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A class of quantum resource theories, based on non-convex star-shape sets, presented in this work
captures the key quantum properties that cannot be studied by standard convex theories. We provide
operational interpretations for a resource of this class and demonstrate its advantage to improve
performance of correlated quantum discrimination tasks and testing of quantum combs. Proposed
techniques provide useful tools to describe quantum discord, total correlations in composite quantum
systems and to estimate the degree of non-Markovianity of an analyzed quantum dynamics. Other
applications include the problem of unistochasticity of a given bistochastic matrix, with relevance for
quantization of classical dynamics and studies of violation of CP-symmetry in high energy physics.
In all these cases, the non-linear witnesses introduced here outperform the standard linear witnesses.
Importance of our findings for quantum information theory is also emphasized.

I. INTRODUCTION

In the realm of quantum information theory, resource
theories stand as a foundational framework [1–3], eluci-
dating significant results of invaluable quantum resources
such as entanglement [4, 5], coherence [6], and quan-
tum thermodynamics [7], among others [8–14]. Resource
theories provide a structured understanding of the con-
straints and manipulations inherent to quantum devices,
enabling us to harness their properties for various appli-
cations, for instance, quantum computing and quantum
communication [8]. An important classification of quan-
tum resources divides them into the categories of convex
and non-convex, contingent upon the convexity or non-
convexity of the set of resourceless devices, respectively
[8, 15]. While convex resource theories have seen sub-
stantial progress, non-convex theories have received less
attention due to their mathematical challenges [8].

However, convex resource theories cannot capture cru-
cial properties such as memory in stochastic processes
and total correlations in quantum networks, necessitat-
ing the development of appropriate non-convex resource
theories [8, 16]. These properties, present in processes
with an output dependent on a long sequence of past
states, are prevalent in various science fields and applied
mathematics [17, 18]. Additionally, limitations in clas-
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sical communication between nodes in large-scale net-
works [19] make total correlations a crucial resource for
future quantum networks such as the quantum inter-
net [20]. Whereas quantifiers applicable to the potential
non-convex theories have surfaced [21, 22], the develop-
ment of free operations, an indispensable part in classi-
fying them in a distinct non-convex class, has remained
elusive.

This article addresses the challenge of going beyond
the paradigm of convexity, unveiling a novel class of re-
source theories: Star Resource Theories (SRTs). Unlike
previous theories, SRTs pivot on a distinctive geomet-
ric attribute; the mathematical representation of their
resourceless devices form star domains [23]. This char-
acteristic trait delineates SRTs as a unique class, includ-
ing all convex theories and crucial non-convex resource
theories hitherto unexplored in their full depth and po-
tential (see Fig. 1). Within the SRTs class, we present
two quantifiers, both novel in their inception, and show
their operational meaning, opening new avenues for as-
sessing and characterizing resources within the domain of
non-convex theories. Notably, these quantifiers indicate
advantages for correlated discrimination tasks or the sur-
plus of cooperative discrimination tasks, providing novel
directions for applications in quantum information.

Moreover, this article marks a pioneering effort, intro-
ducing a class of non-trivial free operations for the whole
class of SRTs. Additionally, we study the conditions for
resource non-generating operations and their connection
with the internal structure of the corresponding star do-
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FIG. 1. Hierarchy of Quantum Resource Theories. Since
every convex set is also a star set, the well known family of
convex resource theories is a subset of a more general class of
star resource theories.

main. The above universal operations shed light on the
inter-convertibility of resources within SRTs, paving the
way for a deeper understanding of their properties and
potential applications.

Intuitively, our setup provides means to exclude that
a particular point belongs to a specific set, like the re-
sourceless objects. This capacity can be helpful in vari-
ous settings, even outside quantum information. Suppose
that the evolution of a system cannot lead out of a par-
ticular set. Then, the certification that it is outside of it
means that either the model or the experimental test is
wrong.

Furthermore, we illustrate our results in well-known
cases beyond the limitations of convex theories: quan-
tum discord, total correlations, and non-Markovian pro-
cesses. Additionally, we apply our methods to disprove
the unistochasticity of a particular matrix, providing an
operational test to demonstrate that, e.g., a classical walk
could not have originated from a quantum one. We em-
phasize that traditional linear witness approaches have
negligible (or even none) usefulness in our study cases,
underscoring the value of our methods.

Beyond the previous immediate applications, the sig-
nificance of this work extends to the very foundations of
mathematical analysis. The introduction of SRTs hints
at a broader mathematical generalization, a leap from
the confines of convex analysis to the broader landscape
of star-convex analysis by pointing out the key features
of star domains relevant for practical applications. Addi-
tionally, this work aligns with other recent developments
in non-linear witnesses [24–26], supporting a transforma-
tion in our understanding of constrained sets and offering
a mathematical framework that transcends traditional
boundaries.

In essence, this article not only presents a novel
paradigm in resource theory but also serves as a cor-
nerstone for future explorations. It paves the way for a
foundational shift, offering a novel lens to study and ma-
nipulate resources, with potential implications ranging
from quantum properties to particle physics and usher-
ing in a new era of non-convex analysis.

The structure of this work is as follows: In Section II,
we introduce the necessary concepts of quantum mechan-
ics related to our study and review the fundamental con-
cepts of quantum resource theories. Section III presents
the star resource theories, along with their operational
interpretations. Section IV illustrates the practical ap-
plication of our main result through specific examples
of quantum discord, total correlations, unistochasticity,
and non-Markovian processes. Finally, in Section V, we
discuss our results’ implications and potential future ap-
plications.

II. SETTING THE SCENE

A. Quantum formalism

A compact review of key concepts within quantum for-
malism becomes indispensable as we explore resource the-
ories of quantum devices. Let us begin with the essen-
tials: The space of pure states of an d-level system is de-
scribed in quantum mechanics by a d-dimensional Hilbert
space H and the states |ψ⟩ ∈ H are given by vectors of a
unit norm, |⟨ψ|ψ⟩| = 1, equivalent up to a global phase
change |ψ⟩ ∼ eiϕ |ψ⟩.

Observables within the quantum theory are described
by the bounded operators B(H) on the Hilbert space.
A special subset S(H) ⊂ B(H) of positive semidefinite
operators S(H) ∋ ρ ≥ 0 with unit trace, Tr(ρ) = 1, de-
scribe what is called density operators, which give the
full state-space of quantum mechanics. More specifi-
cally, the rank-1 projectors are in one-to-one correspon-
dence with the pure states, |ψ⟩ → ρψ = |ψ⟩⟨ψ|, and
their convex combinations provide the mixed states. The
set S of quantum states can be endowed with a metric
relevant to the single-shot discrimination of the states,
namely the trace distance induced by the trace norm,
∥ρ∥1 := Tr |ρ|. With this, the optimal minimum-error
probability of distinguishing between two states ρ1 and
ρ2 by a single measurement is stated by Helstrom theo-
rem to be p = 1

2 (1 + ∥ρ1 − ρ2∥1).
Evolution of closed systems in quantum mechanics

is described by unitary operations, which act on pure
states as |ψ⟩ → |ψ′⟩ = U |ψ⟩ and by extension, den-
sity operators evolve as ρ → ρ′ = UρU†. Evolution of
open quantum systems can be more diverse and is de-
scribed by completely positive trace preserving (CPTP)
maps Θ : S(H) → S(H) which take density matri-
ces to density matrices. It has been shown that any
CPTP map can be written in terms of Kraus operators,
Θ(ρ) =

∑
iKiρK

†
i , which satisfy the identity resolution

condition,
∑
K†
iKi = 1. Unitary evolution therefore

can be seen as a special case of a CPTP map defined
by a single Kraus operator. A norm for the channels
similar to the trace norm for the states is called the
diamond norm. It is defined by the trace norm of the
state resulting from acting with a channel Θ, optimized
over all possible states X ∈ B(H) on an extended space,
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∥Θ∥♢ := max
X:∥X∥1≤1

(1d ⊗Θ)(X). It has been shown that

the diamond norm can be approximated efficiently using
convex programming procedures [27]. Similarly to the
Helstrom theorem for the states, the optimal probabil-
ity of distinguishing between two channels Θ1 and Θ2

is expressed as p = 1
2

(
1 + ∥Θ1 −Θ2∥♢

)
. Furthermore,

it has been used to prove several results concerning the
complexity classes of several categories of quantum com-
putation [28, 29].

Quantum channels on a d-dimensional space and states
of dimension d2 are closely related by Choi-Jamiołkowski
isomorphism. Consider a maximally entangled Bell state
of dimension d2, |Ψ+⟩ = 1√

d

∑d
i=1 |i, i⟩ and an arbitrary

channel Θ, which takes d-dimensional quantum states to
d-dimensional states. The Jamiołkowski state is defined
by acting with a channel Φ on the second party of the
Bell state |Ψ+⟩ and leaving the first party unperturbed
JΘ := (1⊗Θ)(|Ψ+⟩⟨Ψ+|) [30, 31].

B. Geometric fundamentals

A foundational take of essential geometric concepts be-
comes paramount in developing our framework. In this
section, we explore fundamental analytical and geometric
definitions necessary for constructing and comprehending
our theory of star quantum resource theories (See Fig 2).

In the following, given a set A, we use the standard
notation A and Int(A) for the complement and interior of
A, respectively. Additionally, we write ∂A to designate
the boundary of A, Conv(A) to the convex hull of A
and Ext(A) ≡ Int(A), which we name the exterior of
A, equivalent to the closure of the interior of A. When
A ⊂ V of some vector space V , we write (A± x) for a
particular x ∈ V to denote the set of all elements a± x,
with a ∈ A.

Central in our work is the definition of star domains in
a vector space V , also known as star-shaped sets [23, 32]:

Definition 1. Let V be a vector space, then a subset
K ⊂ V is star-shaped and is called a star domain if there
exists an element µ0 ∈ K such that for all µ ∈ K, λ ∈
[0, 1] the convex combination λµ0 + (1 − λ)µ ∈ K. Any
such element µ0 is denoted as a centre of K. Additionally,
the property of being a star domain is known as star-
convexity.

Conceptually, imagine a star domain as a set where at
least a single point links to every other point in the set
via lines that never leave its boundaries. The definition of
the star domain includes all non-empty convex sets and
a selection of non-convex sets, such as stars or crosses.

Star domains have already a long history of mathe-
matical research, dating back to early Kepler studies of
regular star polygons [23] up to other modern exceptional
cases such as stellations [33] with an impact on art, cul-
ture and graphics [34, 35]. Also, star domains recently

found applications in some areas like discrete compu-
tational geometry, fixed point theory, optimization and
neural networks [36–41].

FIG. 2. Examples of star domains and their natural struc-
tures. a) shows a center of the star connected to the whole
set, while b) shows the set of all possible centers, known as
the kernel of the star. c) Shows some of the largest convex
subsets on the star under inclusion, and d) shows support
cones tightly separating the star from outer space.

An important aspect of a star domain K is its kernel,
denoted as Ker (K), which comprises the union of all the
centres µ0 of K in a unique, convex set [36]. In addition to
the kernel, star-convex sets have multiple internal struc-
tures, among which the convex components stand out.
Precisely, a convex component Ky of a star domain K is
a maximal, with respect to inclusion, convex subset of K.
Evidently, the convex components form a tight covering
for K:

K =
⋃
y∈Y

Ky. (1)

Moreover, the full collection of convex components
{Ky}y∈Y of K could be infinite and uncountable, but
always their intersection is the kernel of K [36]:

Ker (K) =
⋂
y∈Y

Ky. (2)

Another key aspect of our construction is the use of
cones in a vector space V [42, 43]. A subset C ⊂ V is
a cone if there is an element v0 ∈ V such that for each
v ∈ V, λ ∈]0,∞[ we have:

v ∈ C ⇒ v0 + λ (v − v0) ∈ C, (3)

which often is writen as λ (C − v0) ⊂ (C − v0). If C is also
a convex set, we call it a convex cone. A set T ⊂ C is
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called a frame of C, if T , but no proper subset of T , spans
C positively. Particularly relevant to us is the specific case
of convex polyhedral cones:

Definition 2. Let V be a vector space; then a set C
is a convex polyhedral cone if it is generated by the
following convex combination of finitely many vectors
{v0, v1, ..., vn} in V ,

C :

{
v0 +

n∑
i=1

αi (vi − v0) | αi ∈ R≥0, vi ∈ V

}
, (4)

where we denote v0 as an apex of C. Additionally if
{v0, v1, ..., vn} is the minimal number of vectors to write
every v ∈ C as in (4) we denote them as principal vectors,
and n is the degree of the cone. In fact, the difference
between principal vectors and the apex form the finite
frame of the convex polyhedral cone C, See Fig 3.

Notably, when C has a unique apex v0, the differences
between the principal vectors and v0 are conically in-
dependent, hence αi ∈ R≥0,

∑n
i=1αi(vi−v0) = 0 implies

α1=α2= ...=αn=0 [44].
A way to visualize a convex polyhedral cone C is as a

cone made up of flat faces, like a pyramid. Additionally,
the flat faces that make up the cone must be polyhedra,
meaning they have a finite number of flat faces and ver-
tices. A fundamental property of every C is their equiva-
lence to an intersection of a finite collection of halfspaces
in V with a common vector v0 [45].

FIG. 3. Two exemplary convex cones, with the one on the left
possessing an infinite frame, and the second requiring only
a finite frame of degree 7. In each case we highlighted the
vectors in the frame, with the full frame for the first cone
sketched, as it is infinite.

Likewise, other key types of cones worth to mention
are dual and support cones. For a given convex cone C
with frame T , the dual cone Dual (C) has the same apex
vectors as C, but with frame −T . A convex cone Cx with
apex x and non-empty interior is a support cone of A at x
if x ∈ V , Ext(Cx) ⊇ A and Cx is a maximal (with respect
to inclusion) convex cone with these properties. Support

cones play the same role for star domains as support half-
spaces for convex sets, hence in [46] is shown that for a
closed and bounded star domain K ⊂ V = Rd, there exist
a support cone Cx at every x ∈ ∂K, See Fig. 4.

FIG. 4. An example of a support cone Cx for the star set
K with the apex x ∈ ∂K (red gradient with solid bound-
ary), with the entire star set in the exterior of the cone,
K ∈ Ext(Cx).

Additionally, to eliminate redundancy in our construc-
tions, the following mathematical tool will be helpful: Let
A ≻K B be a map from a collection of sets A = {Ax}x∈X
into another B = {Bx}x∈X′ such that the sets in B are
those sets in A with the maximal intersections with K un-
der inclusion. The above, means that if Axα

,Axβ
∈ A,

but Axα
∩ K ⊃ Axβ

∩ K, then Axβ
/∈ B, and the sets in

B are only those Axα
∈ A such that Axδ

∩K ̸⊃ Axα
∩K

for any other Axδ
∈ A. In this case we will say that

B is a redundancy deletion from A through K, or just a
redundancy deletion when K is known from the context.

Having covered the previous concepts, we are ready to
define the final crucial geometrical concept:

Definition 3. We will say that a fortress TK for set K
is a collection of convex cones {Cx}x∈X such that:

i) {K, Cx}x∈X is a covering for V ,

ii) Ext(Cx) ⊇ K for every Cx in TK,

iii) Dual(Cx) ⊇ Ker(K) for every Cx in TK,

iv) ∂K =
⋃

Cx∈TK
(Cx ∩ K)with Cx ∩ K ̸= ∅ for all Cx .

A fortress, TK could be infinite and uncountable, thus
when all cones Cx are convex polyhedral, that is, of finite
frame, we will denote it as a polyhedral fortress. Even-
more, note that in the case of V = Rd the support cones
of K always form a fortress TK. Precisely, condition ii)
follows from the definition of support cone, while iv) is a
simple consequence that a support cone with apex at x
exist for every x ∈ ∂K . Validating i) requires consider-
ing any point z /∈ K, and selecting w ∈ Ker(K) to obtain
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zw = λz + (1 − λ)w, λ ∈ [0, 1] at the boundary ∂K, en-
suring Czw ∋ z holds for a cone with zw as its apex. This
property extends to every support cone at zw, establish-
ing {K, Cx}x∈∂K as a covering of V . Finally, note that
from the above argument w = x+[λ/(1−λ)](x−xw) is a
vector in Dual(Cx) for some xw ∈ Cx, but since w and x
are arbitrary, follows Dual(Cx) ⊇ Ker(K) certifying iii).

Intuitively, a fortress is a collection of cones whose
outer surfaces are glued together to sections of the set,
defining the maximal visibility region from a point to the
outer space, analogously to the shooting visibility area
for artillery at a defense wall of an 18th-century fortress.
Indeed, TK must allow each part of the set’s outer space
to be distinguished, including every point outside it in at
least one of the collection’s cones. In the 18th-century
defensive structures, the above condition recalls the need
for exterior points to serve as clear targets for the de-
fender’s cannons while excluding the fortress’s interior
from the potential targets.

Key geometrical concepts:

1) Star domain: Abstract geometrical
definition of sets with a star shape.

2) Kernel: Set of all centers of a star domain.

3) Convex components: Largest convex sets
inside a star domain.

4) Convex polyhedral cones: Cones
generated by a finite collection of vectors.

5) Fortress of a set: A collection of convex
cones tightly separating the set from the
outer vector space.

Summary 1

C. Quantum Resource Theories

Quantum resource theories (QRTs) offer a way to ana-
lyze the employment of quantum properties as resources
for practical tasks. It’s common to manipulate funda-
mental quantum objects like states ρ, measurements M,
and quantum channels Θ in order to exploit the desired
quantum properties [8]. In our investigation, we describe
objects as quantum channels for convenience, but our re-
sults can be extended to states and measurements, which
will be covered later.

A resource theory starts by defining the free set F , a
specific subset of the objects under study S. The free set
must consist solely of objects lacking the desired property
and serves as a benchmark for measuring the advantage
of objects with the property. Then, we should include
the theory operations O, known as free operations, that
formally preserve the free set F and are naturally suit-
able for their intended use. At last, we quantify the re-
sourcefulness of S by a monotone measure M defined as

a non-negative valued function, M : S 7→ [0,+∞[, satis-
fying M(f) = 0 for all f ∈ F and being non-increasing
under free operations: M(ψ(s)) ≤ M(s) for all ψ ∈ O
and s ∈ S [8].

The mathematical structure of a resource theory is
comprised of the triple {F ,O,M}, but for it to be con-
sidered physically meaningful, it needs an operational in-
terpretation. This interpretation links M(s) to the ad-
vantage of s in performing a practical task, as described
in [8]. Typically, the operational interpretation is spe-
cific to each case and based on a prior understanding of
the particular task at hand [8]. However, there are also
examples of universal interpretations, where the mathe-
matical structure guarantees it to hold for a wide range
of resource theories.

An essential class of QRTs with universal interpreta-
tion are those in which F is a convex set and the limit
of any sequence {ψn ∈ O}n∈N is also a free operation,
designated as convex resource theories. This class en-
compasses several well-known QRTs, including entangle-
ment, coherence, asymmetry, and athermality [8]. Con-
vex QRTs, with their inherent mathematical structure,
gain from the rich outcomes of convex analysis. The hy-
perplane separation theorem [47] plays a crucial role in
explicitly providing a universal interpretation for these
theories. The study in [15] revealed a crucial insight: hy-
perplane separations determine discrimination tasks for
each class of quantum mechanics objects. This break-
through led to a universal interpretation of convex QRTs.

Takagi and Regula’s work in [15] revealed the signifi-
cance of separation hyperplanes in determining universal
interpretations for convex QRTs and opened up a new
avenue in convex QRT research. However, this raises the
question: Can other hypersurfaces achieve the same out-
come? The following section answers in the affirmative
and presents a unified class of theories with applications
in quantum discord, total correlations, unistochasticity
and markovianity.

III. STAR RESOURCE THEORIES

The captivating allure of star-shaped geometrical ob-
jects transcends the boundaries between art, mathemat-
ics, and the exploration of natural phenomena. Through-
out history, artists have woven these intricate shapes into
a fabric of expression, ancient symbols from natives of
Latin America, adorning Islamic architectural wonders,
and finding their place in the meticulous knotwork of
Celtic art. Beyond their aesthetic appeal, star-shaped
figures have also fascinated mathematicians, particularly
in studying star domains and intricate star polygons. As
we delve into the depths of aesthetic mathematics, where
beauty and precision converge, the historical significance
of these shapes beckons us to unravel their secrets for
practical applications. Indeed, envisioning the free set
as a star domain in the theory of resources opens new
possibilities.
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Quantum resource theory:
It comprises a triple {F ,O,M}. Here, F represents
the set of free objects, encompassing entities like
quantum states or operations, within a larger set S,
encompassing the same kind of quantum objects.
The set O comprises free operations, consisting of
functions ψ : S 7→ S that leave the set of free ob-
jects invariant. A function M : S 7→ [0,+∞[, ex-
hibiting monotonicity under free operations and
satisfying M(f) = 0 for all f ∈ F , is crucial.
This function M is designated to quantify the re-
sourcefulness inherent to objects within the set S.

Quantum convex resource theory:
An important class of resource theories, char-
acterized by a free set F which is convex. Re-
markably, there are monotones with univer-
sal operational interpretation for this class.

Summary 2

Embarking on the journey to construct a star resource
theory necessitates solely a closed star domain as the
free set F , coupled with a fortress TF . Remarkably,
we demonstrate the consistent construction of an ap-
propriate fortress TF for any closed star domain F en-
compassing quantum states, channels, or measurements
with suitable representations. Building upon this foun-
dation, we introduce two novel quantifiers GL (· | F) and
GR (· | F), depicting their practical significance in corre-
lated discrimination tasks and the surplus of cooperative
discrimination tasks, respectively.

Later, in our quest for non-trivial free operations O, we
unveil a universally valid class applicable to any closed
star domain F . Furthermore, we delve into expanded
classes imposing additional suitable constraints on the
star structure of F and its relation with the correspond-
ing fortress TF , uncovering their meaningful implications
across multiple concrete applications.

Aside from the fascinating geometry of star shapes, we
will see how to exploit their features to construct resource
theories applicable in quantum technologies, deepen our
understanding of physical models and motivate the de-
velopment of new mathematical tools. Then, formally we
denote a star resource theory in the following:

Definition 4. (SRT): We designate a resource theory
{F ,O,M} as a star resource theory if:

1) The free set F is a closed star domain.

2) There exist a fortress TF for the free set.

3) The limit of any sequence {Λ̂n ∈ O}n∈N is
also a free operation in O.

FIG. 5. The study and artistic exploration of star-shaped
figures highlight the intersection of mathematics and aesthet-
ics, demonstrating how geometric concepts are expressed cre-
atively in various cultural and artistic contexts. For instance,
some ancient symbols from natives of Latin America, such as
Lautaro’s flag, provide several nontrivial shapes, which are
good examples of admissible free sets F of an SRT, being star
domains with a natural finite polyhedral fortress.

Examples of geometrical shapes satisfying the condi-
tions for a free set in a SRT are common in some ancient
cultures as well as artistic designs (See Fig. 5). Exploit-
ing these geometrical wonders becomes a conduit for un-
derstanding and harnessing the inherent properties of na-
ture, revealing a harmonious intersection where artistry,
mathematics, and resource theory coalesce to unlock the
mysteries of the world around us.

A. Free set and fortress

The crucial feature of the free set in our theories stems
from being a star domain closed subset F ⊂ S of the ob-
jects under study, where S also possesses a vector space
structure with an inner product ⟨·, ·⟩. However, it is
worth noting that linear real representations, like the gen-
eralized Bloch ball [48, 49], exhibit a property where con-
vex combinations of two quantum objects transform into
convex combinations of the same objects. Consequently,
this property ensures that convex sets of quantum ob-
jects retain their convexity within the linear real repre-
sentation. Furthermore, the above phenomenon extends
to star domains, transforming them into star domains as
well, as they retain their characteristic structure by pre-
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serving convex combinations involving quantum objects
within the kernel.

The previous property allows us to consistently choose
V = RD in the geometric definitions of subsection II B
when restricted to quantum objects. Indeed, any quan-
tum star domain within the original set translates to a
star domain within a linear real representation. Even
more, appropriate linear representations exist in the
larger landscape of causal general probabilistic theories
[50, 51], and quantifiers analogous to the ones we use in
this work [15]. In summary, our methods are extensive
to essentially all meaningful physical theories.

Utilizing the above observation, we could regard a
quantum F as a star domain within RD, and select the
collection IF = {C′

x}x∈∂F comprised of support cones, as
the fortress in the linear representation. While this fact
already proves the existence of a fortress for quantum
SRTs, employing the entire set of support cones might
prove unpractical due to its demand for a cone at each
boundary point of F . Since, later, we will evaluate the
quantifier separately at each cone in the fortress, select-
ing IF would often necessitate redundant evaluations.
Nonetheless, we provide a method for substantial en-
hancement in this selection, offering the prospect of a
notable reduction in the required support cones, limiting
the evaluation of quantifiers to a finite number in several
scenarios.

Addressing the previous difficulty, we employ the pro-
cess of redundancy deletion through F on the collection
IF . This streamlining method eliminates unnecessary
cones while retaining vital information about boundary
∂F , resulting in a more practical IF ≻F {Cx}x∈X . En-
suring that the crucial properties of IF persist within
{Cx}x∈X requires confirming that every cone in IF sat-
isfies the fortress conditions i)-iv). Since Cx is a support
cone, conditions ii) and iii) are satisfied. In addition, as
the deletion process ≻F preserves the maximal intersec-
tions iv) is also fulfilled. The demonstration of i) is more
involved, so to keep clarity in our exposition we leave it
for the Appendix VA 1.

Next, it is relevant for us a structure induced by the
fortress into F . For every F which is a closed star domain
we can decompose it in a unique collection of convex com-
ponents CF =

{
F ′
y

}
y∈Y , moreover if we can construct a

fortress TF = {Cx}x∈X , for every convex cone Cx ∈ TF
we can generate a sub-collection {Fy}y∈Yx

of convex
components by redundancy deletion CF ≻Cx

{Fy}y∈Yx
.

Nevertheless, there still might be many convex compo-
nents with the same maximal intersection with Cx, a
redundancy which it is also desirable to eliminate. To
solve the previous inconvenience, first consider a sub-
collecction of all {Fy}y∈Yx

, with the same overlap with
Cx, i.e. {Fz}z∈Zη

x
⊂ {Fy}y∈Yx

such that for all z ∈ Zηx ,
Fz ∩Cx = J x

η , with J x
η a maximal intersection of convex

components and Cx. Second, we define a free section F (x)
η

of F relative to Cx as the intersection of all such convex

components {Fz}z∈Zη
x
:

F (x)
η =

⋂
z∈Zη

x

Fz, (5)

which are all convex subsets of F , and Conv(Ker(F) ∪
J x
η ) ⊆ F (x)

η . Also, from the definition of fortress ∂F =⋃
x,η J x

η , and since for a star domain F every point is
a convex combination between a point at the boundary
and the kernel, we have:⋃

x,η

F (x)
η ⊇

⋃
x,η

Conv(Ker(F) ∪ J x
η ) = F . (6)

Evenmore, since each F (x)
η is a subset of F follows:

F =
⋃
x,η

F (x)
η , (7)

and hence {F (x)
η }η∈Σx,x∈X is a covering of F . Later, by

taking C
(x)
F = {F (x)

η }η∈Σx we obtain a collection contain-
ing all the information about the intersection between F
and Cx, using a minimal number of convex subsets. If
at this point every number Σx of maximal sections J x

η

is finite we are done and we could select TF = {Cx}x∈X ,
denoting it as the canonical fortress.

For any type of quantum object there is linear repre-
sentations where the set of valid objects S is bounded
[48, 49], which implies that also F is bounded. More-
over, it is known that each closed subset of the reals
is the disjoint union of a perfect set and a countable
set [52]. While a perfect set could still be pathologi-
cal, such as a Cantor set and the countable set could
be infinite, in practice quantum objects have always a
finite fidelity ϵ which determines a neighborhood of the
object where each one is indistinguishable from others.
Assuming a finite distinguishability δϵ, we could use a
minimal finite union of disjoint compact intervals in the
reals, δϵ-indistinguishable from both perfect and count-
able sets composing the set of intersections J x

η , to replace
it. Similarly, a finite δϵ-approximation of every frame Tx
corresponding to a Cx generates a polyhedral fortress.
Hence, for quantum objects with finite distinguishability
δϵ, we always can find a fortress TF = {Cx}x∈X leading
to sections C(x)

F = {F (x)
η }η∈Σx where Σx is finite and any

further refinement is physically irrelevant.

B. Monotones

For every F which is a closed star domain of quan-
tum objects we can exploit the geometrical considera-
tions of the previous section, to always obtain a fortress
TF = {Cx}x∈X , with every cone Cx leading to a finite col-
lection of free sections C(x)

F = {F (x)
j }Mx

j=1. Then, provided
a quantifier M(·|X ) : S → R≥0, such that M(Φ | X ) = 0
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Key construction remarks of Quantum SRTs:

1) A star domain of quantum objects it is also a
star domain in any lineal real representation.

2) For any star domain in a lineal real
representation we can select the set of
support cones as a fortress.

3) The full set of support cones is usually an
unpractical choice of fortress. However, we
show that under redundancy deletion, we
obtain a more economic fortress.

4) We denote as free section the intersection of
all convex components overlapping at the
same maximal intersection surface with a
cone of the fortress.

Summary 3

if Φ ∈ X we define for every Cx ∈ TF a domain D(x) =

Cx ∪j F (x)
j and a monotone GM(· | C(x)

F ) : D(x) → R≥0:

GM

(
Θ | C(x)

F

)
= Gj

[
M
(
Θ | F (x)

j

)]
(8)

where Gj [xj ] := M

√∏M
j=1 xj is the geometric average of

the M variables xj , which in our case are the Mx convex
subsets F (x)

j when we evaluate an object Θ ∈ D(x). Some
examples of M(· | F (x)

j ) used in QRTs are the generalized
robustness, the minimum trace distance for states, dia-
mond norm for channels and operator norm for measure-
ments [8]. The geometric intuition of (8) becomes evident
in the particular case that M is a distance quantifier L;
in such a case, the condition GL(Θ | C(x)

F ) = const deter-
mines a hyperbolic surface asymptotically approaching
the free sections F (x)

j . This observation reveals that GL
corresponds to the hyperbolic hypersurface –asymptotic
to the free sections of F– that best distinguishes the re-
source from free objects. In this way, our quantifier ex-
tends previous methods based on separation hyperplanes
[13, 15, 53] to hyperbolic separation hypersurfaces.

Because the collection {D(x)}x∈X is a covering of S for
all Θ ∈ S there exist at least one x∗ such that Θ ∈ D(x∗),
allowing us to define:

GM (Θ | F) = sup
D(x):Θ∈D(x)

{
GM

(
Θ | C(x)

F

)}
(9)

By construction when Φ ∈ F we obtain GM(Φ | F) = 0

since in that case Φ ∈ F (x)
j for some j at the domains

evaluated in (9). Evenmore, it is direct to verify that
a quantifier GM is faithful if M is faithful. Addition-
ally, if M(· | X ) is a convex function relative to a convex
set X , then every GM(· | C(x)

F ) is also convex. Hence,
for any convex combination of two resources Θ1,Θ2 with
the same domain D(x) of evaluation in (9), the quan-
tifier GM is also convex. Consequently, the virtues of

M(· | X ) when X is convex are inherited by GM when
F is a non-convex star domain, which does not happen
when applying M directly to F [21].

A general case in which the quantifier M(· | X ) is
directly applicable to F , we consider monotones based
on a decomposition into sub-convex sets [22, 54]:

M (Θ | F) = inf
Fζ⊆F

M (Θ | Fζ) (10)

with {Fζ} any collection of convex subsets, satisfying
F =

⋃
ζ Fζ . For this case, it is straightforward to show

the following simple upper and lower bounds:

M(Θ | F) ≤ GM (Θ | F) ≤ M(Θ | Ker [F ]). (11)

Remarkably, Lipschitz-continuity of several M(· | F) is
enforced by star-convexity of F , for instance in the case
of generalized robustness [21]. The former remark re-
veals that our fundamental assumptions also contribute
to showing the existence of well-behaved lower bounds
and underscores its relevance for the mathematical well-
behavior of quantifiers of the form (10).

Additionally, an upgrade of quantifier (9) helpful to
deal with general resource non-generating operations is
the following:

GM
(
Θ | F ,O

)
= sup

Λ̂∈O
GM

(
Λ̂ [Θ] | F

)
(12)

where O is a subset of valid operations mapping F into
itself, and such that any sequence {Λ̂n ∈ O}n∈N con-
verges to an operation in O. With these definitions the
supremum in (12) is reached by a concrete Λ̂∗ ∈ O and
the quantifier GM is non increasing under the full set O.

In contrast to previous approaches in the literature
[21, 22], our resource quantifiers GM and GM, when ap-
plied to non-convex sets, present a novel methodology
that departs from the conventional practice of selecting
a single convex section of the entire set. Earlier quanti-
fiers often relied on identifying a minimally distinguish-
able subset from the resource, a process prone to non-
uniqueness, thereby introducing ambiguity in the task
for which the resource is advantageous. In our novel ap-
proach, we adopt a distinctive strategy by simultaneously
considering all pertinent convex sections of the complete
set. This simultaneous consideration significantly mit-
igates ambiguity in resource assessment, offering a dis-
tinct understanding of the advantage provided (Fig. 6).

Moreover, with simple error propagation arguments,
we show in Appendix V B1 that in a scenario of compu-
tational or measurement errors the relative error of the
quantifier (9) is smaller than the corresponding relative
error of monotone (10):

1√
Σ

δM(Θ | F)

M(Θ | F)
≥ δGM (Θ | F)

GM (Θ | F)
. (13)

where Σ ≥ 1 depends of Θ and F . Thus, our approach
suppresses the effect of relative errors in contrast to pre-
vious works. Hence, by encompassing multiple convex
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sections simultaneously, our method provides a robust
and involved framework for quantifying resources in non-
convex sets, promising advancements in precision and re-
liability compared to previous methodologies.

F F

FIG. 6. Comparison between different approaches. a) Previ-
ous methods associate the monotone M with the least distin-
guishable convex subset of the free set F from the resource,
introducing ambiguity in the operational resource assessment.
b) Our approach, selects the convex subsections of F inter-
secting the support cone that best separates the resource, to
constructs quantifier GM. In this way we reduce ambiguity
and make the quantifier more robust against measurement or
computational errors.

While our quantifiers are tailored specifically for star
domains, a seemingly restrictive condition compared to
the broader applicability of previous quantifiers to any
non-convex set, this distinction may not necessarily pose
a significant disadvantage. Notably, all currently known
connected free sets associated with quantum properties
exhibit the characteristic of being star domains. There-
fore, the limitation imposed by our methodology aligns
seamlessly with the prevailing structure of relevant free
sets. Furthermore, our approach remains versatile even
in cases involving disconnected free sets. These discon-
nected sets often manifest as unions of individual sets,
each inherently star domain (see Example 3 in [54]).
We could handle the previous scenarios by applying our
methodology at every star-convex subset in the iterations
within the resource engines’ framework [55], providing a
concrete solution. Importantly, using the resource en-
gines methodology to disconnected sets avoids any reduc-
tion in the free operations used to manipulate the com-
posing connected subsets. The above situation contrasts
with the challenges encountered when dealing directly
with the union of disconnected sets, where the free op-
erations undergo significant reduction (See p. 7 in [56]).
Thus, our approach aligns with the prevalent structure
of known free sets and offers an advantageous alternative
to deal with disconnected free set scenarios through the
resource engines framework.

C. Free operations

Delineating the fundamental classes of free operations
within star resource theories is crucial for defining how
one can manipulate, interconvert, and model resources

in the face of environmental degradation; we categorize
them into distinct classes, each imbued with unique at-
tributes. Foremost is the class of section preserving op-
erations, which ensures the preservation of free sections
within the star domain. Our exploration presents a no-
table non-trivial case within this category, demonstrating
its relevance in real-world scenarios. The second class,
Resource Non-Generating (RNG) operations, introduces
natural sufficient conditions with the potential to provide
profound physical insights. The third class, hyperbolic
contraction operations, emerges as a beacon of practical
significance, albeit demanding additional conditions. Hy-
perbolic contractions consistently manifest across diverse
applications, underscoring their inherent relevance in re-
source theories. Beyond these established classes, our ex-
ploration extends to potential free operations such as hy-
perbolic rotations and squeezing maps, offering promis-
ing avenues for further refining of the framework.

1. Section preserving operations

Given a free star-convex set of free objects F with a
suitable fortress TF = {Cx}x∈X , the most natural class
of free operations O would be those non-increasing, for
any M(· | F (x)

j ) composing the quantifier (9), under mild
conditions. The simplest way to achieve the above is by
demanding every operation to leave invariant each free
section F (x)

j , hence the name section preserving opera-
tions. Formally this requires every ψ̂ ∈ O to satisfy:

∀Φ ∈F (x)
j ⇒ ψ̂ (Φ) ∈ F (x)

j . (14)

Depending on how complex the free sections F (x)
j are,

a complete description of (14) could be a formidable
task. However, F ’s star domain structure helps us nar-
row down the possibilities. Note, for instance, that from
(14), O must leave invariant Ker (F) since it is a subset of
each free section. Hence, the set of kernel isomorphisms
is a super-set of section preserving operations. The above
fact is generally beneficial when the kernel has a simple
structure, which is the usual case in most applications.

Nevertheless, we will see that we can always define
section preserving free operations which are nontrivial
and meaningful for the universal interpretations intro-
duced later in this article. From the definition of a
free section F (x)

j it directly follows that any operation
∆̂λ(Φ) = λΦ+ (1− λ)∆ with λ ∈ [0, 1], ∆ ∈ Ker (F) for
Φ ∈ F (x)

j satisfies (14). Moreover, in Appendix A, we
show that each operation ∆̂λ is non-increasing for (9)
if the M(· | F (x)

j ) are convex functions like in the case
of the generalized robustness or satisfies the triangle in-
equality as in the case of the trace distance, or diamond
norm.

Noteworthy, the previous result is not trivial as it ex-
ploits the star-convexity of F in several ways. Formerly,
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the very existence of Ker (F) and the convexity of every
free section are a natural consequence of the star domain
structure. Precisely faithful monotones M(· | X ), such
as the generalized robustness, are convex functions only
if the reference set X is convex, as noted in [21]. The
above remark points out an advantage of our framework
for identifying free operations, in contrast with previ-
ous approaches considering arbitrary reference sets X for
simple faithful quantifiers M(· | X ). Later, in Appendix
V B2, the star properties, as well the fortress definition,
play an explicit role in deriving that if ∆̂λ [Θ] ∈ Cx then
also Θ ∈ Cx, a crucial step in demonstrating the mono-
tonicity of (9) under ∆̂λ.

Furthermore, in our applications we will show this op-
erations inherit a physical meaning from the special role
of ∆ ∈ Ker (F) for the concrete examples of non-convex
SRT’s investigated.

2. Resource non-generating operations

As in the traditional definitions, in our framework, we
identify resource non-increasing operations (RNG) map-
ping the free set into itself, comprising the broadest set
of potentially free operations. In addition, the structure
determined by F and TF = {Cx}x∈X within our frame-
work enables us to articulate two distinct sufficient con-
ditions with potential physical implications. Let’s denote
by ψ̂(F (x)

j ) to the sets of objects ψ̂ (Φ), when Φ ∈ F (x)
j ,

then the first suficient condition requires that for every j
in Σx:

ψ̂
(
F (x)
j

)
⊆ F (x)

k (15)

for some k in Σx. A direct consequence of (15) is that
for every two free objects Φ1,Φ2 ∈ F (x)

j , each of their
convex combinations, get mapped by a linear ψ̂ into con-
vex combinations of ψ̂(Φ1), ψ̂(Φ2) ∈ F (x)

k , hence preserv-
ing convex combinations inside the free sections. In this
way, a linear ψ̂ satisfying (15), not only is RNG, but
in some sense evokes the property of preserving commu-
tations, where free sections play the role of a common
basis. Similarly, if the collection {Fy}y∈Y denote the
convex components of F , the second sufficient condition
states that for every y in Y :

ψ̂
(
Fy

)
⊆ Fy′ (16)

for some y′ in Y . In this case a linear ψ̂ satisfying (16)
also possess the property of preserving convexity from
one Fy into another Fy′ , and later we will see that in con-
crete cases, such as quantum discord, this property trans-
lates exactly into preservation of commutativity. Evi-
dently, operations ∆̂λ with ∆ ∈ Ker(F) satisfy condi-
tions (15) and (16), however we can find many others
by simply studying the isometries of F , which are rather
simple to characterize in several applications. Once we

collect the operations ψ̂ satisfying conditions (15) or (16),
to determine a subset O of RNGs, we can check if GM is
non-increasing under O or arternatively, we can update
it and obtain a quantifier GM as described in Eq. (12).

3. Hyperbolic contraction operations

We introduce a distinctive class of potential free oper-
ations denoted hyperbolic contraction operations. While
demanding additional assumptions, this class proves par-
ticularly relevant in numerous practical scenarios where
these assumptions find fulfillment. This class consist in
operations applied cone-wise, that is ψ̂x : Cx → Cx, form-
ing a collection of operation sets {Ox}x∈X induced by
the fortress TF . Consequently, for a cone Cx with apex
v
(x)
0 and frame T (x) = {t(x)y }y∈Yx we can describe them

in terms of their action over the frame positive span. For
instance if Θ ∈ Cx with positive span:

Θ = v
(x)
0 +

∑
y∈Yx

αyt
(x)
y (17)

with αy ≥ 0. A hyperbolic contraction ψ̂x is the following
kind of unequal scaling over the frame elements:

ψ̂x (Θ) = v
(x)
0 +

∑
y∈Yx

αyλyt
(x)
y with λy ≥ 0, and 1≥

∏
λy>0

λy.

(18)
These operations include several interesting cases, such
as squeeze maps when the product of all λy equals 1,
conic non-increasing order maps when every λy ≤ 1, or
hyperbolic rotations when for every λy+ = eφ there is a
λy− = e−φ. However, for such operations to be authentic
free operations in our framework, it is necessary to ensure
the monotonically decrease of quantifier (9).

We can guarantee the previous property through mul-
tiple geometric arguments, which vary according to the
geometry of the free set F and the associated fortress
TF . Since each argument cannot be applied to the most
general case but covers a broad spectrum of possibilities,
we will include them as observations when discussing our
applications in specific cases. It is enough to establish
two essential conditions that will aim to show such argu-
ments: I) when applying a ψ̂x operation, the evaluation
of the domain in (9) is precisely D(x), and II) the exis-
tence of a correspondence between the free sections and
the boundary ∂Cx within S, which allows showing that
each geometrical mean (8) is non-increasing under ψ̂x.

D. Universal operational interpretation

1. Interpretation for distance based monotone

Interactive proofs are a popular way of solving compu-
tational problems in computer science [57]. They involve
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Key advantages of Quantum SRTs:

1) Free set: The simple condition of being a
star domain applies to all known connected
free sets of the literature, and provides a rich
geometrical structure with potential physical
meaning.

2) Quantifier: Faithful, convex function,
well-behaved continuity, reduces ambiguity
and suppresses the relative errors in contrast
to previous approaches. We later show it has
novel operational interpretations.

3) Free operations: We introduce class of free
operations existing in every star resource
theory. Additionally, we provide two simple,
sufficient conditions to certify resource
non-generating operations. Furthermore, we
describe a third class of operations rich in
instances and relevant for applications.

Summary 4

two types of players: provers and a verifier. The provers
send messages to the verifier to help solve a problem,
and the verifier uses these messages and their operations
to determine the solution accurately. The problem’s dif-
ficulty depends on the operations the verifier can per-
form and the resources used in the messages. If players
use quantum resources like states, channels and measure-
ments, the proof is called a Quantum Interactive Proof
(QIP) [28]. In the following, we will follow the tradition
in quantum information to simplify the nomenclature by
presenting the QIP problems as a game between agents.

The promise game Close-Images, which we denote as
GI, is known to be complete for QIP [29] and it played a
major role in proving QIP=PSPACE [28]. In the game
GI a verifier (Bob) should distinguish between two con-
vex sets of devices, by using the information and devices
provided by a yes-prover (Alice) and a no-prover (Eve),
which attempt to convince him that both sets are always
distinguishable or not, respectively.

We will use a particular instance of the GI game to pro-
vide a universal operational interpretation to all SRT of
channels, when the base monotones M(· | F (x)

j ) are given
by the diamond norm distance of Θ to the respective free
section:

L(Θ | F (x)
j ) = inf

Φ∈F(x)
j

1

2
∥Θ− Φ∥♢ . (19)

We develop the operational interpretation for channels
and diamond norm distances, since this later reduce nat-
urally to the special cases of state, trace norm and mea-
surement, operator norm respectively.

The game GI we consider is the distinction between the
convex sets {Θ} and F (x)

1 , for a Θ ∈ D(x). The setting is
presented in Figure 7 where a referee (Charlie) provides

a black box to Bob with the promise of originally having
the channel {Θ}, but potentially affected by noise.

Simultaneously, Charlie inform Alice and Eve of the
precise model of noise, represented by one of the free
operations O, say for instance ∆̂λ or any operation sat-
isfying (14). In this setting, Eve sends to Bob a device
with a channel Φ ∈ F (x)

1 . Since Eve is a no-prover, her
best strategy is to choose a channel Φ as close to ∆̂λ(Θ)
as possible.

FIG. 7. In the game GI, Alice and Eve compete to convince
Bob of the answer to a problem posed by Charlie. Bob must
determine if a black box from Charlie is different from a test
box from Eve. The process starts with Eve sending her box
to Bob, then Alice and Bob exchange messages, and finally
Bob decides if the boxes are different.

After this, Alice sends to Bob a subsystem A of a state
ρAA′ , Bob labels 0 the black box provided by Charlie and
1 the test box provided by Eve, selecting one of them with
uniform probability and applying it to the system send
by Alice. After this, Bob sends the output system B
back to Alice, where Alice applies a measurement MBA′

and sends a binary output back to him. Bob, accepts
if Alice’s output matches the label of the box applied
and reject otherwise. Since, Alice is a yes-prover she will
choose the best state ρAA′ and measurements MBA′ to
distinguish between ∆̂λ(Θ) and the closest Φ ∈ F (x)

1 . If
the binary variable a takes value 1 when Alice succeed
to convince Bob to accept and 0 if it fails, the optimal
success probability for Alice is [28]:

P
(
a=1 | ∆̂λ(Θ)

)
=

1 + L
(
∆̂λ(Θ) | F (x)

1

)
2

(20)

with L(· | F (x)
1 ) given by (19). It is known that the above

protocol is optimal for Bob’s certification [28]. Now, as-
sume that for each set F (x)

j there is a pair of Alice(j) and
Eve(j) performing independently with Bob an instance
of GI with the goal to distinguish between {Θ} and F (x)

j ,
for a Θ ∈ D(x) exactly as before (See Figure 8). Suppose
for simplicity that there is no noise for channel {Θ}, when
Charlie send it to Bob, i.e. ∆̂λ is such that λ = 1. In
this case, the success probability of every Alice(j) is:
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P (aj = 1 | Θ) =
1 + L

(
Θ | F (x)

j

)
2

. (21)

Note that knowing the success probability (21), is it pos-
sible to compute the correlation of success or failures in
convincing Bob to accept. In Appendix V B3, we demon-
strate the following relation among the correlation be-
tween the success ej = aj ⊕ 1 of every Eve(j) and the
monotone GL(· | C(x)

F ) as defined in (8):

Theorem 1. For a given domain D(x) of a star resource
theory with free sections C

(x)
F = {F (x)

j }Mx
j=1, a channel

Θ ∈ D(x) and game GI we have:

P

Mx⊕
j=1

ej = 0 | Θ

 =
1

2

[
1 +

[
GL(Θ | C(x)

F )
]Mx

]
(22)

where ⊕ is the sum mod(2) and GL(· | C(x)
F ) is the geomet-

ric average of the diamond norm distances L
(
Θ | F (x)

j

)
of Θ to the free sections in C

(x)
F .

Then, playing the same kind of game for every domain
D(x) including Θ and finding the domain with the max-
imum correlation

⊕Mx

j=1 ej = 0 we have the statement
involving the conditional probability P (·|·),

GL (Θ | F) = max
D(x):Θ∈D(x)

Mx

√√√√√2P

Mx⊕
j=1

ej = 0 |Θ

−1. (23)

We can effortlessly adapt the operational task de-
scribed in Theorem 1 to the case in which the study set
involves states or measurements. If the theory is about
states, then each box is replaced by a channel that, for ev-
ery input, generates a single output state; then, in the GI
game, each Alice(j) does not send any bipartite state to
Bob but performs the optimal measurement to discrimi-
nate the resource output state from the output state sent
by Eve(j). Likewise, if the theory is about POVMs, then
each channel is replaced by a measure-and-prepare chan-
nel where the measurement is the POVM, and the output
is a classic pointer state labeling the result of the mea-
surement. Alice(j) selects the best simple system input
state to discriminate the resource POVM from Eve(j)’s
POVM and performs a projective measurement to distin-
guish the output pointer state. In the case of state the-
ories, the diamond norm turns into a trace norm, while
in the case of measurement theories, it turns into the op-
erator norm. Additionally, we treat the particular case
of a theory about probability distributions as a theory of
diagonal states.

Moreover, our Theorem 1 provides an universal oper-
ational interpretation of SRT theories, also enabling the

recovery of convex RTs as a limit case. If F is a con-
vex set, the cones C(x) transform into half-planes, im-
plying Mx = 1, while due to convexity of F we have,
F (x)

1 = Ker (F) = F and thus L(Θ | F (x)
1 ) = L (Θ | F).

Furthermore, the additional restrictions (14) used in GI,
where the noises affecting Θ must keep each F (x)

j invari-
ant, reduce to invariance of a single F , exactly as in con-
vex resource theories. These facts show how SRTs allow
for the recovery of resource quantification and manipula-
tion from convex resource theories.

To sum up, we remark how the necessity for domains
D(x) with multiple free sections reveals the novelty of
SRTs for scenarios with a non-convex set F . In such
cases, the resource influences Eve’s advantage over Alice
in each game and simultaneously determines the corre-
lation between game results, with the global correlation
being the factor quantified by our measure.

FIG. 8. In the extended version of the GI game, there is
a pair of players, Alice(j) and Eve(j), for each section Fj

of a domain D. They try to convince a verifier player, Bob,
whether a black box is different from a j-th test box sent by
Eve(j).

2. Interpretation for robustness based monotone

For the quantifier GR(· | C(x)
F ) based on, the generalised

robustness quantifier [5],

R (Θ | X ) = min
Λ∈S

{
r ≥ 0 | Θ+ rΛ

1 + r
∈ X

}
(24)

we demonstrate that it relates to the boost of a coalition
of Mx players holding each, a different free set section
F (x)
j ∈ D(x) in a discrimination game. The game’s goal is

to distinguishing between different evolution branches Ξi
induced by a so-called quantum comb Υ =

∑
i piΞi [58],

a class of maps taking M quantum operations as input
and outputs a target new operation. Quantum combs are
extensively used to address process transformation chal-
lenges and maximize performance potential. These prob-
lems encompass various transformations of unitary oper-
ations, such as inversion, complex conjugation, control-U
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analysis, and machine learning tasks [59–63]. Moreover,
they serve as a tool for examining broader process analy-
ses [64, 65] and resource dependence in algorithm success
probability [66]. To simplify notation, we consider quan-
tum combs with branches Ξj providing a classical output,
i.e. Ξj : CPTPM −→ qj , for all j a probability qj ∈ [0, 1],∑
j qj = 1. The previous quantum combs have quantum

circuit implementations of the form:

Υ(·) = Tr {N I⊗(·) ◦ NM−1 ◦ ... ◦ N1 ◦ I⊗(·) [ζ0]} (25)

as illustrated in diagrams (26) and (27). In the dia-
grams the gate Nζ0 is a channel always preparing the

bipartite state ζ0, subsequent gates Nj are general bi-
partite channels and finally gate NN performs a POVM
N with outputs j identifying the branch Ξj . The rea-
son to choose the structure (25), is to integrate into the
ensemble of branches {pj ,Ξj}Nj=1 the preparation ζ0 and
measurement N of the discrimination strategy. We can
assume the condition (25) without loss of generality, be-
cause later in the discrimination task, both ζ0, and N are
optimized together with the quantum comb.

In blue an implementation (25) of quantum comb Υ tested by channels {Φ1, ...,ΦM} at the red slots.

Nζ0 N1 N2 NM−1 NN

Φ1 Φ2
. . . ΦM

(26)

Here the slots are all filled with the resource channel {Θ} to distinguish the evolution branches of Υ.

Nζ0 N1 N2 NM−1 NN

Θ Θ . . . Θ

(27)

In games GD [M ], each player Alice(j) holding channels
Fj ∋ Φj is allowed to test the causal network access-
ing only one comb slot of the quantum comb depict as
red slots in diagram (26). Then, without loss of gen-
erality in each game {pi,Ξi} ∈ GD [M ] we compare the
best strategy of the coalition {Alice(j)}Mj=1 against the
coalition {Bob(j)}Mj=1 using Θ in every comb slot as pro-
trayed in diagram (27). Under this conditions we prove
in Appendix V B 4 the following statement:

Theorem 2. For a given domain D of an SRT with free
sections CF = {Fj}Mj=1, a channel Θ ∈ D and discrimi-
nation games {pi,Ξi} ∈ GD [M ] we have:

max
{pi,Ξi}∈GD[M ]

Ps({pi,Ξi}, {Θ})
max

{Φk∈Fk}M
k=1

Ps({pi,Ξi}, {Φk})
=

M∏
k=1

[1+R (Θ | Fk)]

(28)
with Ps the optimal discrimination probability, {Φk}
stands for {Φ1, . . . ,ΦM} and {Θ} for {Θ, . . . ,Θ}, M
times. Besides, each R (Θ | Fk) is the generalised ro-
bustness of Θ with respect to the free section Fk.

Next, we will adopt the approach of cooperative games
[67, 68] to evaluate the increase in a coalition’s advantage

brought by resource Θ when playing games GD [M ] as a
dividend. Cooperative games, a branch of game theory,
have relevance in areas such as economics [69], machine
learning [70, 71] and the voting power of coalitions [72].
A pair (S,u) formally defines a cooperative game, where
S is the complete set of players, and u : 2|S| → R is
a function that maps each possible coalition T ⊆ S of
players within set S to their respective profit or utility
and satisfies u (∅) = 0.

In our scenario, set S contains players {Bobj}Mj=1, and
u (Θ | T ) evaluates the relative advantage each coalition
T of Bobs gains over a coalition of Alice’s with the same
labels j as Bob’s in T when playing games GD [|T |], i.e:

u (Θ |T ) = max
{pi,Ξi}∈GD[|T |]

Ps ({pi,Ξi},{Θ})−Ps ({pi,Ξi},{Φ∗
k})

Ps ({pi,Ξi},{Φ∗
k})

(29)
where we set u (Θ | ∅) = 0 by default and {Φ∗

k} repre-
sents the best strategy of Alice’s coalition for the discrim-
ination of {pi,Ξi}. Afterwards, we use the well-known
Harsanyi method [73] to calculate the surplus or divi-
dend for each coalition T in S. This method identifies
a coalition’s surplus as the difference between its util-
ity and the surplus of its smaller sub-coalitions. To this
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end, the Harsanyi dividend du (Θ | T ) of coalition T with
utility u (Θ | T ) is recursively determined by:

du (Θ | T ) =

{
u (Θ | T )−

∑
T ′⊂T du (Θ | T ′) ; |T | > 1

u (Θ | T ) ; |T | = 1

(30)
By using Harsanyi dividends, we can effectively study
games and associated solution concepts. One such con-
cept is the Shapley value, calculated by dividing the coali-
tion surplus evenly among its members [67, 72]. Notably,
employing Theorem 2 in Appendix V B 4, we demonstrate
that the dividend determined by utility (29) completely
describes the robustness based quantifier:

Theorem 3. For a given domain D of an SRT with free
sections CF = {Fj}Mj=1, a channel Θ ∈ D, and a coali-
tion S = {Bob(j)}Mj=1 and sub-coalitions T ⊆ S, playing
games GD [|T |] with utility function u given by (29), we
have:

du (Θ | S) =
M∏
k=1

R (Θ | Fk) = [GR(Θ | CF )]
M (31)

where GR(Θ | CF ) is the geometric average of the gener-
alised robustness R (Θ | Fk) of Θ with respect to the free
section Fk.

Similarly as in the previous task, by playing the same
kind of game for every domain D(x) including Θ and find-
ing the domain with the maximum dividend for the play-
ers, we have:

GR(Θ | F) = max
D(x):Θ∈D(x)

[du (Θ | Sx)]1/Mx (32)

where Sx is now the corresponding coalition of Bob’s
holding free sections {F (x)

j }Mx
j=1. Additionally, as in

the distance-based monotone interpretation, we include
state or measurement theories by replacing the general
channels for channels with a constant output state or
a measure-and-prepare channel, measuring on a POVM
and preparing the classical pointer state as output, re-
spectively.

Theorem 3 introduces another universal interpretation
for SRTs, recovering the results for convex RTs in the
same limit as Theorem 1 , Mx = 1 and F (x)

1 = F for
all x, using the same previous arguments. Nevertheless,
GR(Θ | F)’s interpretation implies a different aspect of
the resource, specifically, its superadditivity when used
consecutively in testing the ensemble {pj ,Ξj}Nj=1. The-
orem 3’s insight into the advantage provided by Θ also
opens new avenues for connecting resource theory and
game theory, echoing the path established in [74].

IV. APPLICATIONS

Assessing the quantum resourcefulness through opera-
tional witnesses is a crucial step in quantum information

processing [8], as it gives us a reliable way to judge the re-
source levels of various objects. This section will employ
our framework in four distinct scenarios. We start char-
acterizing quantum discord and total correlations, then
detecting non-unistochastic maps, and finally identifying
the non-Markovianity in a mixture of three Pauli chan-
nels.

A. Quantum discord as a star resource theory.

Quantum phenomena are unequivocally distinguished
from classical physics by the powerful correlations
they generate, most prominently quantum entanglement.
However, there are other quantum properties with the
capacity to generate non-classical correlations, such as
quantum discord [75], widely exploited in computation
and communication scenarios [76–79]. The quantum dis-
cord corresponds to the difference between fully quan-
tum and measurement-induced mutual information being
ubiquitous among quantum states. Nevertheless, discord
is a property that proves to be elusive, as computing it,
involves minimization over all possible measurements of
one out of two subsystems. Furthermore, it does not
admit a linear witnesses similar to the celebrated Bell in-
equalities, to detect entanglement, an absence that stems
from the non-convex structure of states with zero quan-
tum discord.

In the face of this limitation, our approach proves fruit-
ful, revealing that the set of states with zero discord con-
stitutes a star domain. Precisely, the geometry of the set
enables us to assign a simple polyhedric fortress, facili-
tating the application of our general results to quantum
discord. This results in the derivation of a non-linear
operational quantifier and the identification of nontriv-
ial free operations. Furthermore, we demonstrate how to
analytically calculate our discord quantifier for relevant
cases of the literature.

Consequently, to develop a resource theory of discord,
it is crucial to identify the set of zero-discord states. For-
tunately, in the literature the following form for two-
qubit zero-discord states (on Alice’s subsystem) is well
characterized [78]:

χ =
∑

i∈{1,2}

pi |ϑi⟩⟨ϑi| ⊗ ϱi (33)

where {|ϑ1⟩ , |ϑ2⟩} is a single-qubit orthonormal basis,
ϱ1, ϱ2 are qubit states and p1, p2 are non-negative num-
bers such that p1+ p2 = 1. At this point, we can already
distinguish crucial geometric features in the structure of
the states with zero-discord Ω0. First, the convex com-
bination of any state χ with the maximally mixed state
I⊗I/4 preserves the form (33), and therefore, Ω0 is a star
domain with I ⊗ I/4 in Ker (Ω0). Second, it is immedi-
ately possible to distinguish that the convex components
of Ω0 are precisely the states described in (33) but asso-
ciated with the same basis, {|ϑ1⟩ , |ϑ2⟩} since these are all
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the convex and maximal subsets under inclusion. From
this, it turns out that operations (14) preserve the base
{|ϑ1⟩ , |ϑ2⟩} in (33), like ∆̂λ, which represents a mixture
with I ⊗ I/4, or physically, a white noise. Likewise, the
sufficient condition (16) for RNGs is equivalent to pre-
serving commutativity since if two χ1, χ2 ∈ Ω0 are de-
scribed in (33) by the same basis, the same must be true
after an operation which satisfies (16) and the converse
follows from the fact that commuting states span by the
same basis in (33). Thus, our general framework allows
us to recover the sufficiency part of previous results di-
rectly [78].

However, to continue exploiting our techniques and
general results, we must characterize zero-discord states
in a bounded linear real representation of two-qubit
states. Along the above direction, we choose the so-called
Fano representation [80, 81]:

ρ =
1

4

I ⊗ I +
∑

i∈{1,2,3}

{xiσi ⊗ I + yiI ⊗ σi}+
∑

i,j∈{1,2,3}

Tijσi ⊗ σj


(34)

where {σi}3i=1 represent Pauli matrices, xi and yi de-
note components of the local Bloch vectors of the reduced
states, while the matrix Tij is known as the correlation
matrix. We apply the Fano parametrization to charac-
terize analytically the zero-discord set for a large class
of two-qubit states, some of them beyond the currently
known in the literature.

FIG. 9. The figures show a tetrahedron representing two-
qubit states with maximally mixed marginals (44), in coordi-
nates t = (t1, t2, t3). The upper figure presents in light blue
a surface of states with equal resource as quantified by (45).
The lower figure highlights in light red the octahedron formed
by the subset of separable states, and in solid red the zero dis-
cord set Ω0 comprised by the axes in t-coordinates.

Firstly, to characterize the zero-discord set we show
the following theorem (Appendix V C):

Theorem 4. Consider the set of two-qubit states with
the Bloch matrix parametrization as in (34), but with the
following correlation matrix:

Tij = tiδij (35)

and satisfying the positivity constraints from section
IV.D in [81]. Then, zero discord states are such that only
one of the coordinate pairs {(xi, ti)}3i=1 could be different
from (0, 0) .

The above condition includes the case when the cor-
relation matrix is symmetric, since in this situation the
Pauli matrices could be re-defined using the orthogonal
matrix Oij that diagonalizes Tij , with ti being the corre-
sponding eigenvalues. Similarly, in that case the xi and
yi are the re-defined parameters after a rotation by Oij .

Later, to further characterize the geometry of Ω0 we
include the constraint that y = (y1, y2, y3) must have the
same support as x = (x1, x2, x3), i.e. if a coordinate xi is
zero this implies that a coordinate yi is also zero, but the
converse is not necessarily true. Then also in Appendix
V C we show,

Theorem 5. Consider the set of two-qubit states Ω with
the Bloch matrix parametrization (34), correlation matrix
(35) and y of equal support as x. Then, the set of zero-
discord Ω0 states has only one triple {(xi, yi, ti)} which
could be different from {(0, 0, 0)} and must satisfy:

|xi + ti| ≤ 1 + yi and |xi − ti| ≤ 1− yi (36)

which for a given yi determines the region of possible
{(xi, ti)} of a state in Ω0.

While the constraint on supports, may seem arbitrary,
it actually contributes to include important cases such as
the well known X states ( x1 = x2 = y1 = y3 = 0) [79]
or the symmetric states (y = x) and expand the set of
states studied analytically.

Taking advantage of the previous results we can de-
velop a star resource theory of Alice’s discord (for Bob’s
discord, exchange x and y). Precisely, Theorem 5 shows
that Ω0 is constituted by three rectangular regions in the
planes of coordinates {(xi, ti)}, with axes of symmetry
xi = ti and xi = −ti. This suggests that rotating the
coordinates by π/4 in each plane provides a simpler de-
scription, therefore we define:

ui =
xi + ti√

2
vi =

xi − ti√
2

(37)

Coordinates {(ui, vi)} align with the symmetry axes of
Ω0 providing a suitable reference frame for our geometri-
cal descriptions. Indeed, in the corresponding coordinate
system {ûi, v̂i}3i=1 for Ω ⊂ R6 the set of quadrants Cův̊
form an appropriate fortress TΩ0

:
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Cův̊ :

{
r | r =

3∑
i=1

{
αi (−1)

ůi ûi+βi (−1)
v̊i v̂i

}
, αi, βi ≥ 0

}
(38)

where ů and v̊ are the bit strings (̊u1ů2ů3), and (̊v1v̊2v̊3)
respectively. Despite Cův̊ not being support cones, it is
straightforward to verify they satisfy the i)-iv) fortress
conditions. Moreover, every Cův̊ defines exactly three
free sections:

Ω
(ůiv̊i)
0,i :

{
r | r = αi (−1)

ůi ûi + βi (−1)
v̊i v̂i,

0 ≤ αi ≤
(1 + yi)√

2
, 0 ≤ βi ≤

(1− yi)√
2

}
(39)

with i ∈ {1, 2, 3}. Hence, it is very simple to compute
the distance based quantifier for any two-qubit state ρ
with representation:

rρ =

3∑
j=1

{
|uρ,j | (−1)

ůρ,j ûj+|vρ,j | (−1)
v̊ρ,j v̂j

}
(40)

where |uρ,j | ≤ (1+yρ,j)√
2

, |vρ,j | ≤ (1−yρ,j)√
2

, and (−1)
ůρ,j =

sgn(uρ,j), (−1)
v̊ρ,j = sgn(vρ,j) for every j ∈ {1, 2, 3}.

Evidently, rρ ∈ Cůρv̊ρ and consequently we need to
compute (8) the trace distance L to the free sections
C
(ůρv̊ρ)
Ω0

= {Ω(ůρ,iv̊ρ,i)
0,i }3i=1:

L
(
ρ | Ω(ůρ,iv̊ρ,i)

0,i

)
=

√∑
j ̸=i

{
|uρ,j |2 + |vρ,j |2

}
(41)

and the corresponding geometrical average (8):

GL

(
ρ | C(ůρv̊ρ)

Ω0

)
= 3

√√√√√ 3∏
i=1

√∑
j ̸=i

{
|uρ,j |2 + |vρ,j |2

}
(42)

Note, that for every intersection Ců1v̊1 ∩ Ců2v̊2 =
∂Ců1v̊1∩∂Ců2v̊2 , by construction corresponds to a symme-
try hyperplane of Ω0, thus for any rρ ∈ Ců1v̊1 ∩ Ců2v̊2we
have:

GL

(
ρ | C(ů1v̊1)

Ω0

)
= GL

(
ρ | C(ů2v̊2)

Ω0

)
= GL (ρ | Ω0) (43)

leading to a simple analytical computation of our
quantifier. To illustrate further, consider the impor-
tant case of two-qubit states with local marginals,
TrAρ = TrBρ = I/2 which are, up to local unitaries U1⊗
U2, equivalent to states of the form:

ρ (t) =
1

4

{
I ⊗ I +

∑
i

tiσi ⊗ σi

}
(44)

where t = (t1, t2, t3). The state ρ (t) has a positive ma-
trix if t belongs to the tetrahedron Ω defined by the set of

vertices (−1,−1,−1), (−1, 1, 1), (1,−1, 1) and (1, 1,−1)

as shown in Fig. 9. In this particular case uρ,j = tj/
√
2

and vρ,j = −tj/
√
2. Then, from (42) we obtain:

GL (ρ | Ω0) =
3

√√√√√ 3∏
i=1

√∑
j ̸=i

|tj |2
. (45)

Moving on to the free operations, we notice that section
preserving operations are unital since Ker (Ω0) = {0} in
the basis {ûi, v̂i}3i=1, thus in particular operations ∆̂λ

act over rρ as full contractions ∆̂λ(rρ) = λrρ constitut-
ing white noise. RNGs satisfying (15) include reflections
with respect to the origin, axes and planes spanned by
a pair {ûi, v̂i} or perpendicular to it, which are posi-
tive but not completely positive operators [82]. Also,
RNGs include rotations U ⊗ U swapping simultaneously
every pair {ûi, v̂i} into another {ûj , v̂j}. Because (40)
immediately write rρ ∈ Cův̊ in terms of the frames
T (ův̊) = {(−1)ůj ûj , (−1)v̊j v̂j}3j=1 we denote λ

u,̊uj

j and
λ
v,̊vj
j to the constants of an operation (18) associated

with the elements of their frame (−1)ůj ûj and (−1)v̊j v̂j
respectively.

Therefore, by studying Eq. (42) we identify three
cone non-increasing order operations (18), first λu,̊u3

3 =

λv,̊v33 = λ3 ≤ 1 determining a class of stochastic tran-
sition between populations, second λu,̊u1

1 = λv,̊v11 =

λu,̊u2

2 = λv,̊v22 = λ1,2 ≤ 1 representing a local qubit de-
phasing channel on Alice’s side [83–85], and third a depo-
larising noise λu,̊uj

j = λ
v,̊vj
j = λ ≤ 1 for all j, equivalent

to ∆̂λ. In fact all previous hyperbolic contractions consti-
tute operations satisfying (14), precisely because the free
sections are spanned by a pair of vectors in some frame
T (ův̊), being part of ∂Cův̊ and reaching the boundary of
the two-qubit states Ω.

B. Witness of total correlations

Consider two parties, Alice and Bob, located far apart.
They draw outcomes from their respective alphabets,
which have nA and nB letters, based on the local prob-
ability distributions, pA and pB , respectively. Sharing
a common source of randomness λ with a probability
distribution q(λ) allows two remote parties to establish
classical correlations between their local devices, which
they could exploit to solve distributed computational
problems [86]. In such setting a conditional probabil-
ity pSR(a, b|x, y) of getting outcome a from Alice and b
from Bob given inputs x and y, respectively, is given by

pSR(a, b|x, y) =
∫

dξ q(ξ)pA(a|x; ξ)pB(b|y; ξ). (46)

where q(ξ) is the probability distribution of the shared
random variable, and pA(a|x; ξ), pB(b|y; ξ) are local con-
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ditional probability distributions for Alice and Bob, re-
spectively, conditioned on the separate inputs x, y and
the shared variable ξ. It is well known that the classical
correlations achievable in this way give what is called the
Bell polytope [87], faces of which define the Bell inequal-
ities, allowing to distinguish classical correlations from
the quantum correlations stemming from shared nonlo-
cal quantum states.

When disconnected from their classical or quantum
source of shared randomness, Alice and Bob’s accessible,
but uncorrelated distributions are limited to the prod-
uct of local distributions, pNC(a, b) = pA(a)pB(b), which
represent a limited subset of the more general bipartite
distribution. Investigating classical and quantum sources
of correlation relative to this reference distribution pro-
vides a theory of total correlations [8]. However, such a
theory cannot be convex, hindering its development until
now. A simple example would be two deterministic sce-
narios, with the outcomes being 0 for Alice and Bob in
the first scenario and 1 for both in the second scenario.
A convex combination between the two scenarios clearly
cannot be written as a product of two local distributions.

By applying our framework, we can put forward wit-
nesses of total correlations, which certify that a given
distribution could not have been achieved without the
use of shared random variables.

FIG. 10. Free set for the total correlations, described by
Eq. (47) with nA = nB = 2, depicted in the simplex ∆3 of
4-dimensional probabilites, with the vertices defined by the
deterministic distributions, top two corresponding to 00 and
11 outcomes, and bottom ones to 01 and 10. Note that the
shaded gray set is indeed a star domain with centre the ortho-
center of the simplex. As can be observed in the two selected
cross-sections (blue and red), the set is not convex.

In the context of the total correlation model between
Alice and Bob, we incorporate a third party, Charlie, who
receives the messages sent by Alice and Bob. Assuming
the communication channel is affected by depolarising
noise of unknown level ϵ, the probability distribution for
messages received by Charlie is:

pC(a, b) = (1− ϵ)pA(a)pB(b) + ϵη (47)

where η ≡ 1/nAnB is the flat distribution. Furthermore,
for later convenience we introduce notation for determin-
istic probability distributions pij(a, b) ≡ δabij = δiaδjb.
Already at this stage we can identify two simple families
of free operations, namely shrinking towards the kernel
of the free set, the flat distribution, ϕδ(p(a, b)) = (1 −

δ)p(a, b) + δη, and independent local output relabelings
by arbitrary permutations, iA ↔ σA(iA), jB ↔ σB(jB).

Although F is a star domain with the flat distribu-
tion η as its kernel, its canonical fortress is neither poly-
hedric nor finite, requiring extra effort to apply our SRT
framework being more costly to compute quantifiers and
describe free operations.

However, a strategy to make the problem tractable is
to identify a subset F ′ ⊂ F which is a star domain,
but with a finite polyhedric fortress. The auxiliary free
set F ′ should intuitively depict more restrictive physical
situations than those accounted for by F to serve as a
resourceless reference for F itself. To fulfil these require-
ments, a natural suggestion is to build an F ′ made up
of device pairs for Alice and Bob, in which one device
can access the entire set of local probabilities, and the
other can only generate a deterministic output. A nat-
ural choice is to fix Alice’s (Bob’s) output, making the
distribution fully deterministic, while allowing Bob’s (Al-
ice’s) local distribution to vary arbitrarily. This produces
two families of subsets of the probability simplex ∆nAnB

,

F ′
Ai = {pC(a, b) = (1− ϵ)pB(b)δai + ϵη}

F ′
Bj = {pC(a, b) = (1− ϵ)pA(a)δbj + ϵη}

(48)

Union of the above families gives us the subset F ′ ⊂ F :

F ′ =

(
nA⋃
i=1

F ′
Ai

)
∪

 nB⋃
j=1

F ′
Bj

. (49)

The auxiliary free set F ′ forms, by construction, a poly-
hedral star domain with kernel equal to the uniform prob-
ability η, and free sections equal to the hyperfaces (48).
Furthermore, F ′ provides a natural polyhedral fortress
TF ′ = {Cij}, comprised of cones with adjacent pairs of
hyperfaces

{
F ′
Ai,F ′

Bj

}
:

Cij :
{
pC (a, b) = η + γ

[
δabij − η

]
+

...

nB−1∑
k=0

αik
[
δabik−η

]
+

nA−1∑
l=0

βlj
[
δablj −η

]
|αik, βlj , γ ∈ R≥0

}

FIG. 11. Four faces F ′
Ai (red and blue) and F ′

Bj (green and
yellow) of the auxiliary polyhedral free set F ′, as defined in
(48). Note that F ′ is a lower-dimensional subset of the proper
free set F ⊂ ∆3 of the theory of total correlations.
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To visualize a concrete case, we fix nA = nB = 2, and
represent all joint probabilities p(a, b) in a 3-dimensional
simplex ∆3, where each vertex represents a deterministic
distribution, with the set F ⊂ ∆3 taking approximately
30% of the full simplex, as depicted in Fig. 10. In this case
there are just four faces, as shown in Fig. 11, with each
cone lying between two adjacent faces, eg. red-yellow or
blue-green, but not yellow-green. Consequently, in the
above case the domains D(ij), each corresponding to the
cone Cij , have a simple form:

D(ij) = Conv
[
δabij , δ

ab
i(j⊕1), δ

ab
(i⊕1)j , η

]
(50)

In our exemplary case it is easy to identify the regions
where two cones meet as:

C00 ∩ C11 = ∂C00 ∩ ∂C11 = Conv
[
δab00, δ

ab
11, η

]
C01 ∩ C10 = ∂C01 ∩ ∂C10 = Conv

[
δab01, δ

ab
10, η

]
with similar boundary regions for arbitrary numbers of
outcomes nA and nB . Since, the overlapping regions con-
sist in symmetry planes of F ′, the value of the quantifier
(8) for a probability distribution inside the plane, will
be the same for both overlapping domains. Noteworthy
is that the supporting cones of F intersect in multiple
ways, requiring a more involved analysis to evaluate (9)
compared to F ′-based quantifiers.

Furthermore, every support cone of F with an apex in
one of the domains D(ij) described in (50) intersects the
edges Conv[δabij , δ

ab
i(j⊕1)] and Conv[δabij , δ

ab
(i⊕1)j ], therefore

involving three free sections: one that intersects the apex,
and the other two are

{
F ′
Ai,F ′

Bj

}
. This attribute reveals

that F ′-based quantifiers include two out of the three free
sections involved in F-based quantifiers.

FIG. 12. Four separating hyperbolic surfaces, based on the
witnesses WTC . The surfaces separate the set F of uncor-
related distributions from a significant portion of those with
total correlations.

Besides, using the free sections and domains defined
above we find a set of hyperbolic contracting (18) type
of free operations for the theory based on the auxiliary
free set F ′. Concretely, the frames T (ij) of cones Cij are:

T (ij) ≡ {δabij − η, δabik − η, δablj − η}k ̸=j,l ̸=i (51)

then, we present the set of free operations (18) with con-
stants λ(ij)rq associated with vector δabrq − η ∈ T (ij) in
Appendix V D 1. Nevertheless, here we note that cone
order-preserving operations with λ(ij)rq ≤ 1, and λ(ij)ij = 1
consist in stochastic processes over pC projecting it to
distributions in F ′

Ai,F ′
Bj along a cross section like those

shown in Fig. 10. Indeed, the operations described previ-
ously represent the possibility of degrading Alice or Bob’s
resources for a given output, forming a set of RNG op-
erations with respect to F in our exemplary case (See
Appendix V D 1 for details). This fact reflects that the
choice of F ′ not only has practical benefits but also is
physically meaningful.

Now we have full construction of the theory based on
the auxiliary free set F ′ ⊂ F and we are ready to for-
mulate a hyperbolic witness of total correlation steam
from the monotones defined for F ′. In order to obtain
the tightest witness, we consider the maximal value of
monotone GL achievable by any uncorrelated probability
distribution p(a, b) ∈ F ,

Gcrit = max
p(a,b)∈F

GL (p(a, b) | F ′) . (52)

In Appendix V D we provide explicit calculations of the
critical value, finding Gcrit =

1
16 . Using the above we can

define the hyperbolic witness of total correlations as

WTC [p(a, b)] = GL (p(a, b) | F ′)− 1

16
. (53)

We can tell that if WTC [p(a, b)] > 0, then p(a, b) /∈ F ;
It is not, however, a tight witness, i.e. WTC [p(a, b)] ≤ 0
does not certify absence of total correlations. Thus, it is
the first resource theory up to date that allows to distin-
guish potentially local distributions from ones that must
have used either classical or quantum shared randomness.

C. Witness of non-unistochasticity

Classical stochastic processes require conservation of
probability, which, on the level of transition matrices,
translates into the normalization of columns – the sum
of (non-negative) elements in each of them is equal to one.
When, additionally, the rows of a matrix are normalized
such matrix B is called bistochastic; for all i we have∑
j Bij =

∑
j Bji = 1.

A ubiquitous notion in the quantum domain is a uni-
tary matrix U . Such matrices have orthonormal rows and
columns; thus, the sum of squared absolute values of ele-
ments in rows/columns are equal to one, for all i we have∑
j |Uij |2 =

∑
j |Uji|2 = 1. Therefore, it is straightfor-

ward to construct a bistochastic matrix out of a unitary
one

Bij := |Uij |2. (54)

Alternatively, one may ask if it is possible to create a
unitary matrix through some reverse operation for un-
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specified phases ϕij , defined as Uij := eiϕij
√
Bij . How-

ever, since the unitarity requires not only the normal-
ization but the orthogonality of the rows/columns, then
there are additional constraints on the phases. More
specifically, in every dimension d > 2 there are bis-
tochastic matrices without unitary counterparts. The
problem of determining whether a given bistochastic ma-
trix is unistochastic (has a unitary counterpart) is solved
fully for d = 3 [88, 89], for d = 4 several important sets
were characterized [90, 91] together with a numerical al-
gorithm determining the unistochasticity of a given ma-
trix [92, 93], while for d > 5 only the unistochasticity of
certain small-dimensional subsets was classified [93, 94].

The unistochasticity problem is important from
the perspective of particle physics [95–97], quantum
walks [98], and classical to quantum transition [99, 100],
to mention only a few of the applications. The geometry
of the set of bistochastic matrices is given by a Birkhoff
polytope, whose vertices are permutation matrices. It is
conjectured that the set of unistochastic matrices is star-
shaped – in fact, its superset was shown to be star-shaped
with respect to the central, van der Waerden matrix [91].

(a) (b)

FIG. 13. The set of bistochastic circulant matrices of dimen-
sion 4 forms a regular tetrahedron. (a) Inside the tetrahedron,
one can distinguish a non-convex set F of unistochastic ma-
trices, depicted as a blue set. (b) The auxiliary free set F ′

of our theory is given by a union of two equilateral triangles
contained inside the unistochastic set.

Our rationale can be understood as a complementary
effort to the certification of the unistochasticity of a given
matrix. The validity of this approach lies in the disprov-
ing of unitary-evolution theories. Although we believe
that the microscopic description of the world is given by
quantum mechanics, the actual experiments conducted
in a laboratory result in a set of real numbers, not com-
plex as would be suggested by the unitary evolution. For
example, any unitary transition between a set of quan-
tum states, such as CKM (Cabibbo-Kobayashi-Maskawa)
and PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matri-
ces [101–104], is probed by transition probabilities,
which are squared absolute values of complex entries
of the unitary matrix, forming a bistochastic one via

Eq. (54). However, bistochastic matrices without uni-
tary counterparts cannot be modeled by an underlying
unitary, quantum evolution. Thus, suppose that the bis-
tochastic matrix of neutrinos mixing, obtained in the ex-
periment, is not unistochastic. This would show that
there does not exist a PMNS matrix explaining their evo-
lution, indicating a necessity of a new theory.

We illustrate how to apply our techniques to address
the problem of unistochasticity by focusing on the circu-
lant bistochastic matrices of dimension d = 4 studied in
depth in [91] and shown in Fig. 13. In this case, a nat-
ural free set consists of a set of unistochastic circulating
matrices, which forms a star domain in its real represen-
tation within the tetrahedron of circulant bistochastic
matrices. Using the operational task associated with a
support cone, we can use the canonical fortress related
to such a free set to detect each non-unistochastic circu-
lating matrix. However, due to the presence of locally
non-convex points along the boundary of unistochastic
matrices, employing an auxiliary free set, similar to our
strategy with total correlations, proves computationally
more efficient.

In this example, as an auxiliary free set F ′, we choose
the union of two triangles, F1 and F2, entirely included
in the unistochastic set, described in terms of the identity
Π0

4 and permutations Π4, Π2
4, Π3

4 [91], yielding:

F1 :

{
B = aΠ0

4 + bΠ2
4 + (1− a− b)

Π4 +Π3
4

2

}
,

F2 :

{
B = aΠ4 + bΠ3

4 + (1− a− b)
Π0

4 +Π2
4

2

}
,

(55)

with 0 ≤ a, b ≤ 1. Joining them we compose the auxiliary
free set,

F ′ = F1 ∪ F2. (56)

Evidently F ′ is a star domain with kernel Ker(F ′) :

{B = W4 + α
(Π4+Π3

4

2 − W4

)
}, where α ∈ [−1, 1] and

W4 is the van der Waerden matrix at the center of the
tetrahedron. Also, F1 and F2 constitute the only convex
components of F ′, while the canonical fortress include
the four cones:

Cij :

{
B =W4 + α+

(
Π4 +Π3

4

2
−W4

)
+ βi

(
Πi4 −W4

)
+α−

(
Π0

4 +Π2
4

2
−W4

)
+ βj

(
Πj4 −W4

)}
(57)

where α+, α−, βi, βj ≥ 0, i ∈ {0, 2} and j ∈ {1, 3}. Cru-
cially, all four cones Cij determine as free sections the sets
F1 and F2, making irrelevant to determine in which cone
the target bistochastic matrix B lies. The above fact
paves the way for Bob certifying non-unistochasticity of
B by means of a sequence of operational tests, without
complete knowledge of B.
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FIG. 14. The blue surface divides the circulant bistochastic
matrices of dimension d = 4 into a subset containing only the
non-unistochastic matrices. The figure emphasizes one quad-
rant of the full tetrahedron, while the behaviour in the others
is analogous. The maximal geometric mean of distances to the
yellow planes for unistochastic matrices reads 1

2
√
2
≈ 0.353,

and this value was chosen in order to construct the optimal
dividing hyperbolic surface.

The certification protocol requires two steps. Firstly,
we exploit the convexity bistochastic circulant processes,
to check that B belongs to that set, by means of the dis-
crimination protocols like those in [15]. Later, if B pass
the previous test, we proceed with the operational task of
Theorem 1, to distinguish B from both F1, F2, and com-
pute the quantifier using (23). Finally if the quantifier is
greater than 1

2
√
2

then the matrix is not unistochastic (for
a proof of the critical value see Appendix V F). Therefore,
we have the following witness of non-unistochasticity:

WNU [B] = GL (B | F ′)− 1

2
√
2
. (58)

and if the analyzed matrix B satisfies WNU [B] > 0, then
it does not correspond to any unitary transformation.
The separation surface is depicted in Fig. 14.

Such reasoning can be extended to various setups in
which we consider a transition between quantum and
classical evolution, as well as to classical walks without
quantum counterparts. To sum up, our setup allow us to
disprove operationally the validity of a theory attempting
to explain quantum to classical transition, demonstrating
the need for additional degrees of freedom.

D. Witness of non-Markovianity

When considering evolution with certain degree of ran-
domness, it is common to resort to what is called a

stochastic process. Moreover, oftentimes it is assumed
that the process depends only on the most recent state
of the system as opposed to the entire prior trajec-
tory. These short-memory processes are called Marko-
vian, forming an important non-convex subset of all pos-
sible stochastic processes as they find use in wide variety
of settings, spanning statistical physics [105], chemistry
[106], biology [107], and economics [108], to name a few.

In quantum mechanics one way of defining the distinc-
tion between Markovian and non-Markovian processes is
through the CP divisibility as described in [109]. The
analogy between the classical and quantum Markovian-
ity is understood immediately when we consider that at
every infinitesimal time interval τ the only input to the
channel is the prior state of the system, ρt+τ = Λτ (ρt).

In this application, we show a practical and effective
approach to construct a witness of non-Markovianity for
the set of channels obtained as convex combinations of
three Pauli channels [110]. Within this context, Pauli
channels and their mixtures serve as a concrete demon-
stration of the non-convex structure of the space of
Markovian quantum operations [111, 112]. A Pauli chan-
nel is defined as:

Γpi (ρ) = pρ+ (1− p)σiρσi, (59)

with σi ∈ {σ1, σ2, σ3} being the standard Pauli matrices
and p being the probability of finding the input state
ρ unperturbed. A previous study [110] demonstrated
that a nontrivial convex combination of two distinct Pauli
channels exhibits non-Markovian behavior despite the in-
dividual channels being Markovian. Precisely, for a con-
vex combination of three Pauli channels,

Θ = aΓp1 + bΓp2 + cΓp3, (60)

with non-negative a, b, c such that a+ b+ c = 1, the sub-
set of Markovian channels is non-convex. Indeed, [110]
describes analytically the form of the set of Markovian
Pauli-channels, which forms a star domain with a kernel
composed solely of the maximally depolarizing channel,
p = 0, a = b = c = 1/3. Furthermore, the boundary
of Markovian Pauli-channels contains only locally non-
convex points, leading to a canonical fortress of infinite
support cones. Although, in this case, we could directly
apply our methods, it is more practical to define an aux-
iliary free set to certify resources, as in the previous ap-
plications. Furthermore, in this section, we propose to
delve into the benefits of this technique by reducing the
study space (60) to the cross-section p = 1/2, a vital case
analyzed in [110].

Precisely, we can visualize all sets involved at the cross-
section p = 1/2 within the triangle depicted in Fig.15.
The triangle represents the channels of the cross-section
employing (a, b, c) as barycentric coordinates, where the
blue region F determines all Markovian channels with
p = 1/2. The boundary ∂F of the blue region form
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a triangle with parabolic arc edges, usually denoted as
parabolic horn triangle. In barycentric coordinates we
obtain one of such arc edges by selecting a given b̄ ≤√
5− 2, an a coordinate:

ā± =
1− b̄

2

1±

√
5−

(
b̄+ 2

)2
1− b̄2

 (61)

and then c̄± = 1 − ā± − b̄ = ā∓, leading to points
(ā±, b̄, ā∓). Similarly, we obtain the other two arc edges
by replacing the starting coordinate b either by a, or c
in the above construction. Inside F we distinguish three
segments:

Fj : {Φj | Φj = qΓ
1/2
j + (1− q)Γ

1/2
d }, (62)

with j ∈ {1, 2, 3}, 0 ≤ q ≤ 1, and Γ
1/2
d stands for

the channel with barycentric coordinates (1/3, 1/3, 1/3).
Since segments Fj are tangent to ∂F at the vertices of
the triangle, the kernel of F has a single element Γ

1/2
d ,

at the intersection of segments Fj .
To better understand the relevance of the sets Fj , let

us observe that we could construct each parabolic arc
∆ijF ∈ ∂F that joins Γ1/2

i with Γ
1/2
j using De Casteljau’s

algorithm [113]:

∆ijF :{Θs |Θs=(1−s)2 Γ1/2
i +2s (1− s) Γ

1/2
d +s2Γ

1/2
j }
(63)

with parameter s ∈ [0, 1], forming a Bézier curve with
control points Γ

1/2
i , Γ1/2

d , Γ1/2
j . A direct consequence of

(63) is that every support cone of F intersects the bound-
ary at most at three points: an apex Θs ∈ ∆ijF with the
corresponding vertices Γ1/2

i and Γ
1/2
j . Hence, by comput-

ing our quantifier using an auxiliary free set F ′ containing
the segments Fj , the loss of information will be negligible
while the complexity of the calculations is reduced. The
simplest of such auxiliary free sets corresponds to:

F ′ = F1 ∪ F2 ∪ F3 (64)

It is clear that the set F ′ forms a star domain with
its kernel being the depolarizing channel Γ1/2

d introduced
before. Moreover, the convex components coincide with
segments Fj , and the canonical fortress TF ′ has a simple
finite set of support cones:

Ck : {Γ1/2
d +

∑
i ̸=k

αi(Γ
1/2
i − Γ

1/2
d )| αi ≥ 0}, (65)

It is direct to verify that every cone has two free sec-
tions forming its boundary inside the study region, e.g.
C
(1)
F = {F2,F3}. In consequence the domains D(k) coin-

cide with the support cones Ck, lack overlapping interiors,
and allow simple computation of (8) and (9).

FIG. 15. The theory of non-Markovian channels provides
a rich area of phenomena where we could apply our frame-
work. A concrete example are convex combinations of Pauli
channels Γp

i , with a particular section portrayed in the fig-
ure (p = 1/2). The blue region corresponds to the Markovian
subset of channels F , while the external regions, correspond
to the non-Markovian channels. The figure also highlights
some relevant geometric elements such as the auxiliary free
set F ′ ⊂ F (grey lines), support cone C1 (opaque region) and
the boundary arc ∆12F (dotted curve).

As in the previous applications, our goal is to find
a tight upper bound in the value of our quantifier (8)
that Markovian channels can achieve. Geometrically,
the tightest upper bound happens when the hyperbolic
surfaces of equally resourceful channels are tangent to
parabolic arcs ∆ijF . The parabolic arcs include, at
their extremes, Pauli channels to which the hyperbolas
of equal resources are asymptotic; in consequence both
curves must coincide at a different point between the ver-
tex and the parabola’s focus. Because the above applies
to both ends of the parabola, the tangent hyperbola can
only include the focus. The channel at the focus of the
parabolic arc inside Ck is given by,

Θ∗
k = (

√
5− 2)Γ

1/2
k +

1

2
(3−

√
5)
∑
i ̸=k

Γ
1/2
i (66)

Since our goal is to illustrate the application of our tech-
niques clearly, we will simplify channel discrimination
by setting the input state to a part of the maximally
entangled state. This allows us to exploit the Choi-
Jamiołkowski isomorphism [30, 31] to express all the com-
binations of Pauli channels as states. Thus, for a channel
satisfying (60), with p = 1/2 we have:
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JΘ =


1+c
4 0 0 1−c

4

0 a+b
4

a−b
4 0

0 a−b
4

a+b
4 0

1−c
4 0 0 1+c

4

 , (67)

With the explicit Jamiołkowski states of JΦj
for an

arbitrary Φj ∈ Fj , presented in Appendix (V E1). Now,
since computing the bound induced by a channel Θ∗

k in
D(k) = Ck is symmetrical for every domain, it is enough
to compute it for Θ∗

1 ∈ D(1). In this case the distance
quantifier gave us (see Appendix (V E1)):

L
(
JΘ∗

1
| F1

)
= min

Φ1∈F1

1

2
||JΘ∗

1
− JΦ1 ||1

=
1

8

(
7− 3

√
5
)
≈ 0.0364745 (68)

with the same value for L
(
JΘ∗

1
| F2

)
, since from the def-

inition of focus, the point is equidistant to F1 and F2.
Then, the corresponding geometric average (8):

GL

(
JΘ∗

1
| C(1)

F

)
= Gj

[
L
(
JΘ∗

1
| F (1)

j

)]
=
√

L
(
JΘ∗

1
| F1

)
L
(
JΘ∗

1
| F2

)
= L

(
JΘ∗

1
| F1

)
=

1

8

(
7− 3

√
5
)
. (69)

because the only domain that enters in the maximization
is D(1), (69) also provides the value of GL

(
JΘ∗

1
| F
)
. As

we pointed out before, this is an upper bound to the set
of Markovian channels, since due to the symmetry of the
problem, every Gcrit = GL

(
JΘ∗

k
| F
)

has the same value.
In conclusion for any JΘ satisfying GL (JΘ | F) > Gcrit we
can assure that the convex combination of Pauli channels
Θ is non-Markovian, as portrayed in Fig. 16.

The section preserving operations include any mixing
with Γ

1/2
d , representing a depolarizing noise. Also, every

domain D(k) admits all types of hyperbolic contracting
operations (18) with respect to the auxiliary free set F ′,
but only the conic non-increasing order are RNG with re-
spect to F (See Appendix VE 2 for details). Additionally,
we remark that for every domain the conic non-increasing
operations have different physical meaning, for instance
in D(3) they essentially involve an additional dephasing,
while for D(1), and D(2), the dephasing is restricted to
imaginary or real parts, together with an extra stochas-
tic classical action.

FIG. 16. The red hyperbolas indicate the channels for
which the F ′-based monotone provides the maximal value for
Markovian channels Gcrit = 1

8
(7 − 3

√
5)2. Every channel be-

yond the red curve is detected as non-Markovian. Notably,
the set of non-Markovian channels undetected is confined to
the small region between the grey parabolic arcs and the red
curve.

Applications of Quantum SRTs:

1) Quantum Discord: We provide a novel
operational interpretation, extending the set
of two-qubit states with known analytical
close formulas to quantify discord.

2) Total correlations: We completely
characterize the bipartite case, introduce an
easy to compute witness of total correlations,
and outline further generalizations to
networks.

3) Non-Unistochasticity: We obtain a fully
operational test for quantum to classical
transition theories in particle physics.

4) Non-Markovianity: We illustrate how to
use our results to develop operational tests to
detect and quantify non-Markovianity in a
simple case.

Summary 5

V. DISCUSSION

The Star Resource Theories (SRTs) represent a distinc-
tive advancement in the quantum information resource
theories landscape. By focusing on the unique geometric
attributes of star domains, SRTs provide a comprehensive
framework encompassing both convex and crucial non-



23

convex resource theories. This novel classification intro-
duces a paradigm shift in the understanding and manipu-
lation of quantum resources. The operational quantifiers
presented within the SRTs open new avenues for assessing
resources in non-convex domains and determining advan-
tages in correlated and cooperative discrimination tasks.
The significance of SRTs is further underscored by intro-
ducing a class of nontrivial free operations, shedding light
on the manipulability of resources within this framework.
These operations offer practical insights and contribute
to a deeper understanding of the internal structure of
star domains.

While recent works [21, 22] present quantifiers that al-
low us to evaluate non-convex resources operationally, we
must emphasize that they still need to consider a specific
class of resource theories with free operations, in addition
to quantifiers, that is, a dynamic for resource intercon-
vertibility. Our work allows us to significantly advance
the state of the art in this field, presenting a unique geo-
metric condition that enables us to complete the puzzle
and elaborate on its consequences.

Furthermore, our quantifiers, designed explicitly for
star resource theories, introduce concrete improvements.
First, they have desirable properties, such as faithfulness
and being a convex function when appropriate. Second,
they are also better at suppressing relative error (compu-
tational or from measurements) than previous method-
ologies. Third, the operational interpretations of our
quantifiers are unprecedented, evaluating new practical
advantages, which simultaneously combine discrimina-
tion tasks and correlations, opening the possibility of
novel applications.

We also describe the application of our formalism and
its techniques in four different research areas. Firstly, our
applications in quantum discord and non-Markovianity
show how our theoretical framework allows us to deepen
our knowledge of solidly established fields, generating
new analytical results with operational relevance. Sec-
ondly, our applications in certifying total correlations
and non-unistochasticity are foundational to extending
the resource theory to hitherto unattainable fields. In-
deed, we envision the generalization of our results in to-
tal correlations to classical and quantum networks as a
promising area with multiple repercussions.

Some potential future research directions are adapting
our methods to the computation of covariance matrices
and their subsequent application to Bell nonlocality in
networks [114, 115] or extending Buscemi nonlocality re-
source analysis [116, 117] to networks of more than two
parties. In classical networks, our approach could con-
tribute to the classification of weighted networks [118] or
to determine the reducibility of multilayer networks [119],
with consequences ranging from biology to economics.

On top of that, extending these results to particle
physics, verification of the unistochasticity of a transi-
tion matrix between neutrino eigenbasis is a test of both
the correctness of the measurement as well as the the-
ory of PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mix-

ing matrix [103, 104]. In this process, the quantum
unitary evolution underlays the real, bistochastic matri-
ces observed in experiments. Thus, a very similar setup
could test the quark families’ mixing while testing the
unistochasticity of CKM (Cabibbo-Kobayashi-Maskawa)
matrix [101, 102].

The broader implications of this work extend beyond
the realm of quantum information theory. The capacity
of our setup to exclude a particular point from a specific
set finds relevance in various settings outside quantum in-
formation, providing a valuable tool for validating models
or experimental tests. Moreover, introducing SRTs hints
at a broader mathematical generalization, transcending
convex analysis and paving the way for a star analysis.
This mathematical leap aligns with recent developments
in non-linear witnesses [24–26], and supports further ap-
plications of non-convex optimization, for instance, in
support vector machine learning [120, 121].

In summary, this article advances a novel paradigm
in resource theory and establishes a foundation for fu-
ture explorations. The implications of SRTs reach far
beyond quantum properties, offering the physical moti-
vation to forge ahead into a new era of non-convex anal-
ysis. The wide-ranging nature of this work holds promise
for diverse applications, pushing forward the frontiers of
quantum information and mathematical analysis.
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APPENDIX

A. Geometrical relations

1. Redundancy deletion of support cones satisfies the covering condition

Here we demonstrate that the fortress condition i) is still satisfied for the support cones, after redundancy deletion
relative to F .

We start by recalling that for any point z /∈ F , we can select a w ∈ Ker(F) to obtain zw = λz + (1 − λ)w at the
boundary ∂F , leading to a support cone C′

zw ∋ z. Next, for every C′
zw ∋ z, two scenarios unfold: either C′

zw = Cx∗ or
there exist a Cx∗ such that

Cx∗ ∩ F ⊃ C′
zw ∩ F .

In both instances, zw ∈ C′
zw ∩ F holds, showing that zw ∈ Cx∗ . Next, we define a cone

Qw : {w + α1 (z − w) + α2 (x
∗ − w) | α1, α2 ∈ R≥0},

then by construction we have (Qw + zw − w) ∋ z, simply taking α1 = 1− λ, α2 = 0. However, this means

(Qw − w + x∗) ∋ z − zw + x∗,

but (Qw − w + x∗) shifts the apex of Qw to x∗ where the support cone is Cx∗ , implying that

Cx∗ ∋ z − zw + x∗

or equivalently (Cx∗ + zw − x∗) ∋ z. Thus, since zw ∈ Cx∗ , shifting the apex of Cx∗ to zw generates a subset of Cx∗ ,
and in consequence

Cx∗ ⊇ (Cx∗ + zw − x∗) ∋ z,

demonstrating the satisfaction of the fortress condition i) after redundancy deletion.
Lastly, we would like to remark an interesting particular case. Whenever Int(Ker(F)) ̸= ∅, we could choose

w ∈ Int(Ker(F)) then we must have Int(C′
zw) ∋ z, and following a reasoning among the same lines as before we would

conclude that there exist a Cx∗ such that z ∈ Int(Cx∗). In the last case, we have:

F ⊇
⋃
x

Int(Cx) ≡
⋂
x

Ext(Cx)

and because the converse inclusion is straightforward from ii), we obtain:

F =
⋂
x

Ext(Cx). (70)

The above shows, that all fortress conditions could be reduced to the single condition (70) for the special case
Int(Ker(F)) ̸= ∅. However, to keep the theory general and include several applications where the kernel has no
interior, we must keep the definition of fortress based on conditions i)-iv).

B. Proofs for general theory

1. Proof of relative error suppression

To estimate a relative error we must assume M (Θ | F) > 0 , which also implies GM (Θ | F) > 0 due to faithfulness
of both quantifiers. Then, for F a star domain the monotones M (Θ | F) based on decomposition into sub-convex
sets can be written as [22, 54]:

M (Θ | F) = inf
F(x)

η ⊆F
M
(
Θ | F (x)

η

)
(71)
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On the other hand, when assigning the error δM (Θ | F) to M (Θ | F) the conservative approach to error theory
demands that we should consider the worst-case scenario, hence we should assign the largest error found in the
evaluation of (71), thus:

δM (Θ | F) = max
F(x)

η ⊆F
δM

(
Θ | F (x)

η

)
(72)

Now, we obtain the error δGM

(
Θ | C(x)

F

)
for every GM

(
Θ | C(x)

F

)
with Θ ∈ D(x), applying the standard error

propagation formula [122]:

δGM

(
Θ | C(x)

F

)
=

√√√√√√∫
Σx

dξ

δM(
Θ | F (x)

ξ

) ∂GM

(
Θ | C(x)

F

)
∂M

(
Θ | F (x)

ξ

)
2

(a)
=

1

|Σx|

√√√√√√∫
Σx

dξ

GM

(
Θ | C(x)

F

) δM(
Θ | F (x)

ξ

)
M
(
Θ | F (x)

ξ

)
2

=
GM

(
Θ | C(x)

F

)
|Σx|

√√√√√√∫
Σx

dξ

δM
(
Θ | F (x)

ξ

)
M
(
Θ | F (x)

ξ

)
2

(73)

where in (a) we used the most general form of the geometric average:

GM

(
Θ | C(x)

F

)
= exp

{
1

|Σx|

∫
Σx

dη ln
(
M
(
Θ | F (x)

η

))}
and |Σx| =

∫
dξ indicates the integration over the whole collection of free sections C(x)

F . Using the above we can bound
the relative error:

δGM

(
Θ | C(x)

F

)
GM

(
Θ | C(x)

F

) =
1

|Σx|

√√√√√√∫
Σx

dξ

δM
(
Θ | F (x)

ξ

)
M
(
Θ | F (x)

ξ

)
2

(b)

≤ 1

|Σx|

√∫
Σx

dξ

(
δM (Θ | F)

M (Θ | F)

)2

=
1√
|Σx|

δM (Θ | F)

M (Θ | F)
(74)

where in (b) we combined both (71) and (72) methodological requirements to bound the relative error of each free
section F (x)

η ⊆ F . Since, (74) holds for every D(x) ∋ Θ, and defining Σ = |Σx| ≥ 1 we arrive at the corresponding
relative error bound:

δGM (Θ | F)

GM (Θ | F)
≤ 1√

Σ

δM (Θ | F)

M (Θ | F)
(75)

which shows the suppression of relative errors, when computing GM (Θ | F).

2. Proof of monotonicity

We consider a monotone M(·|X ) : S → R≥0 faithful for a convex free set X and which satisfies the identity:

M (λΘ+ (1− λ) Λ |X ) ≤ λM (Θ |X ) + (1− λ)M (Λ |X ) ∀λ ∈ [0, 1] (76)
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which is true for typical monotones, such as trace distance or generalised robustness. In such case the monotone
GM(· | C(x)

F ) applied on a domain D(x) is given by the geometric average over the monotones M(Θ | F (x)
j ), determined

by each free section F (x)
j ∈ C

(x)
F :

GM

(
Θ | C(x)

F

)
= Gj

[
M
(
Θ | F (x)

j

)]
(77)

where Gj [xj ] := N

√∏N
j=1 xj is the geometric average of variables xj , here understood as every M(Θ | F (x)

j ). Before
continue we need to show the following lemma:

Lemma 1: Given the free set F of an SRT with centre ∆ ∈ Ker(F), and a fortress TF = {Cx}x∈X , we have that if
∆̂λ [Θ] ∈ C(x) with λ > 0, then also Θ ∈ C(x).

Proof. If λ = 1 the statement is trivial, then if for 1 > λ > 0 the object ∆̂λ [Θ] belongs to the convex cone C(x) with
frame T (x), we have:

∆̂λ [Θ] = v
(x)
0 +

∑
y∈Yx

αy

(
v(x)y − v

(x)
0

)
(78)

for some apex v
(x)
0 , vectors v(x)y − v

(x)
0 in the frame T (x) with label set Yx, and constants αy ≥ 0. Equation (78)

directly leads to:

Θ =
1

λ
v
(x)
0 −

(
1− λ

λ

)
∆+

∑
y∈Yx

αy
λ

(
v(x)y − v

(x)
0

)
(a)
= v

(x)
0 +

(
1− λ

λ

) ∑
y∈Yx

γy

(
v(x)y − v

(x)
0

)
+
∑
y∈Yx

αy
λ

(
v(x)y − v

(x)
0

)
(b)
= v

(x)
0 +

∑
y∈Yx

βy

(
v(x)y − v

(x)
0

)
(79)

where in (a) we used the fortress condition iii) Dual(Cx) ⊇ Ker(F), and in (b) we defined βy =
(
1−λ
λ

)
γy +

αy

λ ≥ 0.
By the definition of cone, equation (79) shows that Θ ∈ C(x).

Now, let’s study the monotonicity of GM(Θ | C(x)
F ) under ∆̂λ. If ∆̂λ [Θ] ∈ F then, by construction GM(∆̂λ [Θ] |

C
(x)
F ) = 0 ≤ GM(Θ | C(x)

F ). On the contrary, if ∆̂λ [Θ] /∈ F , the object ∆̂λ [Θ] must belong to one or more cones C(x),
and from the definition of GM(Θ | C(x)

F ) we have:

GM(∆̂λ [Θ] | F) = sup
D(x):∆̂λ[Θ]∈D(x)

GM(∆̂λ [Θ] | C(x)
F )

= sup
D(x):∆̂λ[Θ]∈D(x)

Gj
[
M
(
∆̂λ [Θ] | F (x)

j

)]
≤ sup

D(x):∆̂λ[Θ]∈D(x)

Gj
[
λM

(
Θ | F (x)

j

)
+ (1− λ)M

(
∆ | F (x)

j

)]
(a)
= sup

D(x):∆̂λ[Θ]∈D(x)

Gj
[
λM

(
Θ | F (x)

j

)]
= λ sup

D(x):∆̂λ[Θ]∈D(x)

GM(Θ | C(x)
F )

(b)
= λGM(Θ | C(x∗)

F )

≤ GM(Θ | C(x∗)
F )

(c)

≤ sup
D(x):Θ∈D(x)

GM(Θ | C(x)
F )

= GM(Θ | F) (80)

where in (a) we used (76), in (b) we evaluate the domain D(x∗) with the maximal value such that cone ∆̂λ [Θ] ∈ C(x∗)

and in (c) we use lemma 1 which ensures that Θ ∈ C(x∗) and thus Θ ∈ D(x∗).
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3. Proof of operational interpretation of distance base monotone

We proceed to demonstrate the operational meaning of our monotone GL when the underlying monotone M is a
distance L which discriminates the resource from the free set. In the proof we will use the symbol Θ for channels, but
the same proof holds for states and measurements under an appropriate choice of the distance L. In particular when
Θ belongs to the domain D which contains the cone C and free sections {F1, ...,FM} we would like to prove that:

P

 M⊕
j=1

[aj ⊕ 1] = 0 | Θ

 =
1

2

1 + M∏
j=1

L (Θ | Fj)

 (81)

with ⊕ the sum mod(2) and every aj is the binary truth value of discrimination between Θ and Fj i.e. aj = 1 iff
Θ /∈ Fj and aj = 0 iff Θ ∈ Fj ,

P (aj = 1 | Θ) =
1

2
[1 + L (Θ | Fj)] (82)

Note, that we write (81) using the relation ej = aj ⊕ 1.
Proof. Since, for M = 1 the result is trivial, let’s check the M = 2 case:

P

 2⊕
j=1

[aj ⊕ 1] = 0 | Θ

 = P

 2⊕
j=1

aj = 0 | Θ


= P (a1 = 0 | Θ)P (a2 = 0 | Θ) + P (a1 = 1 | Θ)P (a2 = 1 | Θ)

(a)
=

1

4
[1− L (Θ | F1)] [1− L (Θ | F2)] +

1

4
[1 + L (Θ | F1)] [1 + L (Θ | F2)]

=
1

2

1 + 2∏
j=1

L (Θ | Fj)

 (83)

Let’s assume now that if M is odd, by inductive hypothesis the equation (81) is true for all M ′ < M . Then,

P

 M⊕
j=1

[aj ⊕ 1] = 0 | Θ

 (a)
= P

 M⊕
j=1

aj

⊕ 1 = 0 | Θ


= P

M−1⊕
j=1

aj

⊕ [aM ⊕ 1] = 0 | Θ


= P

M−1⊕
j=1

aj

 = 0 | Θ

P (aM ⊕ 1 = 0 | Θ) + P

M−1⊕
j=1

aj

 = 1 | Θ

P (aM ⊕ 1 = 1 | Θ)

(b)
= P

M−1⊕
j=1

[aj ⊕ 1] = 0 | Θ

P (aM = 1 | Θ) + P

M−1⊕
j=1

[aj ⊕ 1]

 = 1 | Θ

P (aM = 1 | Θ)

(c)
=

1

4

1 +M−1∏
j=1

L (Θ | Fj)

 [1 + L (Θ | FM )] +
1

4

1−M−1∏
j=1

L (Θ | Fj)

 [1− L (Θ | FM )]

=
1

4

1 + M∏
j=1

L (Θ | Fj)

 (84)

where in (a) we use the fact that M is odd and ⊕ is the sum mod(2), in (b) we take advantage of M − 1 being even
and in (c) we use the inductive hypothesis. Let’s assume now that if M is even, by inductive hypothesis the equation
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(81) is true for all M ′ < M . Then,

P

 M⊕
j=1

[aj ⊕ 1] = 0 | Θ

 (a)
= P

 M⊕
j=1

aj

 = 0 | Θ


(b)
= P

M−1⊕
j=1

[aj ⊕ 1]

⊕ [aM ⊕ 1] = 0 | Θ


= P

M−1⊕
j=1

[aj ⊕ 1] = 0 | Θ

P (aM ⊕ 1 = 0 | Θ) + P

M−1⊕
j=1

[aj ⊕ 1] = 1 | Θ

P (aM ⊕ 1 = 1 | Θ)

= P

M−1⊕
j=1

[aj ⊕ 1] = 0 | Θ

P (aM = 1 | Θ) + P

M−1⊕
j=1

[aj ⊕ 1] = 1 | Θ

P (aM = 1 | Θ)

(c)
=

1

4

1 +M−1∏
j=1

L (Θ | Fj)

 [1 + L (Θ | FM )] +
1

4

1−M−1∏
j=1

L (Θ | Fj)

 [1− L (Θ | FM )]

=
1

4

1 + M∏
j=1

L (Θ | Fj)

 (85)

where in (a) we use the fact that M is even and ⊕ is the sum mod(2), in (b) we take advantage of M − 1 being
odd and in (c) we use the inductive hypothesis. Now, since we show (81) to be true for M = 1, 2 the induction in
(84) shows (81) for M = 3, then (81) is true for M = 1, 2, 3 and (85) shows (81) for M = 4, and then we continue
alternating (84) with (85) to show by induction (81) for any natural M . From (81) follows that:

P

 M⊕
j=1

[aj ⊕ 1] = 0 | Θ

 =
1

2

[
1 +

[
GL

(
Θ | C(x)

F

)]M]
(86)

which shows the operational interpretation in terms of correlations
⊕M

j=1 [aj ⊕ 1] = 0 induced by Θ.

4. Proof of operational interpretation of robustness base monotone

Here we show the operational meaning of the robustness based quantifier in terms of the discrimination of an
ensemble of quantum combs [58]. Consider the case in which Θ belongs to the domain D which contains the cone C
and free set sections {F1, ...,FM} we would like to prove that:

max
{pj ,Ξj}

Psucc ({pj ,Ξj} ,Θ, . . . ,Θ)

max{Φk∈Fk}M
k=1

Psucc ({pj ,Ξj} ,Φ1, . . . ,ΦM )
=

M∏
k=1

(1 +R (Θ | Fk)) (87)

where {pj ,Ξj}Nj=1is an ensemble of a quantum comb’s evolution branches Ξj : CPTPM −→ qj , for all j with a
probability qj ∈ [0, 1],

∑
j qj = 1, as described in subsection III D 2. Psucc ({pj ,Ξj} , (·) , . . . , (·)) is the success

probability in the discrimination of the branches by means of the corresponding input channels and R (Θ | Fk) is the
generalised robustness of the channel Θ with respect to the free section Fk.

Proof. From the definition of generalised robustness we know that for every Fk there exist a Φ∗
k ∈ Fk such that:

(1 +R (Θ | Fk)) Φ∗
k ⪰ Θ (88)
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where ⪰ means majorization in the semidefinite positive sense. Then by definition,

Psucc ({pj ,Ξj} ,Θ, . . . ,Θ) =
∑
j

pjΞj [Θ, . . . ,Θ]

(a)

≤
M∏
k=1

(1 +R (Θ | Fk))
∑
j

pjΞj [Φ
∗
1, . . . ,Φ

∗
M ]

≤
M∏
k=1

(1 +R (Θ | Fk)) max
{Φk∈Fk}M

k=1

Psucc ({pj ,Ξj} ,Φ1, . . . ,ΦM )

where in (a) we used the linearity of quantum combs [58, 123] and (88). For the lower bound we remember that every
R (Θ | Fk) is the result of an SDP program:

max Tr [YkJΘ]− 1

subject to: Yk ⪰ 0

Tr [YkJΦ] ≤ 1 ∀JΦ ∈ OFk

where JΘ is the Jamiłkowski state of Θ and OFk
is the set of all Jamiłkowski states with a Φ ∈ Fk. Then, we construct

a an ensemble with p∗1 = 1 and p∗j = 0 for all j > 1 with Ξ1 is given by:

Ξ∗
1 [Λ1, . . . ,ΛM ] =

M∏
k=1

Tr
[
I⊗ Λk (|Ψ+⟩⟨Ψ+|)

Yk
∥Yk∥∞

]
(89)

where each Yk is a solution of the previous SDP program associated to R (Θ | Fk) and ∥·∥∞ is the operator norm.
The other Ξ∗

j for j > 1 are all 2M − 1 combs resulting from replacing the effects Yk

∥Yk∥∞
for I − Yk

∥Yk∥∞
in (89) in

all possible combinations, representing all possible outputs from measurements
{

Yk

∥Yk∥∞
, I − Yk

∥Yk∥∞

}
. Now, by direct

computation we have:

Psucc
({
p∗j ,Ξ

∗
j

}
,Θ, . . . ,Θ

)
max{Φk∈Fk}M

k=1
Psucc

({
p∗j ,Ξ

∗
j

}
,Φ1, . . . ,ΦM

) =

∏M
k=1 Tr

[
I⊗Θ(|Ψ+⟩⟨Ψ+|) Yk

∥Yk∥∞

]
max{Φk∈Fk}M

k=1

∏M
k=1 Tr

[
I⊗ Φk (|Ψ+⟩⟨Ψ+|) Yk

∥Yk∥∞

]
(a)
=

∏M
k=1 Tr [YkJΘ]

max{Φk∈Fk}M
k=1

∏M
k=1 Tr [YkJΦ]

(b)

≥
M∏
k=1

(1 +R (Θ | Fk))

where in (a) we cancel the products of ∥Yk∥∞ and replaced by the definitions of Jamiłkowski state, while finally in
(b) the inequality follows from the conditions of the SDP programs defining every R (Θ | Fk).

Now, as explained in the main text we use as utility function u for a coalition T of agents as the maximum relative
advantage they obtain in quantum comb discrimination tasks by using Θ. From (87) it follows directly the following
relation between u and the robustness measures:

u (Θ | T ) =
∏
k∈T

(1 +R (Θ | Fk))− 1. (90)

Now, the dividend du (Θ | S) determines the surplus that is created by a coalition S of agents when using the resource
Θ in a task with utility u. In cooperative game theory [73] the surplus is specified as the difference between the the
coalition’s utility and the surplus created by all potential subcoalitions:

du (Θ | S) = u (Θ | S)−
∑
T⊂S

du (Θ | T ) (91)

and du (Θ | {i}) = u (Θ | {i}) for a single agent {i}. Applying the previous recursive definition, we will show that for a
coalition of the {Ak}Mk=1 agents holding free set sections {F1, ...,FM}, their dividend in a quantum comb discrimination
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task by using Θ is:

du

(
Θ | {Ak}Mk=1

)
=

M∏
k=1

R (Θ | Fk) (92)

Since M = 1 is trivial, we begin our induction with the case M = 2:

du

(
Θ | {Ak}2k=1

)
= u

(
Θ | {Ak}2k=1

)
− du (Θ | {A1})− du (Θ | {A2})

(a)
= u

(
Θ | {Ak}2k=1

)
− u (Θ | {A1})− u (Θ | {A2})

(b)
=

2∏
k=1

(1 +R (Θ | Fk))−
2∑
k=1

(1 +R (Θ | Fk))− 3

=

2∏
k=1

R (Θ | Fk) (93)

where in (a) we use the fact that dividend for single parties is equal tu their utility and in (b) the relation (90). Now,
we will assume as induction hypothesis that relation (92) is valid for all subcoalitions T such that |T | < M . Now
from the definition we have:

du

(
Θ | {Ak}Mk=1

)
= u

(
Θ | {Ak}Mk=1

)
−

∑
T⊂{Ak}M

k=1

du (Θ | T )

(a)
=

M∏
k=1

(1 +R (Θ | Fk))− 1−
∑

T⊂{Al}M
l=1

du (Θ | T )

(b)
=

∑
T⊆{Al}M

l=1

∏
Ak∈T

R (Θ | Fk)−
∑

T⊂{Ak}M
k=1

∏
Ak∈T

R (Θ | Fk)

(c)
=

∏
Ak∈{Al}M

l=1

R (Θ | Fk)

=

M∏
k=1

R (Θ | Fk) (94)

where in (a) we use relation (90), in (b) we expand the first term and used the induction hypothesis on the second
term. Finally, in (c) we note that the only term which doesn’t cancel out in the previous step is T = {Al}Ml=1 on the
first sum. Since, the hypothesis is true for M = 1, 2 we can use (94) to show the hypothesis is true if it so for all
subcoalitions T such that |T | < M , the result follows by induction.

C. Quantum discord

Here, to demonstrate Theorem 4 we consider the set Ω of two-qubit states:

ρ (x,y, t) =
1

4

{
I ⊗ I +

∑
i

xiσi ⊗ I +
∑
i

yiI ⊗ σi +
∑
i

tiσi ⊗ σi

}
. (95)

Then, following [78] the zero-discord states (33) (i.e. on Alice side) of form (95) must satisfy the condition:

∥x∥2 + ∥t∥2 − κmax = 0 (96)

where κmax is the maximum eigenvalue of a matrix K with entries Kij = xixj+ titjδij . To determine the set of states
with zero-discord we proceed to compute the characteristic polynomial of K:

qK (κ) = κ3 − κ2
(
∥x∥2 + ∥t∥2

)
+ κ

∑
i ̸=j

t2i t
2
j +

∑
(i,j,k)∈πC

t2i
(
x2j + x2k

)−

t21t22t23 + ∑
(i,j,k)∈πC

x2i t
2
j t

2
k

 (97)
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where πC stand for the cyclic permutations of (1, 2, 3). Applying the Decard’s rule of signs we see that qK (κ) has no
negative roots and 3 or 1 positive roots whenever ∥x∥2 + ∥t∥2 > 0. From the above it turns out that κmax > 0 exist
for ∥x∥2 + ∥t∥2 > 0, while for ∥x∥2 + ∥t∥2 = 0 the result κmax = 0 is trivial. Now, for zero-discord states, from (96)
we have κmax = ∥x∥2 + ∥t∥2 and replacing this condition on qK (κmax) = 0 we have:

(
∥x∥2 + ∥t∥2

)∑
i̸=j

t2i t
2
j +

∑
(i,j,k)∈πC

t2i
(
x2j + x2k

)−

t21t22t23 + ∑
(i,j,k)∈πC

x2i t
2
j t

2
k

 = 0 (98)

which after some algebraic transformations reads:

2t21t
2
2t

2
3 +

∑
i ̸=j

x2i t
2
i t

2
j +

∑
(i,j,k)∈πC

t4i t
2
j t

2
k +

(
∥x∥2 + ∥t∥2

) ∑
(i,j,k)∈πC

t2i
(
x2j + x2k

)
= 0. (99)

Since every term on the right hand side of (99) is non negative, it must be that all of them are zero, from that follows
that only one of the coordinate pairs {(ti, xi)}3i=1 could be non zero. Concluding the demonstration of Theorem 4.

To demonstrate Theorem 5 consider x = (x1, x2, x3) and y = (y1, y2, y3) with the additional constraint that y must
have the same support as x, i.e. if a coordinate xi is zero this implies that a coordinate yi is also zero, but the converse
is not necessarily true. Since x and y have the same support the free set considers only states χ (x,y, t) with two
triples {xi, yi, ti} out of the three labeled by i ∈ {1, 2, 3} necessarily equal to {0, 0, 0}. Then, from the Bloch matrix
representation, the conditions for χ (x,y, t) ∈ Ω0 to be a trace one positive matrix are (See section IV.D in [81]):

3−
(
x2 + y2 + t2

)
≥ 0, (100)

1 + 2xty −
(
x2 + y2 + t2

)
≥ 0, (101)

8xty +
(
x2 + y2 + t2 − 1

)2 − 4y2
(
x2 + t2

)
− 4x2t2 ≥ 0 (102)

where x, y, t stand for the single triple {xi, yi, ti} which of potentially non zero terms in x,y, t, because χ (x,y, t) ∈ Ω0.
Now, for every fixed value of y we describe the set in coordinates x, t. The first condition (100) requires each point
(x, t) to lie inside a circle of radius 3 − y2, while to see the geometric requirement of the second condition (101) we
rotate coordinates by angle of π/4:

x =
u+ v√

2
t =

u− v√
2
.

After such a replacement condition (101) turns into:

u2

1 + y
+

v2

1− y
≤ 1

which determines an ellipse with principal axes a =
√
1 + y and b =

√
1− y which on coordinates x, t is always inside

the unit circle, because |y| ≤ 1. For the third condition (102) we need to use some algebra:

8xty +
(
x2 + y2 + t2 − 1

)2 − 4y2
(
x2 + t2

)
− 4x2t2 ≥ 0

8xty +
(
x2 + t2 −R2

)2 − 4y2
(
x2 + t2

)
− 4x2t2

(a)

≥ 0

4y
(
u2 − v2

)
+
(
u2 + v2 −R2

)2 − 4y2
(
u2 + v2

)
−
(
u2 − v2

)2 (b)

≥ 0

4yL+
(
K −R2

)2 − 4y2K − L2
(c)

≥ 0

K2 − L2 − 2
(
R2 + 2y2

)
K + 4yL+R4 ≥ 0

(K − h)
2 − (L− g)

2
+R4 +

(
g2 − h2

)
≥ 0

(K − h)
2 − (L− g)

2
+ 2y2

(
1− y2 −R2

)
≥ 0

(K − h)
2 − (L− g)

2 ≥ 0

(K − h)
2 ≥ (L− g)

2

|K − h| ≥ |L− g| (103)
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where in (a) we define R =
√
1− y2, in (b) we use the same change of coordinates to u, v as for (101) and in (c) we

define the auxiliary variables:

K = u2 + v2,

L = u2 − v2,

h = R2 + 2y2,

g = 2y.

But, K = u2 + v2 = x2 + t2 ≤ 1 ≤ 1 + y2 = R2 + 2y2 = h, where we use that (x, t) is inside the unit circle due to
(101). Then, inequality (103) lead to only to two possibilities i) h−K ≥ L− g or ii) h−K ≥ g−L. If L ≥ g we have:

L− g ≤ h−K

L+K ≤ h+ g

2u2 ≤ 1 + y2 + 2y

2u2 ≤ (1 + y)
2

|u| ≤ (1 + y) /
√
2 (104)

and if L ≤ g we have:

g − L ≤ h−K

K − L ≤ h− g

2v2 ≤ 1 + y2 − 2y

2v2 ≤ (1− y)
2

|v| ≤ (1− y) /
√
2. (105)

Thus, conditions (104) and (105) imply that (x, t) is inside a rectangle of sides 2 (1− y) /
√
2 and 2 (1 + y) /

√
2. On

the u, v coordinates we can see that such rectangle is inscribed in the ellipse of (101), thus concluding the proof.
Additionally, we will describe the star domain structure of Alice’s zero-discord states. When the set of states is of

the form (95), their description correspond to a six dimensional space Ω ⊂ R6, defined by positivity conditions [81].
The natural orthonormal basis of Ω are the unit vectors

{
x̂i, t̂i

}3
i=1

, however we will use a rotated basis of vectors
{ûi, v̂i}3i=1:

ûi =
x̂i + t̂i√

2
v̂i =

x̂i − t̂i√
2

.

The reason to choose the basis {ûi, v̂i}3i=1 is that it aligns the unit vectors with the symmetry axis of the rectangles
forming the the free set Ω0. Indeed, from our previous analysis the free set is given by:

Ω0 :
{
r | r = αûi + βv̂i, |α| ≤ (1 + yi) /

√
2, |β| ≤ (1− yi) /

√
2 for some i ∈ {1, 2, 3}

}
(106)

where Ker (Ω0) = {0} representing I ⊗ I/4, and there exist only three rectangular convex components Ω0,i described
by an individual i ∈ {1, 2, 3} in definition (106).

D. Total Correlations

1. Hyperbolic Contraction Operations for the Total Correlations restricted free set

Here we provide a survey of hyperbolic contraction operations for the theory of total correlations. The frames T (ij)

as described in (51) contain vectors labij ≡ δabij − η, to which we associate the constants λ(ij)rq defining the action of the
operations as in (18):

η + αijl
ab
ij +

∑
k ̸=i, j ̸=l

(
αkjl

ab
kj + αjll

ab
jl

)
7→ η + αijλ

(ij)
ij labij +

∑
k ̸=i, j ̸=l

(
αkjλ

(ij)
kj labkj + αjlλ

(ij)
il labil

)
. (107)
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When we consider cone order-preserving operations, i.e. all λ(ij)rq ≤ 1, the physical interpretation of the operation is a
stochastic process over pC taking it closer to distributions in F ′. Notably, in general cone order-preserving operations
are also RNG operations of the star resource theory based on F . Concretely, we can write the uncorrelated probability
distributions in the following way:

(1− ϵ) pA(a)pB(b) + ϵη = η + (1− ϵ) (pA(a)pB(b)− η)

= η + (1− ϵ)

∑
k,l

pkAp
l
Bδ

ab
kl − η


(t)
= η + (1− ϵ)

∑
k,l

pkAp
l
B

[
δabkl − η

]
= η +

∑
k,l

(1− ϵ) pkAp
l
B

[
δabkl − η

]
where in (t) we used the normalization of distributions pkA and plB . Consequently it follows the condition αkl =
(1− ϵ)pkAp

l
B for the conic span. Thus, after a conic non-increasing operation with parameters λkl we have:

α′
kl = (1− ϵ)λklp

k
Ap

l
B . (108)

Then a sufficient condition for the new distribution to be uncorrelated is:

λkl = λ̄kλ̃l (109)

with λ̄k, λ̃l ∈ [0, 1] for every k, l. Indeed, if the operation satisfies (109) we have:

p′C(a, b) = η +
∑
k,l

(1− ϵ)λklp
k
Ap

l
B

[
δabkl − η

]
= η +

∑
k,l

(1− ϵ) λ̄kλ̃lp
k
Ap

l
B

[
δabkl − η

]
(r)
= η +

∑
k,l

(1− ϵ) λ̄Aλ̃B p̄
k
Ap̃

l
B

[
δabkl − η

]
(s)
= η +

∑
k,l

(1− ϵ′) p̄kAp̃
l
B

[
δabkl − η

]
(110)

where in (r) we defined the probability distributions:

p̄kA =
λ̄kp

k
A

λ̄A
p̃lB =

λ̃lp
l
B

λ̃B

with λ̄A, λ̃B the corresponding normalization factors. Lastly, in (s) we define ϵ′ such that:

(1− ϵ′) = (1− ϵ) λ̄Aλ̃B (111)

is straightforward to note that ϵ ≤ ϵ′ ≤ 1, and then (110) shows that the operation is resource non-generating.
Finally, in our exemplary case nA = nB = 2, when λij = 1 in D(ij), condition (109) is automatically satisfied by
constants λ̄i = λ̃j = 1, λ̄i⊕1 = λi⊕1,j , and λ̃j⊕1 = λi,j⊕1. Note that λi⊕1,j⊕1 could take any value because in D(ij)

the component αij is always zero.
Another free operations in this class arise when nA = nB = n by taking a every pair λ(ij)ik , λ

(ij)
lj with k ̸= j, l ̸= i

to define an hyperbolic rotation λ
(ij)
ik = eφ, λ(ij)lj = e−φ. The above is also a squeeze map where we consider the

product of all λ(ij)rq , but with λ
(ij)
ij = 1. When nA ̸= nB , the squeeze map is not simulable as hyperbolic rotations,

nevertheless we still can construct one: without loss of generality consider nA < nB , first make all λ(ij)ik with k ̸= j

equal to a constant λA ≤ 1, second take all λ(ij)lj equal to λB = λ
−nA/nB

A , and here also λ(ij)ij = 1, obtaining a squeeze
map which generalize the previous map. However, while the hyperbolic rotations, and squeeze maps also correspond
to specific post-processing of outputs they are not RNG operations for the theory with the full free set F .
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2. Computing critical value

Here, we compute the critical value of our F ′ based quantifier, beyond which there can be only correlated distri-
butions. To achieve this objective, we must parameterize the free set F writing explicitly any distribution f ∈ F
as:

f = (1− ϵ)
(
xy, (1− x)y, x(1− y), (1− x)(1− y)

)
+
ϵ

4
(112)

in particular any f ∈ C00 satisfies x, y ≥ 1
2 . It is also straightforward to project arbitrary f onto the faces as follows:

F ′
A0 ∋ fA = (1− ϵ)

(
xy, (1− x)y, 1−y

2 , 1−y
2

)
+
ϵ

4

F ′
B0 ∋ fB = (1− ϵ)

(
xy, 1−x

2 , x(1− y), 1−x
2

)
+
ϵ

4

(113)

from which it is simple to calculate the product of the 1-norms, serving as a proxy to the monotone

√
∥f − fA∥1∥f − fB∥1 =

√
(1− ϵ)2

∣∣∣∣(1− y)

(
1

2
− x

)∣∣∣∣∣∣∣∣(1− x)

(
1

2
− y

)∣∣∣∣. (114)

A typical optimization provides maximum of this function is: 1
16 . This bound yields the maximum resource

achievable by uncorrelated distributions, thus any larger value of our F ′ based quantifier, witness total correlations
in the evaluated distribution.

3. Extension to network total correlations

A straightforward extension of the SRT of total correlations considers an arbitrary number N of parties A1, . . . , AN
with an alphabet of nAi

letters for outputs a = (a1, . . . , aN ) with correlations:

F ∋ pC(a1, . . . , aN ) =

{
(1− ϵ)

(
N∏
i=1

pAi
(ai)

)
+ ϵ

(
N∏
i=1

1

nAi

)
: pAi

(ai) ∈ ∆nAi

}
, (115)

which evidently form a star with the flat distribution at its kernel. Moreover, we can also extend the free sections of
the auxiliary free set:

F ′
Ai,k ∋ pC(a) =

(1− ϵ)pAi(ai)

∏
j ̸=i

δaj ,kj

+ ϵ

(
N∏
i=1

1

nAi

)
: pAi(ai) ∈ ∆nAi

, (116)

and then considering all possible values for the vector k. Then, it is possible to carry on the analysis and construction
of witnesses in complete analogy as with two parties.

However, we can apply this simple extension to the important field of network correlations by identifying each party
with a node of a weighted graph or hyper-graph and the weight of an edge/hyper-edge with the marginal distribution
of pC(a1, . . . , aN ) including only the parties connected by the edge/hyper-edge.

The development of resource theories for weighted networks with concrete topologies it is a promising area due to
its multiple applications, yet unexplored to date. Crucially, we can apply our techniques to any network topology.
Since the weights can be continuously reduced regardless of the graph until obtaining a network with independent
nodes, such a network must belong to the free set’s kernel. Consequently, we can use star domains to characterize
their properties and possible transformations for any network topology.

E. Non-Markovianity

1. Explicit calculation of the minimization problem in Eq. (68).

For an arbitrary Φj in the free section Fj , the respective Jamiołkowski states representing single–qubit operations
read:
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JΦ1
=

1

3


1 + q

2 0 0 1−q
2

0 1−q
2 0 0

0 0 1−q
2 0

1−q
2 0 0 1 + q

2

 , JΦ2
=

1

3


1− q

4 0 0 2+q
4

0 2+q
4 − q

4 0
0 − q

4
2+q
4 0

2+q
4 0 0 1− q

4

 , JΦ3
=

1

3


1− q

4 0 0 2+q
4

0 2+q
4

q
4 0

0 q
4

2+q
4 0

2+q
4 0 0 1− q

4

 .

(117)

Using the above expressions for JΦj , the minimization problem (68) takes the following form:

min
q

1
12

(
1
2 |7− 3

√
5− 4q|+ |−7 + 3

√
5 + q|+ 1

2 |7− 3
√
5 + 2q|

)
s.t. 0 ≤ q ≤ 1.

(118)

As we are dealing with inequality constraints, we will make use of slack variables s2 and t2 that will convert our
problem to the form

min
q

1
12

(
1
2 |7− 3

√
5− 4q|+ |−7 + 3

√
5 + q|+ 1

2 |7− 3
√
5 + 2q|

)
s.t. q − s2 = 0,

q + t2 − 1 = 0.

(119)

Now, we are able to construct our Lagrangian

L =
1

12

(1
2
|7− 3

√
5− 4q|+ |−7 + 3

√
5 + q|+ 1

2
|7− 3

√
5 + 2q|

)
− µ(q − s2) + λ(q + t2 − 1), (120)

and the equations that need to be fulfilled for this Lagrangian are the following

∂L

∂q
= ∓1

6
± 1

12
+

1

12
+ λ− µ = 0 (121)

∂L

∂λ
= q + t2 − 1 = 0 (122)

∂L

∂µ
= −(q − s2) = 0 (123)

where ∓ and ± denote the two possibilities when taking the derivative of each absolute value, the first one when
the expression inside the absolute value is positive and the second one when is negative.

Now, using KKT conditions (see [124, 125]) we know that at the optimal solution of this problem, q∗, either the
Lagrange multiplier corresponding to the inequality constraint is zero or the corresponding inequality constraint is
active, i.e. the corresponding slack variable is zero and we have an equality. Therefore there are four possibilities:

1. µ = 0, λ = 0, s2 ≥ 0 and t2 ≥ 0.

2. µ = 0, λ ̸= 0, s2 ≥ 0 and t2 = 0.

3. µ ̸= 0, λ ̸= 0, s2 = 0 and t2 = 0.

4. µ ̸= 0, λ = 0, s2 = 0 and t2 ≥ 0.

If we investigate the equation (121), the only way for this equation to be zero the cases in which µ = 0 and λ = 0
is when the expression inside the first absolute value is positive and also the one inside the second one. Inspecting at
the expressions we see that this is never possible and therefore we must rule out the first possibility.

Regarding the other three possibilities, we see that the result is the same regardless of the signs in (121) because
(121) does not give us information regarding q. So, the second case give us q∗ = 1 and the corresponding objective
function, f = 1

4 (
√
5 − 1). The third one is not feasible, because it gives us that q∗ = 0 and also q∗ = 1 at the same

time and the last one q∗ = 0 and f = 1
6 (7− 3

√
5).

The remaining cases to try are those in which the expression inside the two first absolute values are equal to 0.
This is the case for q∗ = 7−3

√
5

4 and f = 1
8

(
7− 3

√
5
)
, and q∗ = 7− 3

√
5 and f = 1

4

(
7− 3

√
5
)

respectively.

Finally, comparing all the cases we find the mininum equal to 1
8

(
7− 3

√
5
)
, and achieved when q = 7−3

√
5

4 .
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2. Conic non-increasing operations are RNG

Using the De Casteljau’s form of ∆ijF we can write elements of the section of F inside D(k) with k ̸= i, k ̸= j by,

Φ = (1− ϵ)
[
(1− s)

2
Γ
1/2
i +2s (1− s) Γ

1/2
d +s2Γ

1/2
j

]
+ ϵΓ

1/2
d

= Γ
1/2
d + (1− ϵ)

[
(1− s)

2
Γ
1/2
i +2s (1− s) Γ

1/2
d +s2Γ

1/2
j − Γ

1/2
d

]
(r)
= Γ

1/2
d + (1− ϵ)

[
(1− s)

2
(
Γ
1/2
i − Γ

1/2
d

)
+s2

(
Γ
1/2
j − Γ

1/2
d

)]
(124)

where in (r) we use the fact that (1− s)
2
+ 2s (1− s) + s2 = 1. Now, from (124) follows that αi = (1− ϵ) (1− s)

2

and αj = (1− ϵ) s2. In consequence, after a conic non-increasing operation with parameters λi, λj ∈ [0, 1] , we have
a channel Φ′ with conic components:

α′
i = λi (1− ϵ) (1− s)

2
α′
j = λj (1− ϵ) s2 (125)

Now, we define the parameters:

s̄ =

√
λjs√

λjs+
√
λi (1− s)

(1− ϵ′) = (1− ϵ)
[√

λjs+
√
λi (1− s)

]2
(126)

Then, replacing s̄ and ϵ′ in (125) we get:

α′
i = (1− ϵ′) (1− s̄)

2
α′
j = (1− ϵ′) s̄2 (127)

demonstrating that any conic non-increasing operation is RNG.

F. Non-Unistochasticity

We explain here how to obtain the optimal value of the witness of non-unistochasticity, Eq. (58). We analyze the
tetrahedron of circulant bistochastic matrices shown in Fig. 13. Without loss of generality, let us fix the analyzed
quadrant to the one defined in Eq. (55). First observation comes from the symmetry of the problem – the closest
non-unistochastic matrix to the central van der Waerden matrix lies on the line W4 ↔ 1

2 (Π
0
4 +Π4).

It is straightforward to find the matrix, given via (1 − 1√
2
)W4 +

1√
2
(Π0

4 + Π4), together with the geometric mean
of the distances to the triangles that define the quadrant, being 1

2
√
2
. What is left is a simple algebraic check that

this is indeed optimal; i.e., the hyperboloid with the above parameter has only one common point with the set of the
unistochastic matrices, proving its suitability for the task of witnessing non-unistochasticity.
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FIG. 17. Paper folding versions of Figures 10 and 11.
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FIG. 18. Paper folding version of Figure 12.
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