arXiv:2405.05785v1 [quant-ph] 9 May 2024

Quantum Resource Theories beyond Convexity

Roberto Salazar,'>* Jakub Czartowski,>3 T Ricard Ravell Rodriguez,*
Grzegorz Rajchel-Mieldzio¢,> % Pawet Horodecki,” and Karol Zyczkowski®®

! Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakéw, Poland
2Doctoral School of Exact and Natural Sciences,

Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakéw, Poland

3 Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakéw, Poland
4 Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC),
Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
SNASK National Research Institute, ul. Kolska 12, 01-045 Warszawa, Poland
8 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology,
Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
" International Centre for Theory of Quantum Technologies,
University of Gdarisk, Wita Stwosza 63, 80-308 Gdarisk, Poland
8 Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warszawa, Poland
(Dated: May 08, 2024)

A class of quantum resource theories, based on non-convex star-shape sets, presented in this work
captures the key quantum properties that cannot be studied by standard convex theories. We provide
operational interpretations for a resource of this class and demonstrate its advantage to improve
performance of correlated quantum discrimination tasks and testing of quantum combs. Proposed
techniques provide useful tools to describe quantum discord, total correlations in composite quantum
systems and to estimate the degree of non-Markovianity of an analyzed quantum dynamics. Other
applications include the problem of unistochasticity of a given bistochastic matrix, with relevance for
quantization of classical dynamics and studies of violation of CP-symmetry in high energy physics.
In all these cases, the non-linear witnesses introduced here outperform the standard linear witnesses.
Importance of our findings for quantum information theory is also emphasized.

I. INTRODUCTION

In the realm of quantum information theory, resource
theories stand as a foundational framework [1-3], eluci-
dating significant results of invaluable quantum resources
such as entanglement [4, 5|, coherence [6], and quan-
tum thermodynamics [7], among others [8—14]. Resource
theories provide a structured understanding of the con-
straints and manipulations inherent to quantum devices,
enabling us to harness their properties for various appli-
cations, for instance, quantum computing and quantum
communication [§8]. An important classification of quan-
tum resources divides them into the categories of convex
and non-convex, contingent upon the convexity or non-
convexity of the set of resourceless devices, respectively
[8, 15]. While convex resource theories have seen sub-
stantial progress, non-convex theories have received less
attention due to their mathematical challenges [8].

However, convex resource theories cannot capture cru-
cial properties such as memory in stochastic processes
and total correlations in quantum networks, necessitat-
ing the development of appropriate non-convex resource
theories [8, 16]. These properties, present in processes
with an output dependent on a long sequence of past
states, are prevalent in various science fields and applied
mathematics [17, 18]. Additionally, limitations in clas-
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sical communication between nodes in large-scale net-
works [19] make total correlations a crucial resource for
future quantum networks such as the quantum inter-
net [20]. Whereas quantifiers applicable to the potential
non-convex theories have surfaced [21, 22|, the develop-
ment of free operations, an indispensable part in classi-
fying them in a distinct non-convex class, has remained
elusive.

This article addresses the challenge of going beyond
the paradigm of convexity, unveiling a novel class of re-
source theories: Star Resource Theories (SRTs). Unlike
previous theories, SRTs pivot on a distinctive geomet-
ric attribute; the mathematical representation of their
resourceless devices form star domains [23]. This char-
acteristic trait delineates SRTs as a unique class, includ-
ing all convex theories and crucial non-convex resource
theories hitherto unexplored in their full depth and po-
tential (see Fig. 1). Within the SRTS class, we present
two quantifiers, both novel in their inception, and show
their operational meaning, opening new avenues for as-
sessing and characterizing resources within the domain of
non-convex theories. Notably, these quantifiers indicate
advantages for correlated discrimination tasks or the sur-
plus of cooperative discrimination tasks, providing novel
directions for applications in quantum information.

Moreover, this article marks a pioneering effort, intro-
ducing a class of non-trivial free operations for the whole
class of SRTs. Additionally, we study the conditions for
resource non-generating operations and their connection
with the internal structure of the corresponding star do-


mailto:rb.salazar.vargas@gmail.com
mailto:jakub.czartowski@doctoral.uj.edu.pl

Quantum resource theories

Quantum Star resource theories

Quantum Convex resource theories

FIG. 1. Since

Hierarchy of Quantum Resource Theories.
every convex set is also a star set, the well known family of
convex resource theories is a subset of a more general class of
star resource theories.

main. The above universal operations shed light on the
inter-convertibility of resources within SRTSs, paving the
way for a deeper understanding of their properties and
potential applications.

Intuitively, our setup provides means to exclude that
a particular point belongs to a specific set, like the re-
sourceless objects. This capacity can be helpful in vari-
ous settings, even outside quantum information. Suppose
that the evolution of a system cannot lead out of a par-
ticular set. Then, the certification that it is outside of it
means that either the model or the experimental test is
wrong.

Furthermore, we illustrate our results in well-known
cases beyond the limitations of convex theories: quan-
tum discord, total correlations, and non-Markovian pro-
cesses. Additionally, we apply our methods to disprove
the unistochasticity of a particular matrix, providing an
operational test to demonstrate that, e.g., a classical walk
could not have originated from a quantum one. We em-
phasize that traditional linear witness approaches have
negligible (or even none) usefulness in our study cases,
underscoring the value of our methods.

Beyond the previous immediate applications, the sig-
nificance of this work extends to the very foundations of
mathematical analysis. The introduction of SRTs hints
at a broader mathematical generalization, a leap from
the confines of convex analysis to the broader landscape
of star-convex analysis by pointing out the key features
of star domains relevant for practical applications. Addi-
tionally, this work aligns with other recent developments
in non-linear witnesses [24-26], supporting a transforma-
tion in our understanding of constrained sets and offering
a mathematical framework that transcends traditional
boundaries.

In essence, this article not only presents a novel
paradigm in resource theory but also serves as a cor-
nerstone for future explorations. It paves the way for a
foundational shift, offering a novel lens to study and ma-
nipulate resources, with potential implications ranging
from quantum properties to particle physics and usher-
ing in a new era of non-convex analysis.

The structure of this work is as follows: In Section II,
we introduce the necessary concepts of quantum mechan-
ics related to our study and review the fundamental con-
cepts of quantum resource theories. Section III presents
the star resource theories, along with their operational
interpretations. Section IV illustrates the practical ap-
plication of our main result through specific examples
of quantum discord, total correlations, unistochasticity,
and non-Markovian processes. Finally, in Section V, we
discuss our results’ implications and potential future ap-
plications.

II. SETTING THE SCENE
A. Quantum formalism

A compact review of key concepts within quantum for-
malism becomes indispensable as we explore resource the-
ories of quantum devices. Let us begin with the essen-
tials: The space of pure states of an d-level system is de-
scribed in quantum mechanics by a d-dimensional Hilbert
space H and the states |¢)) € H are given by vectors of a
unit norm, |(¢|¥)| = 1, equivalent up to a global phase
change [15) ~ ¢% [1).

Observables within the quantum theory are described
by the bounded operators B(H) on the Hilbert space.
A special subset S(H) C B(H) of positive semidefinite
operators S(H) > p > 0 with unit trace, Tr(p) = 1, de-
scribe what is called density operators, which give the
full state-space of quantum mechanics. More specifi-
cally, the rank-1 projectors are in one-to-one correspon-
dence with the pure states, |¢) — py = |¥Y)¥|, and
their convex combinations provide the mixed states. The
set S of quantum states can be endowed with a metric
relevant to the single-shot discrimination of the states,
namely the trace distance induced by the trace norm,
llpll; := Tr|p|. With this, the optimal minimum-error
probability of distinguishing between two states p; and
p2 by a single measurement is stated by Helstrom theo-
rem to be p = (1 + [|p1 — p2lly)-

Evolution of closed systems in quantum mechanics
is described by unitary operations, which act on pure
states as |[¢) — [¢') = U¢) and by extension, den-
sity operators evolve as p — p' = UpUT. Evolution of
open quantum systems can be more diverse and is de-
scribed by completely positive trace preserving (CPTP)
maps O : S(H) — S(H) which take density matri-
ces to density matrices. It has been shown that any
CPTP map can be written in terms of Kraus operators,
O(p) =, KipK;r , which satisfy the identity resolution
condition, S KJK; = 1. Unitary evolution therefore
can be seen as a special case of a CPTP map defined
by a single Kraus operator. A norm for the channels
similar to the trace norm for the states is called the
diamond norm. It is defined by the trace norm of the
state resulting from acting with a channel ©, optimized
over all possible states X € B(#) on an extended space,



max
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the diamond norm can be approximated efficiently using
convex programming procedures [27]. Similarly to the
Helstrom theorem for the states, the optimal probabil-
ity of distinguishing between two channels ©; and O,
is expressed as p = 3(1+ (|61 — O2],,). Furthermore,
it has been used to prove several results concerning the
complexity classes of several categories of quantum com-
putation [28, 29].

Quantum channels on a d-dimensional space and states
of dimension d? are closely related by Choi-Jamiotkowski
isomorphism. Consider a maximally entangled Bell state
of dimension d?, ¥y ) = ﬁ Zle li,7) and an arbitrary
channel ©, which takes d-dimensional quantum states to
d-dimensional states. The Jamiotkowski state is defined
by acting with a channel ® on the second party of the
Bell state |¥,) and leaving the first party unperturbed
Jo = (1® 0) ([0, XW4]) [30, 31].

Ol = (1 ® ©)(X). It has been shown that

B. Geometric fundamentals

A foundational take of essential geometric concepts be-
comes paramount in developing our framework. In this
section, we explore fundamental analytical and geometric
definitions necessary for constructing and comprehending
our theory of star quantum resource theories (See Fig 2).

In the following, given a set A, we use the standard
notation A and Int(A) for the complement and interior of
A, respectively. Additionally, we write A to designate
the boundary of A, Conv(A) to the convex hull of A
and Ext(A) = Int(A), which we name the exterior of
A, equivalent to the closure of the interior of A. When
A C V of some vector space V, we write (A + ) for a
particular z € V' to denote the set of all elements a + z,
with a € A.

Central in our work is the definition of star domains in
a vector space V', also known as star-shaped sets [23, 32]:

Definition 1. Let V' be a vector space, then a subset
K C V is star-shaped and is called a star domain if there
exists an element pg € K such that for all p € K, A €
[0,1] the convex combination Apg + (1 — A)p € K. Any
such element 1 is denoted as a centre of K. Additionally,
the property of being a star domain is known as star-
converity.

Conceptually, imagine a star domain as a set where at
least a single point links to every other point in the set
via lines that never leave its boundaries. The definition of
the star domain includes all non-empty convex sets and
a selection of non-convex sets, such as stars or crosses.

Star domains have already a long history of mathe-
matical research, dating back to early Kepler studies of
regular star polygons [23] up to other modern exceptional
cases such as stellations [33] with an impact on art, cul-
ture and graphics [34, 35]. Also, star domains recently

found applications in some areas like discrete compu-
tational geometry, fixed point theory, optimization and
neural networks [36-41].

FIG. 2. Examples of star domains and their natural struc-
tures. a) shows a center of the star connected to the whole
set, while b) shows the set of all possible centers, known as
the kernel of the star. c) Shows some of the largest convex
subsets on the star under inclusion, and d) shows support
cones tightly separating the star from outer space.

An important aspect of a star domain I is its kernel,
denoted as Ker (), which comprises the union of all the
centres o of K in a unique, convex set [36]. In addition to
the kernel, star-convex sets have multiple internal struc-
tures, among which the convex components stand out.
Precisely, a convex component K, of a star domain K is
a maximal, with respect to inclusion, convex subset of k.

Evidently, the convex components form a tight covering
for K:

K=J K, (1)

yey

Moreover, the full collection of convex components
{ICy}yey of K could be infinite and uncountable, but

always their intersection is the kernel of K [36]:

Ker (K) = [ Ky. (2)

yey

Another key aspect of our construction is the use of
cones in a vector space V [42, 43]. A subset C C V is
a cone if there is an element vy € V such that for each
v €V, A €]0, 0o we have:

veC=vy+A(v—1w9) €C, (3)

which often is writen as A (C — vg) C (C — wvp). If C is also
a convex set, we call it a convex cone. A set T C C is



called a frame of C, if T, but no proper subset of T, spans
C positively. Particularly relevant to us is the specific case
of convex polyhedral cones:

Definition 2. Let V be a vector space; then a set C
is a convexr polyhedral cone if it is generated by the
following convex combination of finitely many vectors
{vg, 1, .ery U} In V|

:{Uo—i—Za, V;

where we denote vy as an aper of C. Additionally if
{vg, v1, ..., Uy } is the minimal number of vectors to write
every v € C as in (4) we denote them as principal vectors,
and n is the degree of the cone. In fact, the difference
between principal vectors and the apex form the finite
frame of the convex polyhedral cone C, See Fig 3.

| oy € R>0,U1 S V} (4)

Notably, when C has a unique apex vg, the differences
between the principal vectors and vy are conically in-
dependent, hence a; € R>q, Y i a;(;—vo) = 0 implies
(5] :OlQ:...:Oén:O [44]

A way to visualize a convex polyhedral cone C is as a
cone made up of flat faces, like a pyramid. Additionally,
the flat faces that make up the cone must be polyhedra,
meaning they have a finite number of flat faces and ver-
tices. A fundamental property of every C is their equiva-
lence to an intersection of a finite collection of halfspaces
in V with a common vector vy [45].

FIG. 3. Two exemplary convex cones, with the one on the left
possessing an infinite frame, and the second requiring only
a finite frame of degree 7. In each case we highlighted the
vectors in the frame, with the full frame for the first cone
sketched, as it is infinite.

Likewise, other key types of cones worth to mention
are dual and support cones. For a given convex cone C
with frame T, the dual cone Dual (C) has the same apex
vectors as C, but with frame —7. A convex cone C, with
apex z and non-empty interior is a support cone of A at x
itz eV,Ext(C;) O A and C, is a maximal (with respect
to inclusion) convex cone with these properties. Support

cones play the same role for star domains as support half-
spaces for convex sets, hence in [46] is shown that for a
closed and bounded star domain KL C V = R¢, there exist
a support cone C, at every x € 9K, See Fig. 4.

FIG. 4. An example of a support cone C, for the star set
K with the apex x € 9K (red gradient with solid bound-
ary), with the entire star set in the exterior of the cone,
K € Ext(Cy).

Additionally, to eliminate redundancy in our construc-
tions, the following mathematical tool will be helpful: Let
2 - B be a map from a collection of sets A = { A, }, ¢
into another B = {B,} .y such that the sets in B are
those sets in 2 with the maximal intersections with /C un-
der inclusion. The above, means that if A, , A;, € 2,
but A, NK D Ay, NK, then A, ¢ B, and the sets in
B are only those A, € 2 such that A,, "X 2 A, NK
for any other A,, € . In this case we will say that
B is a redundancy deletion from 2 through K, or just a
redundancy deletion when IC is known from the context.

Having covered the previous concepts, we are ready to
define the final crucial geometrical concept:

Definition 3. We will say that a fortress i for set K
is a collection of convex cones {C,}, .y such that:

i) {K,Cs},cx is a covering for V,
Ext(C
Dual(C

ii ) 2 K for every C, in T,

iii

i)
i)
i) ») 2 Ker(K) for every C,, in T,
)

iv) OK = Ue, ex,. (Cx NK) with C, NI # 0 for all C, .

A fortress, T could be infinite and uncountable, thus
when all cones C,, are convex polyhedral, that is, of finite
frame, we will denote it as a polyhedral fortress. Even-
more, note that in the case of V' = R? the support cones
of K always form a fortress Tx. Precisely, condition ii)
follows from the definition of support cone, while iv) is a
simple consequence that a support cone with apex at x
exist for every x € 9K . Validating i) requires consider-
ing any point z ¢ K, and selecting w € Ker(K) to obtain



zZw = Az + (1 = Nw, A € [0,1] at the boundary 9K, en-
suring C,, 2 z holds for a cone with z,, as its apex. This
property extends to every support cone at z,,, establish-
ing {IC,Cs},cox as a covering of V. Finally, note that
from the above argument w = x+[A\/(1—\)](z — ) is a
vector in Dual(C,,) for some z,, € C,, but since w and z
are arbitrary, follows Dual(C,) D Ker(K) certifying iii).

Intuitively, a fortress is a collection of cones whose
outer surfaces are glued together to sections of the set,
defining the maximal visibility region from a point to the
outer space, analogously to the shooting visibility area
for artillery at a defense wall of an 18th-century fortress.
Indeed, Tx must allow each part of the set’s outer space
to be distinguished, including every point outside it in at
least one of the collection’s cones. In the 18th-century
defensive structures, the above condition recalls the need
for exterior points to serve as clear targets for the de-
fender’s cannons while excluding the fortress’s interior
from the potential targets.
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Key geometrical concepts:

1) Star domain: Abstract geometrical
definition of sets with a star shape.

2) Kernel: Set of all centers of a star domain.

3) Convex components: Largest convex sets
inside a star domain.

4) Convex polyhedral cones: Cones
generated by a finite collection of vectors.

5) Fortress of a set: A collection of convex
cones tightly separating the set from the
outer vector space.

C. Quantum Resource Theories

Quantum resource theories (QRTs) offer a way to ana-
lyze the employment of quantum properties as resources
for practical tasks. It’s common to manipulate funda-
mental quantum objects like states p, measurements M,
and quantum channels © in order to exploit the desired
quantum properties [8]. In our investigation, we describe
objects as quantum channels for convenience, but our re-
sults can be extended to states and measurements, which
will be covered later.

A resource theory starts by defining the free set F, a
specific subset of the objects under study S. The free set
must consist solely of objects lacking the desired property
and serves as a benchmark for measuring the advantage
of objects with the property. Then, we should include
the theory operations O, known as free operations, that
formally preserve the free set F and are naturally suit-
able for their intended use. At last, we quantify the re-
sourcefulness of S by a monotone measure M defined as

a non-negative valued function, M : § — [0, +o00[, satis-
fying M(f) = 0 for all f € F and being non-increasing
under free operations: M(¢(s)) < M(s) for all p € O
and s € S [8].

The mathematical structure of a resource theory is
comprised of the triple {F, O, M}, but for it to be con-
sidered physically meaningful, it needs an operational in-
terpretation. This interpretation links M(s) to the ad-
vantage of s in performing a practical task, as described
in [8]. Typically, the operational interpretation is spe-
cific to each case and based on a prior understanding of
the particular task at hand [8]. However, there are also
examples of universal interpretations, where the mathe-
matical structure guarantees it to hold for a wide range
of resource theories.

An essential class of QRTs with universal interpreta-
tion are those in which F is a convex set and the limit
of any sequence {1, € O},cn is also a free operation,
designated as convex resource theories. This class en-
compasses several well-known QRTs, including entangle-
ment, coherence, asymmetry, and athermality [8]. Con-
vex QRTs, with their inherent mathematical structure,
gain from the rich outcomes of convex analysis. The hy-
perplane separation theorem [47] plays a crucial role in
explicitly providing a universal interpretation for these
theories. The study in [15] revealed a crucial insight: hy-
perplane separations determine discrimination tasks for
each class of quantum mechanics objects. This break-
through led to a universal interpretation of convex QRTs.

Takagi and Regula’s work in [15] revealed the signifi-
cance of separation hyperplanes in determining universal
interpretations for convex QRTs and opened up a new
avenue in convex QRT research. However, this raises the
question: Can other hypersurfaces achieve the same out-
come? The following section answers in the affirmative
and presents a unified class of theories with applications
in quantum discord, total correlations, unistochasticity
and markovianity.

IIT. STAR RESOURCE THEORIES

The captivating allure of star-shaped geometrical ob-
jects transcends the boundaries between art, mathemat-
ics, and the exploration of natural phenomena. Through-
out history, artists have woven these intricate shapes into
a fabric of expression, ancient symbols from natives of
Latin America, adorning Islamic architectural wonders,
and finding their place in the meticulous knotwork of
Celtic art. Beyond their aesthetic appeal, star-shaped
figures have also fascinated mathematicians, particularly
in studying star domains and intricate star polygons. As
we delve into the depths of aesthetic mathematics, where
beauty and precision converge, the historical significance
of these shapes beckons us to unravel their secrets for
practical applications. Indeed, envisioning the free set
as a star domain in the theory of resources opens new
possibilities.
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Quantum resource theory:

It comprises a triple {F, O, M}. Here, F represents
the set of free objects, encompassing entities like
quantum states or operations, within a larger set S,
encompassing the same kind of quantum objects.
The set O comprises free operations, consisting of
functions ¥ : S — S that leave the set of free ob-
jects invariant. A function M : S — [0, +o0], ex-
hibiting monotonicity under free operations and
satisfying M(f) = 0 for all f € F, is crucial.
This function M is designated to quantify the re-
sourcefulness inherent to objects within the set S.

Quantum convex resource theory:

An important class of resource theories, char-
acterized by a free set F which is convex. Re-
markably, there are monotones with univer-
sal operational interpretation for this class.

Embarking on the journey to construct a star resource
theory necessitates solely a closed star domain as the
free set F, coupled with a fortress Tx. Remarkably,
we demonstrate the consistent construction of an ap-
propriate fortress T for any closed star domain F en-
compassing quantum states, channels, or measurements
with suitable representations. Building upon this foun-
dation, we introduce two novel quantifiers G (- | F) and
Gr (- | F), depicting their practical significance in corre-
lated discrimination tasks and the surplus of cooperative
discrimination tasks, respectively.

Later, in our quest for non-trivial free operations O, we
unveil a universally valid class applicable to any closed
star domain F. Furthermore, we delve into expanded
classes imposing additional suitable constraints on the
star structure of F and its relation with the correspond-
ing fortress ¥z, uncovering their meaningful implications
across multiple concrete applications.

Aside from the fascinating geometry of star shapes, we
will see how to exploit their features to construct resource
theories applicable in quantum technologies, deepen our
understanding of physical models and motivate the de-
velopment of new mathematical tools. Then, formally we
denote a star resource theory in the following:

Definition 4. (SRT): We designate a resource theory
{F,0, M} as a star resource theory if:

1) The free set F is a closed star domain.
2) There exist a fortress T for the free set.

3) The limit of any sequence {A, € O}nen is
also a free operation in O.

FIG. 5. The study and artistic exploration of star-shaped
figures highlight the intersection of mathematics and aesthet-
ics, demonstrating how geometric concepts are expressed cre-
atively in various cultural and artistic contexts. For instance,
some ancient symbols from natives of Latin America, such as
Lautaro’s flag, provide several nontrivial shapes, which are
good examples of admissible free sets F of an SRT, being star
domains with a natural finite polyhedral fortress.

Examples of geometrical shapes satisfying the condi-
tions for a free set in a SRT are common in some ancient
cultures as well as artistic designs (See Fig. 5). Exploit-
ing these geometrical wonders becomes a conduit for un-
derstanding and harnessing the inherent properties of na-
ture, revealing a harmonious intersection where artistry,
mathematics, and resource theory coalesce to unlock the
mysteries of the world around us.

A. Free set and fortress

The crucial feature of the free set in our theories stems
from being a star domain closed subset F C S of the ob-
jects under study, where S also possesses a vector space
structure with an inner product (-,-). However, it is
worth noting that linear real representations, like the gen-
eralized Bloch ball [48, 49], exhibit a property where con-
vex combinations of two quantum objects transform into
convex combinations of the same objects. Consequently,
this property ensures that convex sets of quantum ob-
jects retain their convexity within the linear real repre-
sentation. Furthermore, the above phenomenon extends
to star domains, transforming them into star domains as
well, as they retain their characteristic structure by pre-



serving convex combinations involving quantum objects
within the kernel.

The previous property allows us to consistently choose
V = R in the geometric definitions of subsection II B
when restricted to quantum objects. Indeed, any quan-
tum star domain within the original set translates to a
star domain within a linear real representation. Even
more, appropriate linear representations exist in the
larger landscape of causal general probabilistic theories
[50, 51], and quantifiers analogous to the ones we use in
this work [15]. In summary, our methods are extensive
to essentially all meaningful physical theories.

Utilizing the above observation, we could regard a
quantum F as a star domain within R”, and select the
collection J = {C.,} 5> comprised of support cones, as
the fortress in the linear representation. While this fact
already proves the existence of a fortress for quantum
SRTs, employing the entire set of support cones might
prove unpractical due to its demand for a cone at each
boundary point of F. Since, later, we will evaluate the
quantifier separately at each cone in the fortress, select-
ing Jr would often necessitate redundant evaluations.
Nonetheless, we provide a method for substantial en-
hancement in this selection, offering the prospect of a
notable reduction in the required support cones, limiting
the evaluation of quantifiers to a finite number in several
scenarios.

Addressing the previous difficulty, we employ the pro-
cess of redundancy deletion through F on the collection
Jr. This streamlining method eliminates unnecessary
cones while retaining vital information about boundary
OF, resulting in a more practical I =7 {C;},cx- En-
suring that the crucial properties of Jr persist within
{Cs},cx requires confirming that every cone in Jr sat-
isfies the fortress conditions i)-iv). Since C, is a support
cone, conditions ii) and iii) are satisfied. In addition, as
the deletion process > r preserves the maximal intersec-
tions iv) is also fulfilled. The demonstration of i) is more
involved, so to keep clarity in our exposition we leave it
for the Appendix V A 1.

Next, it is relevant for us a structure induced by the
fortress into F. For every F which is a closed star domain
we can decompose it in a unique collection of convex com-
ponents €x = {.7-"?;} moreover if we can construct a

ey’
fortress Tx = {Cz}:E . for every convex cone C; € Tr
we can generate a sub-collection {Fy},cy, of convex
components by redundancy deletion €z ~¢, {F,}yev,-
Nevertheless, there still might be many convex compo-
nents with the same maximal intersection with C,, a
redundancy which it is also desirable to eliminate. To
solve the previous inconvenience, first consider a sub-
collecction of all {F,}yey,, with the same overlap with
Cy, ie. {F.}.ezn C {Fy}yey, such that for all z € Z7,
F.NCy = s with 77 a maximal intersection of convex

components and C,.. Second, we define a free section .7-'7(,x)
of F relative to C, as the intersection of all such convex

components {F.},¢zn:

Fio =) F, (5)

2€Z]

which are all convex subsets of F, and Conv(Ker(F) U

Jy) < .7-'7(,35). Also, from the definition of fortress 0F =
U. »Jn» and since for a star domain F every point is
a convex combination between a point at the boundary

and the kernel, we have:

U]-‘ng) D U Conv(Ker(F) U J,) = F. (6)

z,m z,m

Evenmore, since each .7-'7(,‘70) is a subset of F follows:

F=JF, (7)

z,n

and hence {-/T:’ISI)}WEE,I,QL‘GX is a covering of F. Later, by

taking @gf) = {.7-'7(,z }nes, we obtain a collection contain-
ing all the information about the intersection between F
and C,, using a minimal number of convex subsets. If
at this point every number 3, of maximal sections J7
is finite we are done and we could select Tr = {C, }rex,
denoting it as the canonical fortress.

For any type of quantum object there is linear repre-
sentations where the set of valid objects S is bounded
[48, 49], which implies that also F is bounded. More-
over, it is known that each closed subset of the reals
is the disjoint union of a perfect set and a countable
set [52]. While a perfect set could still be pathologi-
cal, such as a Cantor set and the countable set could
be infinite, in practice quantum objects have always a
finite fidelity ¢ which determines a neighborhood of the
object where each one is indistinguishable from others.
Assuming a finite distinguishability ., we could use a
minimal finite union of disjoint compact intervals in the
reals, d.-indistinguishable from both perfect and count-
able sets composing the set of intersections 7,7, to replace
it. Similarly, a finite Jc-approximation of every frame 7,
corresponding to a C, generates a polyhedral fortress.
Hence, for quantum objects with finite distinguishability

de, we always can find a fortress Tr = {C,},.x leading

to sections €\ = {F\}, s where ¥, is finite and any
further refinement is physically irrelevant.

B. Monotones

For every F which is a closed star domain of quan-
tum objects we can exploit the geometrical considera-
tions of the previous section, to always obtain a fortress
Tr = {Cs},cx, With every cone C, leading to a finite col-

lection of free sections Q:(]f) = {]_—j(w)}j\/l;l Then, provided

a quantifier M(:|X) : & — R, such that M(® | X) =0
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Key construction remarks of Quantum SRTs:

1) A star domain of quantum objects it is also a
star domain in any lineal real representation.

2) For any star domain in a lineal real
representation we can select the set of
support cones as a fortress.

3) The full set of support cones is usually an
unpractical choice of fortress. However, we
show that under redundancy deletion, we
obtain a more economic fortress.

4) We denote as free section the intersection of
all convex components overlapping at the
same maximal intersection surface with a
cone of the fortress.

if ® € X we define for every C, € Tr a domain D) =
C. Uj .7-";1) and a monotone Gaq(- | Cgf)) : DE) 5 Ry

om(e1e) =g M0 F7)]  ®

where G; [z;] == Y/ Hjle x; is the geometric average of
the M variables x;, which in our case are the M, convex
subsets ]-';x) when we evaluate an object © € D). Some

examples of M(- | f;m)) used in QRTS are the generalized
robustness, the minimum trace distance for states, dia-
mond norm for channels and operator norm for measure-
ments [8]. The geometric intuition of (8) becomes evident
in the particular case that M is a distance quantifier £;
in such a case, the condition G, (O | C(}gf)) = const deter-
mines a hyperbolic surface asymptotically approaching
the free sections F®). This observation reveals that Gr
corresponds to the hyperbolic hypersurface —asymptotic
to the free sections of F— that best distinguishes the re-
source from free objects. In this way, our quantifier ex-
tends previous methods based on separation hyperplanes
[13, 15, 53] to hyperbolic separation hypersurfaces.

Because the collection {D®)} ¢ x is a covering of S for
all © € S there exist at least one z* such that © € D),
allowing us to define:

GMm(O|F) = sup
D(@).0cD()

eufore)} ©

By construction when ® € F we obtain G (@ | F) =0
since in that case ® € ]-'J(-x) for some j at the domains
evaluated in (9). Evenmore, it is direct to verify that
a quantifier Gaq is faithful if M is faithful. Addition-
ally, if M(-| X) is a convex function relative to a convex
set X, then every Gaq(- | QZ(}J-”)) is also convex. Hence,
for any convex combination of two resources ©1, ©2 with
the same domain D) of evaluation in (9), the quan-
tifier Go is also convex. Consequently, the virtues of

M(- | X) when X is convex are inherited by Gaq when
F is a non-convex star domain, which does not happen
when applying M directly to F [21].

A general case in which the quantifier M(- | X) is
directly applicable to F, we consider monotones based
on a decomposition into sub-convex sets [22, 54]:

MO F) = jnf M(O]F) (10)

with {F¢} any collection of convex subsets, satisfying
F = F¢. For this case, it is straightforward to show
the following simple upper and lower bounds:

MO | F) <Gm (O F) < M(O | Ker[F]).  (11)

Remarkably, Lipschitz-continuity of several M(- | F) is
enforced by star-convexity of F, for instance in the case
of generalized robustness [21]. The former remark re-
veals that our fundamental assumptions also contribute
to showing the existence of well-behaved lower bounds
and underscores its relevance for the mathematical well-
behavior of quantifiers of the form (10).

Additionally, an upgrade of quantifier (9) helpful to
deal with general resource non-generating operations is
the following;:

G (0] F.0) = sup Gu (A[O] | F)  (12)
O

S
Ae

where O is a subset of valid operations mapping F into
itself, and such that any sequence {Kn € O}pen con-
verges to an operation in @. With these deﬁnitions the
supremum in (12) is reached by a concrete A* € O and
the quantifier G is non increasing under the full set O.

In contrast to previous approaches in the literature
[21, 22], our resource quantifiers Gy and G, when ap-
plied to non-convex sets, present a novel methodology
that departs from the conventional practice of selecting
a single convex section of the entire set. Earlier quanti-
fiers often relied on identifying a minimally distinguish-
able subset from the resource, a process prone to non-
uniqueness, thereby introducing ambiguity in the task
for which the resource is advantageous. In our novel ap-
proach, we adopt a distinctive strategy by simultaneously
considering all pertinent convex sections of the complete
set. This simultaneous consideration significantly mit-
igates ambiguity in resource assessment, offering a dis-
tinct understanding of the advantage provided (Fig. 6).

Moreover, with simple error propagation arguments,
we show in Appendix V B 1 that in a scenario of compu-
tational or measurement errors the relative error of the
quantifier (9) is smaller than the corresponding relative
error of monotone (10):

1L OMO[F) _ 6GMm (O] F)
VE MO |F) = Gu(©|F)’
where ¥ > 1 depends of © and F. Thus, our approach

suppresses the effect of relative errors in contrast to pre-
vious works. Hence, by encompassing multiple convex

(13)



sections simultaneously, our method provides a robust
and involved framework for quantifying resources in non-
convex sets, promising advancements in precision and re-
liability compared to previous methodologies.

a)

FIG. 6. Comparison between different approaches. a) Previ-
ous methods associate the monotone M with the least distin-
guishable convex subset of the free set F from the resource,
introducing ambiguity in the operational resource assessment.
b) Our approach, selects the convex subsections of F inter-
secting the support cone that best separates the resource, to
constructs quantifier Gag. In this way we reduce ambiguity
and make the quantifier more robust against measurement or
computational errors.

While our quantifiers are tailored specifically for star
domains, a seemingly restrictive condition compared to
the broader applicability of previous quantifiers to any
non-convex set, this distinction may not necessarily pose
a significant disadvantage. Notably, all currently known
connected free sets associated with quantum properties
exhibit the characteristic of being star domains. There-
fore, the limitation imposed by our methodology aligns
seamlessly with the prevailing structure of relevant free
sets. Furthermore, our approach remains versatile even
in cases involving disconnected free sets. These discon-
nected sets often manifest as unions of individual sets,
each inherently star domain (see Example 3 in [54]).
We could handle the previous scenarios by applying our
methodology at every star-convex subset in the iterations
within the resource engines’ framework [55], providing a
concrete solution. Importantly, using the resource en-
gines methodology to disconnected sets avoids any reduc-
tion in the free operations used to manipulate the com-
posing connected subsets. The above situation contrasts
with the challenges encountered when dealing directly
with the union of disconnected sets, where the free op-
erations undergo significant reduction (See p. 7 in [56]).
Thus, our approach aligns with the prevalent structure
of known free sets and offers an advantageous alternative
to deal with disconnected free set scenarios through the
resource engines framework.

C. Free operations

Delineating the fundamental classes of free operations
within star resource theories is crucial for defining how
one can manipulate, interconvert, and model resources

in the face of environmental degradation; we categorize
them into distinct classes, each imbued with unique at-
tributes. Foremost is the class of section preserving op-
erations, which ensures the preservation of free sections
within the star domain. Our exploration presents a no-
table non-trivial case within this category, demonstrating
its relevance in real-world scenarios. The second class,
Resource Non-Generating (RNG) operations, introduces
natural sufficient conditions with the potential to provide
profound physical insights. The third class, hyperbolic
contraction operations, emerges as a beacon of practical
significance, albeit demanding additional conditions. Hy-
perbolic contractions consistently manifest across diverse
applications, underscoring their inherent relevance in re-
source theories. Beyond these established classes, our ex-
ploration extends to potential free operations such as hy-
perbolic rotations and squeezing maps, offering promis-
ing avenues for further refining of the framework.

1. Section preserving operations

Given a free star-convex set of free objects F with a
suitable fortress Tr = {C.},cx, the most natural class
of free operations O would be those non-increasing, for
any M(- | f;z)) composing the quantifier (9), under mild
conditions. The simplest way to achieve the above is by
demanding every operation to leave invariant each free
section ]-'j(‘r), hence the name section preserving opera-

tions. Formally this requires every 7]1\ € O to satisfy:

T o T

Vo er = g(e)e R, (14)
Depending on how complex the free sections ]-';I) are,
a complete description of (14) could be a formidable
task. However, F’s star domain structure helps us nar-
row down the possibilities. Note, for instance, that from
(14), O must leave invariant Ker (F) since it is a subset of
each free section. Hence, the set of kernel isomorphisms
is a super-set of section preserving operations. The above
fact is generally beneficial when the kernel has a simple
structure, which is the usual case in most applications.

Nevertheless, we will see that we can always define
section preserving free operations which are nontrivial
and meaningful for the universal interpretations intro-
duced later in this article. From the definition of a
free section .F](I) it directly follows that any operation
AN(®) = AD + (1 — A)A with A € [0,1], A € Ker (F) for
¢ e f;z) satisfies (14). Moreover, in Appendix A, we
show that each operation A, is non-increasing for (9)
if the M(- | F j(z)) are convex functions like in the case
of the generalized robustness or satisfies the triangle in-
equality as in the case of the trace distance, or diamond
norm.

Noteworthy, the previous result is not trivial as it ex-
ploits the star-convexity of F in several ways. Formerly,



the very existence of Ker (F) and the convexity of every
free section are a natural consequence of the star domain
structure. Precisely faithful monotones M(- | X), such
as the generalized robustness, are convex functions only
if the reference set X is convex, as noted in [21]. The
above remark points out an advantage of our framework
for identifying free operations, in contrast with previ-
ous approaches considering arbitrary reference sets X’ for
simple faithful quantifiers M(- | X'). Later, in Appendix
V B2, the star properties, as well the fortress definition,
play an explicit role in deriving that if A [0] € C, then
also © € C,, a crucial\step in demonstrating the mono-
tonicity of (9) under Aj.

Furthermore, in our applications we will show this op-
erations inherit a physical meaning from the special role
of A € Ker (F) for the concrete examples of non-convex
SRT’s investigated.

2. Resource non-generating operations

As in the traditional definitions, in our framework, we
identify resource non-increasing operations (RNG) map-
ping the free set into itself, comprising the broadest set
of potentially free operations. In addition, the structure
determined by F and Tr = {C.},cy within our frame-
work enables us to articulate two distinct sufficient con-
ditions with potential physical implications. Let’s denote
by LE(}"J(T)) to the sets of objects QZ((I)), when ® € ]—'j(x),
then the first suficient condition requires that for every j
n X,:

o (F) <A (15)

for some k in ¥,. A direct consequence of (15) is that
for every two free objects @1, P, € }“J@, each of their
convex combinations, get mapped by a linear 1Z into con-
vex combinations of 1Z(<I>1), 12(@2) € }-ng)’ hence preserv-
ing convex comAbinations inside the free sections. In this
way, a linear 1 satisfying (15), not only is RNG, but
in some sense evokes the property of preserving commu-
tations, where free sections play the role of a common
basis. Similarly, if the collection {F,},cy denote the
convex components of F, the second sufficient condition
states that for every y in Y:

v (Fy) € Fy (16)

for some ¢y’ in Y. In this case a linear 12 satisfying (16)
also possess the property of preserving convexity from
one F, into another 7, and later we will see that in con-
crete cases, such as quantum discord, this property trans-
lates exactly into preservation of commutativity. Evi-
dently, operations Ay with A € Ker(F) satisfy condi-
tions (15) and (16), however we can find many others
by simply studying the isometries of F, which are rather
simple to characterize in several applications. Once we
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collect the operations ¢ satisfying conditions (15) or (16),
to determine a subset O of RNGs, we can check if Ga4 is
non-increasing under O or arternatively, we can update
it and obtain a quantifier G as described in Eq. (12).

3. Hyperbolic contraction operations

We introduce a distinctive class of potential free oper-
ations denoted hyperbolic contraction operations. While
demanding additional assumptions, this class proves par-
ticularly relevant in numerous practical scenarios where
these assumptions find fulfillment. TAhis class consist in
operations applied cone-wise, that is ¥* : C, — C,, form-
ing a collection of operation sets {O;}zcx induced by
the fortress Tx. Consequently, for a cone C, with apex
U(()z) and frame 7(®) = {tz(/I)}erz we can describe them
in terms of their action over the frame positive span. For
instance if © € C, with positive span:

O =uv” + Yyt (17)

YEYy

with ay > 0. A hyperbolic contraction 7:[1\‘” is the following
kind of unequal scaling over the frame elements:
P (O) = U(()w)—I—Z ozy/\ytz(f) with Ay, >0, and 1> H Ay-
YEYy Ay >0
(18)
These operations include several interesting cases, such
as squeeze maps when the product of all A\, equals 1,
conic non-increasing order maps when every A, < 1, or
hyperbolic rotations when for every \,, = e? there is a
Ay_ = e~ ?. However, for such operations to be authentic
free operations in our framework, it is necessary to ensure
the monotonically decrease of quantifier (9).

We can guarantee the previous property through mul-
tiple geometric arguments, which vary according to the
geometry of the free set F and the associated fortress
T . Since each argument cannot be applied to the most
general case but covers a broad spectrum of possibilities,
we will include them as observations when discussing our
applications in specific cases. It is enough to establish
two essential conditions thatAwill aim to show such argu-
ments: 1) when applying a ¥* operation, the evaluation
of the domain in (9) is precisely D(*), and II) the exis-
tence of a correspondence between the free sections and
the boundary 9C, within S, which allows showing Athat
each geometrical mean (8) is non-increasing under ®.

D. TUniversal operational interpretation
1. Interpretation for distance based monotone

Interactive proofs are a popular way of solving compu-
tational problems in computer science [57]. They involve
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Key advantages of Quantum SRTs:

1) Free set: The simple condition of being a
star domain applies to all known connected
free sets of the literature, and provides a rich
geometrical structure with potential physical
meaning.

2) Quantifier: Faithful, convex function,
well-behaved continuity, reduces ambiguity
and suppresses the relative errors in contrast
to previous approaches. We later show it has
novel operational interpretations.

3) Free operations: We introduce class of free
operations existing in every star resource
theory. Additionally, we provide two simple,
sufficient conditions to certify resource
non-generating operations. Furthermore, we
describe a third class of operations rich in
instances and relevant for applications.

two types of players: provers and a verifier. The provers
send messages to the verifier to help solve a problem,
and the verifier uses these messages and their operations
to determine the solution accurately. The problem’s dif-
ficulty depends on the operations the verifier can per-
form and the resources used in the messages. If players
use quantum resources like states, channels and measure-
ments, the proof is called a Quantum Interactive Proof
(QIP) [28]. In the following, we will follow the tradition
in quantum information to simplify the nomenclature by
presenting the QIP problems as a game between agents.

The promise game Close-Images, which we denote as
G, is known to be complete for QIP [29] and it played a
major role in proving QIP=PSPACE [28]. In the game
&5 a verifier (Bob) should distinguish between two con-
vex sets of devices, by using the information and devices
provided by a yes-prover (Alice) and a no-prover (Eve),
which attempt to convince him that both sets are always
distinguishable or not, respectively.

We will use a particular instance of the G; game to pro-
vide a universal operational interpretation to all SRT of
channels, when the base monotones M(- | ]-"j(w)) are given
by the diamond norm distance of © to the respective free
section:

z P
LO|F) = wf Sle-el. (19

We develop the operational interpretation for channels
and diamond norm distances, since this later reduce nat-
urally to the special cases of state, trace norm and mea-
surement, operator norm respectively.

The game Gr we consider is the distinction between the
convex sets {©} and ]:1(:6), for a © € D). The setting is
presented in Figure 7 where a referee (Charlie) provides
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a black box to Bob with the promise of originally having
the channel {©}, but potentially affected by noise.
Simultaneously, Charlie inform Alice and Eve of the
precise model of noise, represented by one of the free
operations O, say for instance Ay or any operation sat-
isfying (14). In this setting, Eve sends to Bob a device

with a channel ® € fl(w). Since Eve is a no-prover, her

best strategy is to choose a channel ® as close to EA(G)
as possible.

PA'B

Yes-prover

No-prover

FIG. 7. In the game Gr, Alice and Eve compete to convince
Bob of the answer to a problem posed by Charlie. Bob must
determine if a black box from Charlie is different from a test
box from Eve. The process starts with Eve sending her box
to Bob, then Alice and Bob exchange messages, and finally
Bob decides if the boxes are different.

After this, Alice sends to Bob a subsystem A of a state
paar, Bob labels 0 the black box provided by Charlie and
1 the test box provided by Eve, selecting one of them with
uniform probability and applying it to the system send
by Alice. After this, Bob sends the output system B
back to Alice, where Alice applies a measurement Mpg 4
and sends a binary output back to him. Bob, accepts
if Alice’s output matches the label of the box applied
and reject otherwise. Since, Alice is a yes-prover she will
choose the best state psa. and measurements M4/ to
distinguish between A, (©) and the closest ® € ]_-1(;c)' If
the binary variable a takes value 1 when Alice succeed
to convince Bob to accept and 0 if it fails, the optimal
success probability for Alice is [28]:

N )
- (a:1| 3/\(@)) _ 1+L (A,\;@) | Fi ) (20)

with £(- | ]_-1(3:)) given by (19). It is known that the above
protocol is optimal for Bob’s certification [28]. Now, as-

sume that for each set ]-';x) there is a pair of Alice(j) and
Eve(j) performing independently with Bob an instance
of G; with the goal to distinguish between {©} and ]-';x),

for a © € D) exactly as before (See Figure 8). Suppose
for simplicity that there is no noise for channel {©}, when
Charlie send it to Bob, i.e. ﬁ)\ is such that A = 1. In
this case, the success probability of every Alice(j) is:



1+ (0] F)
2

P(a;=1]0) = (21)

Note that knowing the success probability (21), is it pos-
sible to compute the correlation of success or failures in
convincing Bob to accept. In Appendix V B 3, we demon-
strate the following relation among the correlation be-
tween the success e; = a; @ 1 of every Eve(j) and the

monotone G (- | Qigf)) as defined in (8):

Theorem 1. For a given domain D*) of a star resource
theory with free sections Q(I) = {]—'(x }Ae

i=1, @ channel
© € D®) and game G we have:

M, ] M,
Pe=ole| =5 |1+ [oc@ )] ] @2
j=1

where @ is the sum mod(2) and G (- | ng)) is the geomet-

ric average of the diamond morm distances L (@ | f;z))

of © to the free sections in Qfgf).

Then, playing the same kind of game for every domain
D) including © and ﬁnding the domain with the max-
imum correlation @ 1€; = 0 we have the statement
involving the cond1t1onal probability P(:|-),

MJ:
Mg J— _
Ge (O F) e 2P Jez?ej 010 |-1. (23)

We can effortlessly adapt the operational task de-
scribed in Theorem 1 to the case in which the study set
involves states or measurements. If the theory is about
states, then each box is replaced by a channel that, for ev-
ery input, generates a single output state; then, in the Gt
game, each Alice(j) does not send any bipartite state to
Bob but performs the optimal measurement to discrimi-
nate the resource output state from the output state sent
by Eve(j). Likewise, if the theory is about POVMs, then
each channel is replaced by a measure-and-prepare chan—
nel where the measurement is the POVM, and the output
is a classic pointer state labeling the result of the mea-
surement. Alice(j) selects the best simple system input
state to discriminate the resource POVM from Eve(j)’s
POVM and performs a projective measurement to distin-
guish the output pointer state. In the case of state the-
ories, the diamond norm turns into a trace norm, while
in the case of measurement theories, it turns into the op-
erator norm. Additionally, we treat the particular case
of a theory about probability distributions as a theory of
diagonal states.

Moreover, our Theorem 1 provides an universal oper-
ational interpretation of SRT theories, also enabling the
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recovery of convex RTs as a limit case. If F is a con-
vex set, the cones C(*) transform into half-planes, im-
plying M, = 1, while due to convexity of F we have,
F*) = Ker (F) = F and thus £(© | F*) = £(© | F).
Furthermore, the additional restrictions (14) used in Gy,
where the noises affecting © must keep each F ;w) invari-
ant, reduce to invariance of a single F, exactly as in con-
vex resource theories. These facts show how SRTs allow
for the recovery of resource quantification and manipula-
tion from convex resource theories.

To sum up, we remark how the necessity for domains
D) with multiple free sections reveals the novelty of
SRTs for scenarios with a non-convex set F. In such
cases, the resource influences Eve’s advantage over Alice
in each game and simultaneously determines the corre-
lation between game results, with the global correlation
being the factor quantified by our measure.

-m

—//‘ ’¥o

FIG. 8. In the extended version of the G; game, there is
a pair of players, Alice(j) and Eve(j), for each section F;
of a domain D. They try to convince a verifier player, Bob,
whether a black box is different from a j-th test box sent by
Eve(j).

2. Interpretation for robustness based monotone

For the quantifier Gz (- | Qfgf)) based on, the generalised
robustness quantifier [5],

R(©] &) = min {r >0 Qlim € X} (24)

we demonstrate that it relates to the boost of a coalition
of M, players holding each, a different free set section
f;z) € D*) in a discrimination game. The game’s goal is
to distinguishing between different evolution branches Z;
induced by a so-called quantum comb YT = 3. p;=; [58],
a class of maps taking M quantum operations as input
and outputs a target new operation. Quantum combs are
extensively used to address process transformation chal-
lenges and maximize performance potential. These prob-
lems encompass various transformations of unitary oper-
ations, such as inversion, complex conjugation, control-U



analysis, and machine learning tasks [59-63]. Moreover,
they serve as a tool for examining broader process analy-
ses [64, 65] and resource dependence in algorithm success
probability [66]. To simplify notation, we consider quan-
tum combs with branches =; providing a classical output,
ie E;: CPTPM — q;, for all j a probability ¢; € [0, 1],
> 4= 1. The previous quantum combs have quantum
circuit implementations of the form:

oNioZ®(-)[Co]} (25)

as illustrated in diagrams (26) and (27). In the dia-
grams the gate N, is a channel always preparing the

T()=Tr{NZ®(-)oNpy_1o0..
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bipartite state (o, subsequent gates N; are general bi-
partite channels and finally gate Ny performs a POVM
N with outputs j identifying the branch Z;. The rea-
son to choose the structure (25), is to integrate into the
ensemble of branches {p;,=; }jvzl the preparation (y and
measurement N of the discrimination strategy. We can
assume the condition (25) without loss of generality, be-
cause later in the discrimination task, both (y, and N are
optimized together with the quantum comb.

- |
i/\/go PRNSE .\, [N .\ SRR .\ [— NNE (26)
ol o R
In blue an implementation (25) of quantumn comb T tested by channels {Br, &y} at the red slots.
PV RS Y IS Y% (SRR VYIRS RO YA | (1)
<L ek ok R Hfeld |

Here the slots are all filled with the resource channel {©} to distinguish the evolution branches of Y.

In games Gp [M], each player Alice(j) holding channels
F; > @, is allowed to test the causal network access-
ing only one comb slot of the quantum comb depict as
red slots in diagram (26). Then, without loss of gen-
erality in each game {p;,Z;} € Gp[M] we compare the
best strategy of the coalition {Alice(j )}1\{1 against the
coalition {Bob(j )} _, using O in every comb slot as pro-

trayed in diagram (27) Under this conditions we prove
in Appendix V B4 the following statement:

Theorem 2. For a given domain D of an SRT with free
sections €r = {}'} _1, a channel © € D and discrimi-
nation games {pl,ul} € Gp [M] we have:

P({pi,=i},{0})
{p“._“L}GGD[I\f] max P (pi, Ei}, {Px})
{®reFR}IpL

kSfg=1

H [14+R (O | Fi)]

(28)
with Py the optimal discrimination probability, {®y}
stands for {®1,...,Pp} and {©} for {©,...,0}, M
times. Besides, each R(© | Fy) is the generalised ro-
bustness of © with respect to the free section Fy.

Next, we will adopt the approach of cooperative games
[67, 68] to evaluate the increase in a coalition’s advantage

(

brought by resource © when playing games Gp [M] as a
dividend. Cooperative games, a branch of game theory,
have relevance in areas such as economics [69], machine
learning [70, 71] and the voting power of coalitions [72].
A pair (S, u) formally defines a cooperative game, where
S is the complete set of players, and u : 2I51 — R is
a function that maps each possible coalition T" C S of
players within set S to their respective profit or utility
and satisfies u () = 0.

In our scenario, set S contains players {Bob; }] .

u (O | T) evaluates the relative advantage each coalition
T of Bobs gains over a coalition of Alice’s with the same
labels j as Bob’s in T' when playing games Gp [|T']], i.e

and

Py ({pi,Ef} {0h—F dpi, Ei} {21}
P ({pi, i} {2} )
(29)

where we set u(© | #) = 0 by default and {®}} repre-
sents the best strategy of Alice’s coalition for the discrim-
ination of {p;,E;}. Afterwards, we use the well-known
Harsanyi method [73] to calculate the surplus or divi-
dend for each coalition T in S. This method identifies
a coalition’s surplus as the difference between its util-
ity and the surplus of its smaller sub-coalitions. To this

u(0|T) =

{pi,E:}Y€G|T]



end, the Harsanyi dividend dy, (O | T) of coalition T with
utility u (© | T) is recursively determined by:

w17 - Srerda(®T) 1T > 1
“(®'T>‘{u<@T> o AT =1
(30)

By using Harsanyi dividends, we can effectively study
games and associated solution concepts. One such con-
cept is the Shapley value, calculated by dividing the coali-
tion surplus evenly among its members [67, 72]. Notably,
employing Theorem 2 in Appendix V B 4, we demonstrate
that the dividend determined by utility (29) completely
describes the robustness based quantifier:

Theorem 3. For a given domain D of an SRT with free
sections € = {F; }] 1» @ channel © € D, and a coali-
tion S = {Bob(j )} i and sub-coalitions T C S, playing

games Gp [|T] wzth utility function u given by (29), we
have:

i

Gr(© | €)™ (31)

d,(©18)=][R

k=1

(O] F) =

where Gr(© | €x) is the geometric average of the gener-
alised robustness R (© | F.) of © with respect to the free
section Fy.

Similarly as in the previous task, by playing the same
kind of game for every domain D*) including © and find-
ing the domain with the maximum dividend for the play-
ers, we have:

=(0 | F) = da (0] S)]"M (32)

max |
D):0eD )

where S, is now the corresponding coalition of Bob’s
holding free sections {]-'](L)};V[;l Additionally, as in
the distance-based monotone interpretation, we include
state or measurement theories by replacing the general
channels for channels with a constant output state or
a measure-and-prepare channel, measuring on a POVM
and preparing the classical pointer state as output, re-
spectively.

Theorem 3 introduces another universal interpretation
for SRTs, recovering the results for convex RTs in the
same limit as Theorem 1 , M, = 1 and .7-'1(1) = F for
all z, using the same previous arguments. Nevertheless,
Gr(© | F)’s interpretation implies a different aspect of
the resource, specifically, its superadditivity when used
consecutively in testing the ensemble {p;,Z; };Vzl The-
orem 3’s insight into the advantage provided by © also
opens new avenues for connecting resource theory and
game theory, echoing the path established in [74].

IV. APPLICATIONS

Assessing the quantum resourcefulness through opera-
tional witnesses is a crucial step in quantum information
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processing [8], as it gives us a reliable way to judge the re-
source levels of various objects. This section will employ
our framework in four distinct scenarios. We start char-
acterizing quantum discord and total correlations, then
detecting non-unistochastic maps, and finally identifying
the non-Markovianity in a mixture of three Pauli chan-
nels.

A. Quantum discord as a star resource theory.

Quantum phenomena are unequivocally distinguished
from classical physics by the powerful correlations
they generate, most prominently quantum entanglement.
However, there are other quantum properties with the
capacity to generate non-classical correlations, such as
quantum discord [75], widely exploited in computation
and communication scenarios [76-79]. The quantum dis-
cord corresponds to the difference between fully quan-
tum and measurement-induced mutual information being
ubiquitous among quantum states. Nevertheless, discord
is a property that proves to be elusive, as computing it,
involves minimization over all possible measurements of
one out of two subsystems. Furthermore, it does not
admit a linear witnesses similar to the celebrated Bell in-
equalities, to detect entanglement, an absence that stems
from the non-convex structure of states with zero quan-
tum discord.

In the face of this limitation, our approach proves fruit-
ful, revealing that the set of states with zero discord con-
stitutes a star domain. Precisely, the geometry of the set
enables us to assign a simple polyhedric fortress, facili-
tating the application of our general results to quantum
discord. This results in the derivation of a non-linear
operational quantifier and the identification of nontriv-
ial free operations. Furthermore, we demonstrate how to
analytically calculate our discord quantifier for relevant
cases of the literature.

Consequently, to develop a resource theory of discord,
it is crucial to identify the set of zero-discord states. For-
tunately, in the literature the following form for t