) δ(t− τ2 − te) (H4)

The condition t = te+τ2 comes from ballistic propagation
along the reference arm of the MZI and, X+(t) is then
proportional to the amplitude for the electron to enter
branch 1 at te and exit it at time t.
However, this naive computation does not take into

account the constraint that the incoming single electron
excitation must be restricted to positive energies due to
the presence of the Fermi sea which is not the case for the
wave packet considered in Eq. (H3). Introducing a finite
energy shift via the factor e−iωe(t−te) in front of the r.h.s
of Eq. (H3) with ωe ≫ 2πvF /τe leads to a wave packet
with negligible weight at negative energies. But this in-
troduces a rapidly oscillating term e−iωe(t−t′−τ2) in front
of R(t, t′) = Z1(t− t′)Fρem

(t) in the radar equation (22).
This means that we are probing electronic decoherence
at energies close to ℏωe. But, as shown in Ref. [101],
electronic decoherence is expected to be worse at high
energies and may indeed kill the interference signal.

In order to mitigate this problem, the proper approach
consists of introducing electronic wave packets that are
close to the Fermi surface and well localized in space such
as the Leviton. This is discussed in Appendix I.

Appendix I: Fringe contrast for Levitons

Let us consider the case of a Leviton wave-packet of
width τe. Its wave function is Lorentzian in the time
domain and exponential in the frequency domain [104].
We are interested in the interference contribution to the
outgoing electrical current for a Leviton of duration τe
injected at time te.
Because of the simple expression for the Leviton wave

packet in the frequency domain, the electron radar equa-
tion in the frequency domain (see Eq. (G2)) gives us a

convenient form for X
(dc)
+ suitable for numerical evalua-

tions:

X
(dc)
+ =

∫

R
F̃ρem(Ω) e

−iΩ(te+τ2) fτe,τ2(Ω)
dΩ

2π
(I1)

in which the filter

fτe,τ2(Ω) = 4πτe

∫ +∞

|Ω|/2
Z̃1

(
ω − Ω

2

)
e−2ωτee−i(ω−Ω

2 )τ2
dω

2π

(I2)
contains all the effects of electronic decoherence along
branch 1 and ballistic propagation along branch 2 of the
interferometer.
Because the elastic scattering amplitude Z̃1(ω) tends

to decrease in modulus with increasing ω, fτe,τ2(Ω) is ex-
pected to be a low pass filter. The limit τe → 0+ may
even lead to vanishing signal since, in the case of the
two counter-propagating edge channel model considered
in Appendix D, a very short Leviton may experience frac-
tionalization as it flies across the radiation coupler. For
short wave packets, this would kill the electronic inter-
ference signal. In the absence of external radiation, since
F|0⟩(t) = 1, we obtain

[
X

(dc)
+

]
|0⟩

= 4πτe

∫ +∞

0

Z̃1(ω) e
−2ωτee−iωτ2

dω

2π
. (I3)

This quantity, which does not anymore depend on te but
depends on τ2 represents the base interference contribu-
tion for the dc outgoing current from the MZI.

Appendix J: Squeezing detection

This appendix presents the computations of the
Franck-Condon factor in the case of a time periodic noise,
with specialization to narrow band squeezed noise. We
first briefly recall the structure of a single mode squeezed
vacuum for pedagogy and then proceed to the discussion
of time-periodic noise. In Sec. J 2, we show that such a
noise can exhibit sub-vacuum fluctuations coming from
two-mode squeezing in a narrow band around a given fre-
quency ω0/2π. The harmonic structure of the resulting
Franck-Condon factor is then discussed in Sec. J 3.

1. Squeezed vacuum in a single mode

In this Appendix, we recall the basics needed to de-
scribe the squeezed vacuum for a single mode[105]:

|Sqz⟩ = ez(a
†)2−z∗a2

|0⟩ (J1)

where a and a† are the creation and destruction opera-
tors for a single mode and z ∈ C. The squeezing operator

Sz equal to ez(a
†)2−z∗a2

, performs a Bogoliubov transfor-
mation on the original mode operators:

S†zaSz = cosh(2|z|) a+ eiφ sinh(2|z|) a† . (J2)
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This enables us to compute the expectation value of any
products of a and a† in the state |Sqz⟩ as the expectation
value of the same expression in terms of the Bogoliubov
transformed operators

az = cosh(2|z|) a+ eiφ sinh(2|z|) a† (J3a)

a†z = cosh(2|z|) a† + eiφ sinh(2|z|) a (J3b)

where φ = Arg(z). More precisely

⟨O[a, a†]⟩|Sqz⟩ = ⟨O[az, a
†
z]⟩|0⟩ (J4)

Applying this relation to the quadrature

Xϑ =
1√
2

(
eiϑa+ e−iϑa†

)
(J5)

leads to ⟨Xϑ⟩|Sqz⟩ = 0 and

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
+ sinh2(2|z|) (J6a)

+ cosh(2|z|) sinh(2|z|) cos(2ϑ+ φ)
(J6b)

which shows that the fluctuations are anisotropic in the
Fresnel plane and that Arg(z) determines the principal
axes of the ellipsoid of fluctuations. Its extrema are:

max
ϑ

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
e4|z| (J7a)

min
ϑ

⟨(∆Xϑ)
2⟩|Sqz⟩ =

1

2
e−4|z| (J7b)

The vacuum fluctuations being given by 1/2, the state
|Sqz⟩ appears as squeezed with sub-vacuum fluctuations
compressed at most by a factor e−4|z| < 1 as soon as |z| ≠
0. Note that with ϑ = ω0t, we recover the 2ω0 oscillations
of the fluctuations of harmonic mode of energy ℏω0.
Since the isotropic part of the fluctuations corresponds

to 1
2+⟨a†a⟩|Sqz⟩, Eq. (J6a) determines the average photon

number in the squeezed vacuum |Sqz⟩:

⟨a†a⟩|Sqz⟩ = sinh2(2|z|) (J8)

Thinking of this harmonic mode as an optical mode, the
above discussion shows that increasing the squeezing pa-
rameter z increases the average number of photons. A
squeezed vacuum is thus on average more noisy than the
true vacuum even if increasing |z| decreases its minimal
fluctuations.

2. Narrow band time periodic noise

Let us consider a time periodic current noise with pe-
riod π/ω0 which, as discussed in the previous paragraph,
is natural for squeezing around a frequency ω0/2π. This
is more natural in the spirit of mesoscopic physics where
the radiation source may be a periodically driven con-
ductor at a given frequency which would, by time trans-
lation invariance, generate a radiation whose correlators
have the same time periodicity.

We then consider the simplest correlation structure for
the creation and destruction operators a(ω) and a†(ω)
that satisfies both the requirement of π/ω0 periodicity
as well as the requirement that its time-averaged power
spectrum is concentrated in a narrow band around ω0.
This leads to [106] (ω± > 0):

⟨a†(ω−) a(ω+)⟩ = δ(ω+ − ω−)n(ω) (J9a)

⟨a(ω−) a(ω+)⟩ = δ(ω+ + ω− − 2ω0) ξ

(
ω+ − ω−

2

)

(J9b)

where n(ω) ≥ 0 denotes the average photon number in
the mode at ω and ξ(Ω) denotes the average photon
pair correlation between the modes at frequencies ω0+Ω
and ω0 − Ω. In the narrow band situation where the
emitted power density ℏω n(ω) is concentrated near ω0,
n(ω) ̸= 0 only for |ω−ω0| ≲ γ0/2 and |ξ(Ω)| ≠ 0 only for
|Ω| ≲ γ0/2. Note that the δ-function constraints in these
equations arises from time periodicity as well as from
Cauchy Schwartz inequalities (see Ref. [38] for analogous
considerations in the context of electron quantum optics).

Substituting these correlators in Eq. (41) leads to:

|Fρem
(t)| = eℜ[ξeff e

−2iω0t]−Neff (J10)

in which

Neff =

∫ +∞

0

|Sba(ω)|2

ω
n(ω) dω (J11a)

ξeff =

∫ +ω0

−ω0

Sba(ω0 +Ω)Sba(ω0 − Ω)√
ω2
0 − Ω2

ξ(2Ω) dΩ .

(J11b)

In the narrow band approximation in which n(ω) = n̄ for
|ω − ω0| ≤ γ0/2, ξ(Ω) = ξ for |Ω| ≤ γ0/2 and where the
frequency dependence of Sba(ω) around ω0 is neglected,
we obtain

Neff = |Sba(ω0)|2
γ0
ω0

n (J12a)

ξeff = |Sba(ω0)|2
γ0
ω0

e2iArg(Sba(ω0))ξ (J12b)

Two mode squeezing between ω0+Ω/2 and ω0−Ω/2 for
all |Ω| ≤ γ0 leads to

n = sinh2(2|z|) (J13a)

|ξ| = sinh(4|z|)/2 (J13b)

where z is the squeezing parameter, assumed to be the
same for all these pairs of modes. Substituting this
into Eqs. (J12) and the result into (J10) then leads to
Eq. (43).
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3. Harmonic decomposition

We now decompose the time periodic Franck-Condon
factor given by Eq. (43) in Fourier series:

FSqz
(t) ≃ e−Λ sinh2(2|z|)×

∑

n∈Z
I|n| (Λ cosh(2|z|) sinh(2|z|)) e−2inω0(t−t̃e)

(J14)

where Λ = |Sba(ω0)|2/Q0 and In denotes the modified
Bessel function of order n. The time t̃e arises from the
phase of Sba(ω0) as well as of the squeezing parameter.
We will forget it in the following since it can be absorbed
in a redefinition of the Leviton’s injection times.

Because |Sba(ω0)|2 ≤ 1 and Q0 is significantly
larger than 1, Λ ≪ 1. Remembering also that ex-
perimentally reachable squeezing factors are not very
high (|z| ≃ 0.1755 for 3 dB squeezing) and therefore,
Λ cosh(2|z|) sinh(2|z|) ≲ 1. Moreover, In(x) ≃ (x/2)n/n!
for n ≥ 1. Consequently, the most important contribu-
tion comes from the first harmonics: n = 0 and n = ±1
in Eq. (J14). Retaining only these leads to:

FSqz
(t) ≃ F0(z,Λ) + e−2iω0tF1(z,Λ) + e2iω0tF−1(z,Λ)

(J15)
where, at the lowest non-trivial order in Λ:

F0(z,Λ) = e−Λ sinh2(2|z|)I0 (Λ cosh(2|z|) sinh(2|z|))
≃ 1− Λ sinh2(2|z|) +O(Λ2) (J16a)

F±1(z,Λ) = e−Λ sinh2(2|z|) I1 (Λ cosh(2|z|) sinh(2|z|))

≃ Λ

2
cosh(2|z|) sinh(2|z|) +O(Λ2) . (J16b)

The n = 0 harmonic contains the contrast obtained when
averaging over the emission time te:

[
X

(dc)
+

]te
Sq(z)

=
[
X

(dc)
+

]
|0⟩

F0(z,Λ) . (J17)

Since |F0(z,Λ)| < 1, this te-independent measurement
is lower than the one when only vacuum injected in the
radiation channel. It also represents the average contrast
for Levitons of width τe injected at random emission and
it is lower than the vacuum baseline. This is the effect
of the average number of photons in a squeezed vacuum
given by Eq. (J8).

Appendix K: Single EMP detection

We now discuss the evaluation of the parameter x(t) =
2π| ⟨χ|S∗

baΛt⟩ |2 that appears in the evaluation of the
Franck-Condon factor for Fock states (see Eq. (48)). The
qualitative behavior of this quantity can be understood
by using a time/frequency representation of the current
noise. The case of a narrow band EMP then leads to
analytical approximated expressions for x(t).

1. Time frequency analysis of current noise

Using ı̂(ω) = −e
√
ω b(ω) (ω > 0) for a single chiral in-

teger quantum Hall edge channel, x(t) = 2π| ⟨χ|S∗
baΛt⟩ |2

can be expressed in terms of the excess current noise

∆S
(i)
|1;χ⟩(t, t

′) of a single quantum EMP in the mode χ:

x(t) =
2π2

e2

∫

R2

Γba(t−t+) Γba(t−t−)∗∆S(i)
|1;χ⟩(t+, t−)dt+dt− .

(K1)
in which Γba denotes the function defined by Eq. (F2).
The physical meaning of this expression is better under-

stood in terms of the Wigner function ∆W
(i)
ρ (t, ω) of the

excess current noise

∆W (i)
ρ (t, ω) =

∫

R

〈
: ı̂

(
t− τ

2

)
ı̂
(
t+

τ

2

)
:
〉
ρ,c

eiωτdτ

(K2)
in which ⟨AB⟩c denotes the connected correlator ⟨AB⟩−
⟨A⟩⟨B⟩. Introducing the Ville transform associated with
Γba(t):

WΓba
(t, ω) =

∫

R
Γba

(
t+

τ

2

)
Γba

(
t− τ

2

)
eiωτdτ . (K3)

leads to

x(t) =
2π2

e2

∫

R2

WΓba
(t− τ, ω)∆W

(i)
|1;χ⟩(τ, ω)

dωdτ

2π
.

(K4)
This shows that the radiation coupler’s response function
Γba(τ) leads to time-frequency filtering of of the excess
quantum current noise of the single EMP state |1, χ⟩.
The time resolution for single EMP detection is thus lim-
ited by the duration of the excess current noise associated
with the single EMP as well as by the response time of the
radiation coupler, typically the RC-time scale appearing
in Γba (see Appendix F).

2. Current noise of a single EMP

For the single plasmon with wave-function χ, the av-
erage excess current ⟨i(t)⟩|1;χ⟩ is zero and the Wigner
function of the excess current noise defined in Eq. (K2)
is given by

∆W
(i)
|1;χ⟩(t,ω) =

e2

2π

∫

|Ω|≤2|ω|
e−iΩt

√
ω2 − Ω2

4

× χ

(
|ω|+ Ω

2

)
χ

(
|ω| − Ω

2

)∗
dΩ

2π
. (K5a)

In the case of a narrowband single plasmon centered at
the energy ℏω0 with Lorentzian linewidth γ0

χ(ω) =

√
γ0 Θ(ω)

ω − ω0 +
iγ0

2

. (K6)
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such that γ0 ≪ ω0, the Wigner function of the excess cur-
rent noise can be approximated by the usual expression
for such energy resolved excitations:

∆W
(i)
|1;χ⟩(t, ω) ≃ Θ(t)

e2ω0

2π
4γ0t sinc (2(|ω| − ω0)t) e

−γ0t .

(K7)
The general expression of the heat current JQ(t) in terms
of the current i(t) leads to

⟨JQ(t)⟩ρ =
RK

2

(
⟨i(t)⟩2ρ +

∫

R
∆W (i)

ρ (t, ω)
dω

2π

)
. (K8)

For a single energy resolved EMP with energy ℏω0 and
Lorentzian lineshape of width γ0, this enables us to com-
pute the instantaneous heat current just from the excess
noise since ⟨i(t)⟩|1;χ⟩ = 0. Using Eq. (K7), we find:

⟨JQ(t)⟩|1;χ⟩ = ℏω0Θ(t) γ0 e
−γ0t . (K9)

This heat current carries an average energy∫
R⟨JQ(t)⟩|1;χ⟩dt = ℏω0 as expected.

3. Filtering of current noise

If the EMP has a narrow band compared to the typ-
ical scale of variation of Γba(ω), the variation of Sba(ω)
around ω0 can be neglected in Eq. (49). One then recog-
nizes in x(t) the modulus square

e2

2π

∣∣∣∣
∫ +∞

0

√
ωχ(ω) e−iωt dω√

2π

∣∣∣∣
2

=

∫

R
∆W

(i)
|1;χ⟩(t, ω)

dω

2π
(K10)

where the r.h.s. directly follows from Eq. (K5). Eq. (K8)
then shows that this is related to the average instanta-
neous heat current carried by the single EMP in state χ.
This finally leads to Eq. (50).
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A. Krzic, and L. L. Sánchez-Soto, Multiparameter quan-
tum metrology of incoherent point sources: Towards re-
alistic superresolution, Phys. Rev. A 96, 062107 (2017).
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