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We propose a circuit architecture for a dissipatively error-corrected GKP qubit. The device con-
sists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable
switch. When the switch is activated via a particular family of stepwise protocols, the resistor ab-
sorbs all noise-induced entropy, resulting in dissipative error correction of both phase and amplitude
errors. This leads to an exponential increase of qubit lifetime, reaching beyond 10ms in simulations
with near-feasible parameters. We show that the lifetime remains exponentially long in the pres-
ence of extrinsic noise and device/control imperfections (e.g., due to parasitics and finite control
bandwidth) under specific thresholds. In this regime, lifetime is likely only limited by phase slips
and quasiparticle tunneling. We show that the qubit can be read out and initialized via measure-
ment of the supercurrent in the Josephson junction. We finally show that the qubit supports native
self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to
exponential suppression of gate infidelity.

Quantum error correction is crucial for quantum com-
puting, due to the inevitability of noise from, e.g., un-
controlled degrees of freedom, imperfect control, or fluc-
tuations of device parameters [1–7]. Many approaches—
such as surface codes—rely on active correction, which
eliminate noise-induced entropy via readout/feedback [6–
8]. Requirements for rapid readout, extensive control,
and complex device architectures, make the scalability of
these approaches a significant challenge [7, 9, 10]. On
the other hand, classical bits are often intrinsically sta-
ble due to dissipation [11, 12]: in a magnetic hard-disk,
e.g., noise-induced magnetic fluctuations are damped dis-
sipatively before they accumulate to generate bit flips,
leading to extreme robustness. Similarly harnessing dis-
sipation for quantum error correction is a challenging,
but desirable, goal [13–25].

In this work, we propose an architecture for a dissi-
patively error-corrected qubit, based on a simple circuit
device, shown in Fig. 1(a). The device consists of an LC
resonator with impedance close to h/2e2 ≈ 12.91 kΩ, con-
nected to a Josephson junction and a dissipative element
through a controllable switch. Quantum information is
encoded via a thermal mixture of generalized Gottesman-
Kitaev-Preskill (GKP) states [26] [see Fig. 1(b)], and
can be accessed and initialized via the Josephson junc-
tion supercurrent. When the Josephson energy is larger
than resistor temperature and LC frequency, the step-
wise switch activation protocol in Fig. 1(c) drives the de-
vice into a regime of dissipative error correction, where
noise-induced fluctuations are damped dissipatively with-
out affecting the encoded information. This causes an
exponential increase of this coherence time that extends
well beyond 10ms in our simulations with near-feasible
parameters—even with extrinsic noise present.

The dissipative stabilziation protocol corrects both

phase and amplidue errors: each driving period of the
switch protocol cyclically permutes the 3 logical Pauli
operators, implying phase and amplitude erros appear
on equal footting in the device, i.e., T1 = T2 (see below
for details).

To illustrate the potential of the dissipative error cor-
rection protocol, in Fig. 1(d) we show representative tra-
jectories of the device with charge noise present, for 3
different values of the resistor coupling strength [here pa-
rameterized by the resulting loss rate, Γ; see Eq. (14)].
The data are obtained using simulations with the uni-
versal Lindblad equation (ULE) [27]—see caption for pa-
rameters. Evidently, coherence time increases dramati-
cally with Γ. Further analysis reveals a clear exponential
scaling of coherence time with Γ [Fig. 1(e)], that can ex-
tend beyond 10ms. In an upcoming work, we provide
analytical support for the observed exponential scaling
of lifetime [28].

Interestingly, our qubit supports a native set of Clif-
ford gates, implemented via control of the switch. The
resistor dissipatively corrects fluctuations induced by sig-
nal imperfections, making the gates exponentially robust
against control noise. We show that a different encod-
ing results in a native self-correcting T gate by a similar
mechanism [29]. In this way, our device can be viewed as
an integrated, self-corrected quantum processor, featuring
both dissipatively-corrected memory and gates.

Due to its self-correcting properties, our qubit has fi-
nite tolerance for device imperfections, including finite
switch control resolution (estimated at ∼ 100Gs/s [10 ps]
for 1GHz resonators), finite quality factor (∼ 200), devia-
tions of device inductance and capacitance from targeted
values (∼ 1−10%), and finite temperatures (up to a third
of the Josephson energy)—see Table I for more details.

Our qubit dissipatively corrects errors induced by
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FIG. 1. We propose a protocol for realizing a self-correcting
GKP qubit in a driven circuit-QED device, shown in (a).
(b) Quantum information is encoded in the parity of LC
flux, φ, via thermal mixtures of GKP states: red/orange and
green/blue indicate possible logical states in the flux potential
(black). We show that dissipative error correction emerges
when the LC impedance is close to h/2e2 and the switch
is modulated as in (c), with zs ∈ Z and τLC denoting the
LC period: (d) The GKP stabilizers S1 and S2 (purple, or-
ange) and logical operators σx, σy, σz (red, blue, green) ex-
hibit a dramatically rise of stability as the resistor-induced
loss-rate, Γ, is increased. Plots show single Universal Lind-
blad equation trajectories with extrinsic charge noise present
at strength 10−12 e2/Hz, starting from a random high-energy
state, with L = 10µH, C = 60 fF, zs = 2, EJ/h = 200GHz,
and T = 40mK. (e) The qubit lifetime for the parameters
in (d) scales exponentially with Γ, approaching timescales of
∼ 1 s for Γ ≳ 1GHz. Data points were obtained via averaging
over 50-100 trajectories with error bars indicating 95% confi-
dence interval from bootstrap resampling.

finite-order polynomials of charge and flux, such as
charge/flux noise or photon loss, while phase-space non-
local noise, such as quasiparticle poisoning or phase slips,
cause logical Pauli errors. Since these events can be rare
and controllable [30] and result in Pauli errors, we expect
that these noise sources are amenable to active error cor-
rection schemes with current technology.

Significant effort has been focused on realizing GKP
states in circuit-QED devices, either through read-
out/feedback [20, 25, 31–34], or autonomous control [35].
There have also been proposals for deterministic pro-
tocols generating GKP states through coherent driving
protocols [36, 37] or circuits featuring gyrators [38]. Re-
cently, related proposals have been put forward for dissi-
patively stabilizing GKP states through bath engineering
via frequency combs [25] and qubit resets [35]. A key ad-
vantage of our proposal is that it realizes dissipative error
correction with generic thermodynamic baths, through a
stepwise switch activation protocol with tolerances for fi-
nite bandwidth and control noise, offering a complemen-
tary approach with potentially simpler realizations. Our
qubit also supports native protected, or self-correcting,
single-qubit Clifford gates, potentially simplifying its in-

FIG. 2. Crenellation function used for protected continuous-
variable encoding of quantum information via Eqs. (1).

tegration in a quantum processor.
Achieving an efficient Josephson coupler with control

resolution ∼ 100Gs/s is a key technological challenge
for our device. We speculate that such a device can
be realized with a gated superconductor-semiconductor-
superconductor junctions [39], high-fidelity controlled
SQUIDS, or leveraging the AC Josephson effect. Con-
trol resolution in the required 100Gs/s range has been
achieved in the telecommunications industry [40], while
control resolutions of 25Gs/s were recently acheived in a
circuit-QED context [41].
Realizing the switch above may carry a significant re-

ward, by enabling a self-correcting quantum information
processor with exponentially-scaling fidelity in the pres-
ence of noise, control, and device imperfections. By not
relying on active error correction to achieve exponential
robustness, such a device potentially provides an alter-
native route to useful-scale quantum computing with a
very promising scalability potential.
The rest of the paper is organized as follows: in Sec. I

we describe how we encode a GKP qubit in an LC res-
onator; in Sec. II, we introduce the device realizing a dis-
sipatively corrected this GKP qubit and discuss its basic
operating principles. In Sec. III, we analyze the dynam-
ics of the device in detail. In Sec. IV, we demonstrate the
presence of native, dissipatively-corrected single-qubit
Clifford gates in the device, and discuss a scheme for
generating dissipatively-corrected T gates by a similar
mechanism via a different encoding. In Sec. V, we dis-
cuss implementations readout/initialization. In Sec. VI
we summarize the device criteria, and estimate relevant
operation timescales and noise tolerances, summarized in
Table I. Sec. VII provides data from numerical simula-
tions of the device. We conclude with a discussion in
Sec. VIII.

I. ENCODING OF QUANTUM INFORMATION

Our qubit is encoded in thermal mixtures of GKP
states in an LC resonator [26]. In terms of the res-
onator flux φ and charge q, the GKP states have their
Wigner function support confined near integer multiples
of φ/φ0 and q/e, where e denotes the electron charge,
and φ0 = h/2e the flux quantum. The multiple parities
define the σz and σx logical operators, respectively, via

σz = Ξ(φ/φ0), σx = Ξ(q/e), σy = −iσzσx. (1)
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where Ξ(x) ≡ sgn cos(πx) denotes the crenellation func-
tion (see Fig. 2), which takes value 1 when the closest
integer to x is even and value −1 if the closed integer to
x is odd [42]. Since Ξ(x) = −Ξ(x + 1), the 3 operators
above satisfy the Pauli anticommutation relations

{σi, σj} = 2δij , (2)

and hence form a valid qubit observable. We can en-
code a ν-dimensional qudit in an analogous fashion; see
Sec. IVA for an example. The modular encoding in
Eq. (1) allows thermally mixed physical states to encode
pure logical states. This key feature underlies the expo-
nential stability of our qubit.

GKP-encoded information is protected against suffi-
ciently weak noise induced by finite-order polynomials of
φ and q, such as charge/flux noise and photon loss–here
termed local noise. The protection emerges because local
noise generates a continuous flow of the system’s Wigner
function. The logical operators {σi} are unaffected by
this flow as long as the system’s Wigner function sup-
port does not leak across the domain boundaries located
at φ = (n1 + 1/2)φ0 and q = (n2 + 1/2)e for integers n1
and n2. Hence, the encoded information is protected as
long as the phase-space support of the system remains
confined in the span of high-eigenvalue eigenstates of the
two GKP stabilizers

S1 = cos (2πφ/φ0) , S2 = cos(2πq/e) . (3)

Henceforth we refer to the mutual high-eigenvalue sub-
space of S1 and S2 as the code subspace, and to states
within the code subspace as (generalized) GKP states.

In circuit-QED, GKP states can be realized as phase-
coherent superpositions of states confined deep within
the wells of a Josephson potential. To ensure ⟨S2⟩ ≈ 1, a
GKP state’s restriction to a single well must be approxi-
mately identical for nearby wells, up to a well-parity de-
pendent relative amplitude, which encodes the quantum
information [43]. The logical states of the qubit, |0⟩ and
|1⟩, correspond to GKP states with full support in even
and odd wells, respectively.

II. SELF-CORRECTING GKP QUBIT

Here we show that GKP states can be dissipatively
generated and stabilized in a circuit-QED device. The
device is shown in Fig. 1(a), and consists of an LC res-
onator connected via a switch to a Josephson junction
and, capacitively, to a generic dissipative element. Here
the dissipative element can, e.g., be a resistor or a trans-
mission line connected to an external reservoir; for sim-
plicity we refer to it as a resistor below. The resulting
circuit is described by

H(t) =
φ2

2L
+
q2

2C
−ws(t)

[
EJ cos

(
2πφ

φ0

)
+
qQR

CR

]
+HR,

(4)

where L and C denote the inductance and capacitance of
the LC circuit, EJ the Josephson energy of the junction,
while ws(t) defines the time-dependence of the switch.
Additionally, HR denotes the resistor Hamiltonian, CR

the coupler capacitance, and QR denotes the fluctuating
charge on the resistor-side of the coupler.

A. Overview of protocol

To see how the device described by Eq. (4) stabilizes
GKP states, first note that activating the switch (setting
ws = 1) causes the system to dissipatively relax in the
cosine wells from the Josephson potential, confining it in
the high-eigenvalue subspace of S1. We can stabilize S2

by subsequently deactivating the switch for a quarter of
the LC oscillation cycle, τLC/4. In this deactivated inter-
val, the Hamiltonian generates a π/2 rotation of phase
space, interchanging φ and q, up to a sign and a rescaling
defined by the resonator impedance,

√
L/C. Setting√

L

C
≈ h

2e2
, (5)

ensures that φ/φ0 is mapped to q/e and vice versa (up to
a sign) [44], leading to an effective interchange of S1 and
S2 [see Eq. (3)]. Hence that ⟨S2⟩ ≈ 1 at the end of the
deactivated segment. Reactivating the switch will again
relax the system to the high-eigenvalue subspace of S1.
The system will then be confined in the code subspace
provided that ⟨S2⟩ retains its near-unit value during the
second switch-activated interval. As a key result of our
work, we show below that ⟨S2⟩ ≈ 1 at the end of the
second activated interval, if it has duration zs

2π τLC for
zs ∈ Z.
The above analysis implies that the system is stabilized

in the GKP code subspace by two cycles of the switch
protocol

ws(t) ≈
{

1, 0 ≤ t < τs
0, τs ≤ t < τs +

1
4τLC

τs =
zs
2π
τLC , (6)

Below, we refer to the two (ws = 1 and ws = 0) segments
above as the free and stabilizer segments, respectively.
In Sec. III we explain in detail why ⟨S2⟩ ≈ 1 after

the second (and all subsequent) stabilizer segments. We
provide a heuristic summary here: firstly, the resistor
can only very slowly dephase the well index (i.e., flux)
of the system, due to its capacitative coupling. As a
result, inter-well coherence persists during the stabilizer
segment up to small deviations. These deviations from
coherence are mapped to flux displacements by the sub-
sequent free segment, and, after that, dissipatively cor-
rected during the following stabilizer segment. While
the superposition components of different wells remain
effectively phase-coherent, they do acquire deterministic
relative phase factors, due to their different inductance
energies [see Fig. 4(a)]. At the beginning of the stabilizer
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FIG. 3. Schematic illustration of dissipative quantum error
correction. (a) Quantum information is encoded in the well
parity of the Josephson potential. (b) noise-induced fluctua-
tions in the potential can potentially cause a bit-flip error if
accumulating to generate a spill-over between wells. (c) With
active error correction, noise-induced entropy is removed via
readout/control: a detector monitors for fluctuations and
counter-steers against any with appropriate control signals
(purple). (d) With dissipative error correction, noise-induced
entropy is absorbed by thermodynamic reservoirs. Our device
achieves this by letting a resistor relax the system towards the
center of the Josephson wells, while maintaining coherence.
Intermittent segments of free LC evolution interchanges σx

and σz, allowing our protocol to employ this relaxation to
correct both phase and bit-flip errors. This causes complete
dissipative stabilization.

segment, the buildup of these phase factors cause the ex-
pectation value of S2 (which translates the wavefunction
by ± 2 wells) to decay to zero. However, the inductance
energies for distinct wells are all squared-integer multi-
ples of εL = φ2

0/2L. Phase factors of wells with the same
parity (whose inductance energies are congruent mod-
ulo 4εL) align at times t = 2πℏz/4εL for each integer z.
The impedance condition in Eq. (5) fixes 4εL/ℏ = 1/τLC.
Thus, S2 revives for t = zτLC/2π. This revival mecha-
nism is clearly demonstrated in numerical simulations,
see Fig. 6(c).

B. Dissipative error correction

Continued operation of our protocol can be viewed as
a realization of dissipative error correction, where noise-
induced entropy is absorbed by a thermal bath, rather
than a readout/control apparatus (see Fig. 3): To see
this, first note from the discussion above that our pro-
tocol effectively resets any state into the code subspace
every two cycles. Secondly, recall from Sec. I that lo-
cal noise only generates logical errors if causing the sys-
tem’s phase-space support to leak through the domain
boundaries at φ = (n1 + 1/2)φ0 and q = (n2 + 1/2)e for
n1, n2 ∈ Z [see Eq. (1)]. Logical errors can only occur
if noise-induced leakage occurs within two cycles when
starting from a stabilized state. For noise weaker tan
this threshold, we expect exponential suppression of log-

ical error rates.
Importantly, dissipative error correction makes the de-

vice resilient to parameter mistargeting (e.g., from par-
asitics) and to control noise (e.g., from imperfect oper-
ation of the switch). The deviations of impedance or
control signal can be viewed as noise on par with other
extrinsic noise sources; the deviations they cause are dis-
sipatively corrected if below a certain threshold. We es-
timate the tolerance for these deviations in Sec. VI (see
Tab. I), and provide analytic estimates for the induced
error rates in a separate work [28]. In particular, this sta-
bility means that the native gates described in Sec. IV are
self-correcting with exponential suppression of infidelity
due to control-noise.
The dissipative error correction described above fails

to correct noise from infinite-order polynomials of φ and
q, which act nonlocally in phase space. Particularly rel-
evant are quasiparticle poisoning, phase slips, and un-
controlled cooper pair tunneling, which translate q or φ
by integer multiples of e or φ0, and hence act nonlo-
cally in phase space. For instance, a quasiparticle tun-
neling into the device at time t during the free seg-
ment results in a phase space translation of the final
state at the end of the segment given by (∆φ,∆q) =
(φ0 sin(2πfLCt), e cos(2πfLCt)); this can hence take the
system away from the protected code subspace, thereby
scrambling the logical information. We hence expect the
timescales for uncontrolled cooper pair tunneling, phase
slips, and quasiparticle poisoning to provide upper limits
on the qubit lifetime. Mitigating these noise sources is
thus crucial to achieve significant lifetime enhancement.

III. DEVICE ANALYSIS:
COHERENCE-PRESERVING RELAXATION

Here we analyze the dissipative stabilizatin protocol in
further detail. In particular, we demonstrate the revival
of S2 during the stabilizer segment—a nontrivial feature
crucial for the operation of the protocol.

A. Resistor model

We model the resistor as a Gaussian bath at tempera-
ture T , such that the fluctuating charge on the resistor-
side of the capacitive coupler, QR, is fully parameterized
via its power spectral density, J(ω):

⟨Q†
R(ω)QR(ω

′)⟩B = J(ω)δ(ω − ω′). (7)

Temperature is encoded in J(ω) via the detailed-balance
condition J(−ω) = J(ω)e−ℏω/kBT . While any bath can
in principle be used, for concreteness, our simulations
consider an Ohmic bath where

J(ω) = g2
ωe−

ω2

2Λ2

1− e−βωℏ . (8)
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FIG. 4. (a) Basis of approximate low-energy eigenstates of
the stabilizer Hamiltonian Hs, used to analyze the stabiliza-
tion dynamics in Sec. III (see text for details). The ba-
sis state |m,µ⟩ denotes the µth harmonic oscillator eigen-
state with characteristic width φ0λ, centered at mφ0, where

λ =
(
hfLC/4π

3EJ

)1/4
. To leading order in λ, their cor-

responding energy levels under Hs are uniformly spaced by
ε0 = λ2EJ for each m, with zero-point energy m2εL, where
εL = φ2

0/2L. (b) A typical GKP state generated by our pro-
tocol (red), corresponding to a logical state 1√

2
(|0⟩+ |1⟩), and

its evolution under the free segment, ULC (blue). The state is
a coherent superposition of all states {|m, 0⟩}, weighted by an
envelope function (dashed line). The free segment effectively
maps the Fourier transform of the well wavefunction to the
envelope and vice versa, up to a sign and a scaling determined
by the LC impedance

√
L/C ≈ h/2e2. This fixes the width

of the envelope to be φ0/πλ (see Appendix D).

Here Λ is a high-frequency cutoff, and g is an effective
noise strength of QR.

We model the dissipative dynamics of the system via
the universal Lindblad equation (ULE), which is accurate
when the effective relaxation rate in the Josephson wells,
Γ [see Eq. (14)], is small relative to the inverse bath corre-
lation time (∼ kBT/h for Ohmic baths) [27, 45]. With the
ULE approximation, a derivation detailed in Appendix A
shows that the density matrix in the stabilizer segment,
ρ, evolves according to

∂tρ = − i

ℏ
[Hs, ρ] + ℓρℓ† − 1

2
{ℓ†ℓ, ρ}, (9)

where

Hs ≡
φ2

2L
+
q2

2C
− EJ cos(2πφ/φ0) (10)

denotes the non-dissipative part of the cir-
cuit Hamiltonian with ws = 1, ℓ =
|ψm⟩⟨ψn|(ℏCR)

−1
√
2πJ(En − Em)⟨ψm|q|ψn⟩ denotes

the ULE jump operator, and {En} and {|ψn⟩} denote
the energies and eigenstates of Hs.

B. Stabilization dynamics

We now analyze the dynamics of the system in the
stabilizer segment, using Eq. (9). To this end, we express
ρ in terms of the eigenstates of the effective Harmonic
oscillators formed by the wells of the cosine potential.
To be specific, we use the basis {|m,µ⟩}, where |m,µ⟩ is
the µth eigenstate of a Harmonic oscillator centered at
φ = mφ0, with vacuum fluctuation width δφ [46], where

δφ = λφ0 and λ ≡
(
hfLC
4π3EJ

)1/4

(11)

where fLC ≡ 1/2π
√
LC denotes the bare LC frequency.

The dimensionless number λ defines the squeezing param-
eter for GKP states in our device [See Fig. 4 (a)], and
serves as a small parameter in our analysis: stabilization
of GKP states requires λ≪ 1/2.
In the subspace of states {|m,µ⟩} with µ≪ 1/4λ2, the

cosine wells of Hs effectively decouple such that

Hs|m,µ⟩ = |m⟩ ⊗
[
H0 +m2εL

]
|µ⟩+O

(
hfLCλ

4
)
. (12)

Here we introduced the tensor product notation |m,µ⟩ =
|m⟩ ⊗ |µ⟩, εL ≡ φ2

0/2L, and H0 is the same operator
for each µ (see Appendix B for derivation). More con-

cretely, H0 = ε0a
†
2a2+O(λε0), where ε0 ≡

√
4EJe2/C =√

4πhfLCEJ denotes the excitation energy in the co-
sine wells and a2 denotes the well annihilation operator:
a2|m,µ⟩ =

√
µ|m,µ− 1⟩[47].

Like the Hamiltonian, the jump operator ℓ only acts
on the level index µ to leading order in λ; namely, in
Appendix B, we show

ℓ|m,µ⟩ = |m⟩ ⊗ ℓ0|µ⟩+O(
√
Γλ4), (13)

where ℓ0 is the same operator for each µ, and is given by

ℓ0 =
√
ΓnB(ε0)(a2+ e

− βε0
2 a†2)+O(

√
ΓnB(ε0β)λ), where

nB(ε) = (e−ε/kBT − 1)−1 denotes the Bose-Einstein dis-
tribution at temperature T , and

Γ =
e2

πnB(ε0)ℏ2λ2C2
R

J(ε0/ℏ). (14)

This defines a characteristic rate for intra-well relaxation.
We provide explicit expressions for the subleading correc-
tions to Hs and ℓ in Appendix B.
Evidently, ℓ generates intra-well relaxation with rate Γ,

and only acts on the level index µ, up to a subleading cor-
rection of order λ4

√
Γ. The latter fact implies that the

resistor can only dephase the well index on timescales
longer than 1/(λ4Γ). Crucially, inter-well coherence is
thus maintained on the timescale for intra-well relax-
ation.
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C. Stabilizer revival trick

We now demonstrate the revival of S2 in the stabilizer
segment, which underlies the operation principle of the
dissiative stabilization protocol. To this end, we express
ρ(t) in the basis {|m,µ⟩} via [48]

ρ(t) =
∑
mn

|m⟩⟨n| ⊗ ρm,n(t). (15)

The components {ρm,n(t)} determine ⟨S2(t)⟩ through

⟨S2(t)⟩ =
∑
m

Re (Tr[ρm,m+2(t)]) . (16)

This follows since S2|m⟩ ⊗ |µ⟩ = 1
2 (|m+ 2⟩ ⊗ |µ⟩+ |m−

2⟩ ⊗ |µ⟩).
At the onset of the second stabilizer segment—t = 0

below—the system is confined in the high-eigenvalue
subspace of S2 (c.f. Sec. II A), implying ρm,m+2(0) ≈
ρm,m(0). Using Eqs. (12) and (13), along with the trace-
preserving properties of Lindbladians, we moreover find

Tr[ρmn(t)] = e−i(m2−n2)
εLt

ℏ Tr[ρmn(0)]+O(λ4[fLC+Γ]t).
(17)

The correction is generated by the residual corrections
to Hs and L in Eqs. (12) and (13), i.e., from the deter-
ministic deviations of state trajectories in different wells
generated by the correction to Hs, and from the weak
inter-well dephasing generated by the correction to ℓ.
Combining Eq. (16) with ρm,m+2(0) ≈ ρm,m(0) shows

that ⟨S2(t)⟩ initially decays to zero due the buildup of
the phases {4εL(m2 − n2)t/ℏ}. However, since (m2 −
[m+2]2) ∈ 4Z, the phase factors align when t = z ℏπ

4εL
for

integer z, causing ⟨S2⟩ to revive:〈
S2

(
zℏπ
4εL

)〉
= ⟨S2(0)⟩+O

(
zλ4(1 + ΓτLC)

)
. (18)

The impedance criterion
√
L/C = h/2e2 fixes εL =

πhfLC/2; hence the phase factor alignment occurs when
t = z

2π τLC, i.e., at the end of the stabilizer segment. The
revival of S2 is evidenced in numerical simulations [see
Fig. 6(c)]. Similar arguments shows that ⟨Sk

2 (τs)⟩ ≈ 1
for k > 1, implying that the system is confined in the
high-eigenvalue subspace of S2 at the end of the second
stabilizer segment.

The results above implies that the system is confined
within the mutual high-eigenvalue subspaces of S1 and
S2 at the end of the second stabilizer segment, and for
all subsequent driving cycles. This demonstrates that the
device and protocol in Fig. 1(a,c) [Eqs. (4), (6)] dissipa-
tively generates and error corrects GKP states.

IV. SELF-CORRECTING NATIVE GATES

Here we show that the qubit supports self-correcting
native S and Hadamard (H) gates, which can be applied

through appropriate control of the switch signal ws(t).
These form a complete set of single-qubit Clifford gates.
The Hadamard gate is generated by each free segment,

since this part of the protocol interchanges σx and σz [see
Sec. II A and Eq. (1)].
The S gate is generated by the accumulating relative

phase-factors between different wells in the Josephson po-
tential, due to their distinct inductance energies; see dis-
cussion below Eq. (6). First, note that the inductance
energy of well n is given by n2εL, implying that induc-
tance energeis of even and odd wells differ by εL mod-
ulo 4εL. States in odd wells therefore acquire a phase
factor e−iεLzsτLC/2πℏ = e−iπzs/2 relative to their counter-
parts in even wells under a stabilizer segment of duration
zsτLC/2π. This is equivalent to the action of zs S gates.
Arbitrary single-qubit Clifford control can be imple-

mented through appropriate interspersing of stabilizer
and free segment [i.e., not necessarily ordering them in
an alternating pattern in Fig. 1(c)]. As described in
Sec. II B, control noise from these gates dissipatively er-
ror corrected, which leads to exponential suppression of
gate infidelity.

The above results imply that odd zs causes the protocol
to cyclically permute σx, σy, and σz—possibly with an
alternating sign. In this sense, our device can be viewed
as a dissipative phase-locked oscillator, or Floquet time
crystal [49–56], whose emergent periodicity is controlled
by zs mod 4. Choosing zs odd causes the 3 logical oper-
ators of the qubit to appear on equal footing, implying
that phase an amplitude errors is treated symmetrically,
and T1 = T2.

A. Protected T gate in quasi-modular encoding

Interestingly, the same mechanism that leads to the
native, protected S gatecan be used to stabilize a na-
tive magic T gate, e−iπσz/8 when using an alternative
implementation of the qubit, with

√
L/C = h/e2 and a

different encoding [29].
The self-correcting T gate emerges for a qubit en-

coded with the quasi-modular logical operators σ̄ =
(σ̄x, σ̄y, σ̄z), where

σ̄z = Ξ(φ/φ0), σ̄x = Ξ(q/2e)e−i q
4e IIw, σ̄y = −iσ̄zσ̄x.

(19)
here Ξ(x) denotes the crenellation function (see Fig. 2), I
is the phase space inversion operator that maps (φ, q) to

−(φ, q), while Iw = e−iπa†
2a2 is the well inversion op-

erator, that maps |m,µ⟩ to (−1)µ|m,µ⟩, with a2 and
{|m,µ⟩} denoting the well annihilation operator and ba-
sis states described in Sec. III [see also Fig. 4]. The logical
operators above satisfy the Pauli algebra {σ̄i, σ̄j} = δij
when acting on stabilized states, and hence form a valid
qubit observable; this can, e.g., be seen when noting that
σ̄x|m,µ⟩ = |1−m,µ⟩ and σ̄z|m,µ⟩ = (−1)m|m,µ⟩.

With the above encoding, the code subspace is spanned
by 4 families of states, with support near φ (mod 4φ0) ≈
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ζφ0 for ζ = 0, 1, 2, or 3, respectively. The computational
spaces splits up into two sectors: logical operators do not
couple states with ζ ∈ {0, 1} to states with ζ ∈ {2, 3}.
We use the first sector as the computational space for
the system, with ζ = 0, 1 resulting in eigenvalues 1 and
−1 of σz. States with ζ = 2, 3 can be considered non-
computational.

The logical operators {σ̄i} have stabilizers S1 and S̄2 =
cos(4πq/e). The quasi-modular encoding above can be
thus dissipatively stabilized by the device and protocol
in Sec. II A by setting

√
L/C = h/e2. The revival of S̄2

in the stabilizer segment is again ensured by picking the
stabilizer segment duration to be an integer multiple of
τLC/2π, zs [57]

To see how the T gate emerges, note that the |ζ⟩ log-
ical state (for ζ ∈ {0, 1}) has support in wells where
m mod 4 = ζ. Sincem mod 4 = ζ impliesm2 mod 8 = ζ
for ζ ∈ {0, 1}, the |ζ⟩ logical state of the qubit thus ac-
quires a phase factor e−iπζ/4 during the stabilizer seg-
ment. A stabilizer segment with zs ∈ 8Z + 1 hence gen-
erates a T gate [58].

Unlike the modular encoding in Eq. (1), the quasi-
modular encoding above does not appear to support a
native, protected Hadamard gate, and hence also not
universal gates. We speculate that the protocol above
could still be leveraged to provide a high-fidelity magic
factory in a quantum information processor, by generat-
ing magic states with exponentially-suppressed infidelity.
The protocol could thus provide a valuable resource in a
quantum information processing architecture, if logical
states with the quasi-modular-encoding above could be
transported to a qubit with a different encoding (e.g., the
modular encoding in Sec. I that we consider in the rest
of the paper).

V. READOUT AND INITIALIZATION

Here we propose a readout protocol which performs a
measurement of σz via the supercurrent in the Josephson
junction. The protocol can also be used for initialization
in the logical state with ⟨σx⟩ = 1.
The protocol consists of the following sequence:

1. Set ws = 1 for a duration τLC/4π

2. set ws = 0 for a duration τLC/4

3. Set ws = 1 and measure the squared su-
percurrent in the Josephson junction, I2 =
(2eEJ/ℏ)2 sin2(2πφ/φ0). This can, e.g., be de-
tected the frequency shift of an adjacent transmon
due to the magnetic field induced by the supercur-
rent [59, 60]. In this interval, the relaxation time
Γ−1 (controlled through CR) must be longer than
the detection time of the device.

4. If the average squared supercurrent is larger than
I2c /4, the system was in a |1⟩ logical state (⟨σx⟩ =

FIG. 5. Evolution of logical states during stabilizer segment,
when ws = 1, using the parameters from example 2 of Ta-
ble I, assuming no dissipation and noise. (a) Evolution of
charge probability distribution p(q) during the stabilizer seg-
ment for a logical |1⟩-state. (b) Wigner function of the sys-
tem at t = 0 and (c) at t = τLC/(8π). Yellow arrows indicate
correspondence to peaks in panel (a), and purple arrows in-
dicate shear-drift of peaks in Wigner function. (d) Evolution
of charge probability distribution for a logical |0⟩-state. (e)
Evolution of stabilizers during the stabilizer segment for the
|0⟩ (red) and |1⟩ state (blue).

−1) at the onset of the readout protocol. If not,
the system was in a |0⟩ logical state at the onset.

5. (For initialization): Set ws = 0 again after a du-
ration zreadout/(2πfLC) where zreadout is an integer
large enough to ensure successful measurement of
the supercurrent. If no supercurrent is detected,
the system is initialized in a logical state with
⟨σx⟩ = 1 at the end of the protocol. If not, run
the ordinary stabilization protocol for a few cycles,
and repeat the steps above.

The readout protocol exploits a characteristic peak
structure that emerges in the charge probability distri-
bution p(q) ≡ ⟨q|ρ|q⟩ for GKP states during the stabi-
lizer segment. At times t = aτLC/(2πb) for a, b ∈ Z, p(q)
consists of regularly-spaced peaks located at q = ez/b for
z ∈ Z. For even b, a logical |s⟩ state (i.e., any state with
σz-eigenvalue (−1)s) will moreover result in p(q) being
peaked at multiples of e/b wih parity s. This structure
is evident in Fig. 5(ac), where we plot the evolution of
p(q, t) during the stabilizer segment starting from two
different logical states with σz eigenvalue −1 (a) and 1
(c)[61]. The structure emerges due to a shear-drift of
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the peaks of the system’s Wigner function, W (φ, q) dur-
ing the stabilizer segment. At time t, all peaks located at
flux φ = nφ0 have shifted in the q-direction by an amount
2πnefLCt/2. This causes distinct Wigner function peaks
to align in the φ direction for rational 2πfLCt, leading to
emergence of peaks in the charge probability distribution,
p(q) =

∫
dφW (φ, q),, as illustrated in Fig. 5(a-c). This

mechanism is discussed in further detail in Appendix C.

The readout protocol exploits the peak structure as
follows: Step 1 of the protocol evolves the system with
the LC Hamiltonian until time t = τLC/4π, where the
charge probability distribution for a logical |s⟩ state is
peaked at q = (z + s/2)e for integer z. Step 2 maps q/e
to −φ/φ0, implying that the resulting state is confined
to φ = (z+ s/2)φ0. If the system is in a |1⟩ logical state,
the physical state will hence have its φ-support near the
maxima of the Josephson potential. During step 3, the
system will thus decay to the ground state of the Joseph-
son potential, leading to a detectable supercurrent signal.
On the other hand, for a |0⟩ logical state, the system will
be deep in the wells of the Josephson potential at the
onset of step 3, and no supercurrent will be detected.

The protocol above can be used for initialization: by
starting from a random initial state, a few cycles of the
stabilization protocol first drives the system into the code
subspace. Subsequently, the readout protocol is applied.
If no supercurrent was detected, the system is known to
have even support in all wells after the readout proto-
col, i.e., to be in a logical |X⟩ = 1√

2
(|0⟩ + |1⟩) state. If

a nonzero supercurrent is detected, the system is in an
undetermined state (since the relaxation into the wells
will cause the measured |1⟩ state to be destroyed, and
replaced by a mixed logical state). In that case, the sta-
bilization/readout protocol is repeated, until no super-
current is detected.

Importantly, noise from the readout apparatus does
not affect the stability of the qubit during its normal
operation. Specifically, the squared supercurrent I2 =
(2eEJ/ℏ)2 sin2(2πφ/φ0) is a stabilizer of the qubit; noise
coupled to it hence cannot decohere the encoded infor-
mation. Indeed, the supercurrent readout can work as
a syndrome detector, if switched on during the normal
operation of the qubit.

VI. DEVICE REQUIREMENTS, NOISE
THRESHOLDS, AND OPERATION TIMESCALES

Here we estimate the parameter requirements for the
qubit, thresholds for charge and flux noise, and the char-
acteristic operation timescales. We expect coherence
time to be in the exponential-scaling regime below the
thresholds we list here. Our estimates are listed in Ta-
ble I for 3 different parameter scenarios that we expect
to be achievable now or in the near-future.

Parameters

L 1µH 10µH 100µH

C 6 fF 60 fF 600 fF

EJ/h 200GHz 200GHz 200GHz

Γ 2GHz 0.5GHz 0.1GHz

τs 21τLC/2π 8τLC/2π 4τLC/2π

fLC 2.1GHz .21GHz .021GHz

λ 0.1 0.05 0.03

Device requriements

Control resolution 170 Gs/s 30 Gs/s 6 Gs/s

LC Quality factor 220 2 000 20 000

Temperature 2K 2.5K 3K

Accuracy of L/C 8% 4% 2%

Noise thresholds

Charge noise 2× 10−12 e2

Hz
2× 10−11 e2

Hz
2× 10−10 e2

Hz

Flux noise 2× 10−13 φ2
0

Hz
5× 10−12 φ2

0
Hz

8× 10−11 φ2
0

Hz

Operation timescales

Protocol cycle 1.7 ns 7.4 ns 19 ns

H Gate 0.12 ns 1.2 ns 12 ns

S Gate 0.08 ns 0.8 ns 7.6 ns

Readout 75 ns 76 ns 79 ns

Initialization 300 ns 322 ns 530 ns

TABLE I. Device requirements, noise thresholds and oper-
ation timescales for 3 parameter scenarios; see Sec. VI for
details. Parameters L,C, EJ , Γ, and τs denote the induc-
tance, capacitance, and Josephson energy, resistor-induced
loss rate, and stabilizer segment duration, respectively, while
fLC and λ denote the derived LC frequency and GKP squeez-
ing parameters. The charge and flux noise thresholds denote
the estimate maximal tolerated power-spectral density for a
white-noise charge or flux signal. For noise tolerances and de-
vice requirements below the listed thresholds, we expect the
qubit lifetime to remain exponentially long.

A. Device requirements

We first consider the requirements for the device pa-
rameters: L,C,, EJ , T , along with control resolution fc,
and LC quality factor Q.
As described in Secs. IIA, our qubit operates in the

regime where the LC impedance
√
L/C approximately

matches h/2e2 ≈ 12.91 kΩ. In terms of the LC frequency,

fLC = 1/2π
√
LC, we thus require

L ≈ 2.053µH

fLC [GHz]
C ≈ 12.32 fF

fLC [GHz]
(20)

Below, we estimate the tolerance for deviations of L and
C from these targeted values to be up to ∼ 10%, depend-
ing on the value hfLC/EJ [see Eq. (25)].
We next estimate the requirements for the Josephson

energy. We obtain the condition by requiring that the
(Gaussian) ground state in the Josephson wells, which is
stabilized by our protocol at low temperatures, is well-
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confined inside the well. To be more concrete , we require
that the domain boundaries of the logical operators at
odd half-integer multiples of φ0 is beyond 4 standard
deviations of the well ground state, δφ0. We recall from
Sec. III that δφ = λφ0, where

λ =

(
hfLC
4π3EJ

)1/4

≈ 0.300

(
hfLC
EJ

)1/4

(21)

denotes the GKP squeezing parameter. Our requirement
above thus implies λ ≤ 1/8, which leads to condition on
the Josephson energy:

EJ/h ≳ 30fLC. (Josephson energy) (22)

To infer a condition on the temperature T , we note that
the steady-state inside each well in the stabilizer segment
is approximately a temperature-T thermal state of a Har-
monic oscillator with vacuum fluctuation with δφ = λφ0

and exciation energy ε0 =
√
4e2EJ/C (see Sec. III). The

flux probability distribution of such a state is a Gaussian
with standard deviation δφth =

√
coth (ε0/2kBT )λφ0.

Analogous to our condition on the Josephson energy, we
estimate a condition for T by requiring that 4δφth ≤
φ0/2. Using that coth(x) ≈

√
1 + x−2 and ε0 = 4π2λ2,

our condition thus becomes

T ≲ 0.3EJ/kB
√
1− (8λ)2. (Temperature) (23)

We next estimate the threshold for control resolution of
the switch [62], parameterized via the effective sampling
rate of ws(t), fc, we assume finite fc causes the bound-
ary between each free segment to be shifted by a random
time step δt, of order 1/2fc. This causes the free segment
to effectively mistarget the π/2 rotation of phase space
by an angle ∼ δθ = 2πδt. We estimate the fc threshold
by requiring that, in phase-space symmetric units where
e = φ0 = 1, the phase space displacement generated by
the rotation δθ is smaller than 1/2, within 4 standard de-
viations of the system’s low-temperature Wigner function
envelope, κ: 4κδθ ≤ 1/2. In Appendix D, we estimate
the system’s low-temperature Wigner function envelope
to be a Gaussian with standard deviation κ = 1/πλ (see
also Fig. 4), leading to the condition

fc ≲
8

λ
fLC. (Control resolution) (24)

Since we require λ ≤ 1/8, we hence need a control reso-
lution of at least ∼ 64fLC

Next, we consider the tolerance for mistargeting the
impedance. A deviation of the impedance leads to a
squeezing of the Wigner function over a free segment by
the factor (

√
L/C/Z0 − 1), where Z0 ≡ h/2e2 denotes

twice the quantum resistance. Analogously to our con-
dition for control resolution, we require the induced dis-
placement to be smaller than 1/2 within 4κ from the ori-

gin (in units with φ0 = e = 1): 4κ|
√
L/C/Z0−1| ≤ 1/2.

This leads to ∣∣∣∣∣
√
L/C

Z0
− 1

∣∣∣∣∣ ≲ 0.4λ. (25)

Since λ ≤ 1/8, the deviation threshold can thus at most
be 5%. Because of the square-root above, the tolerance
for relative deviations of L and C is 0.8λ, and thus up to
∼ 10%, as we quoted below Eq. (25) above.
We finally consider the consequences of a finite Q

factor of the LC resonator caused by uncontrolled ca-
pacitative coupling to its surrounding environment—i.e.,
photon loss. During the stabilizer segment, a capac-
itative coupling to an external environment is benefi-
cial; indeed such a coupling is leveraged by our dissi-
pative stabilization protocol. During the free segment,
the capacitive coupling on the other hand results in a
uniform loss rate of photons from the LC resonator, at
the rate γ = 2π/QτLC, where Q is the corresponding
quality factor and τLC the LC oscillation period [63].
Photon loss generates simultaneous uniform diffusion
and shrinkage of phase space, with diffusion constant
γ coth(hfLC/2kBT ) and shrinkage rate γ [64]; here and
below we work in units where φ0 = e = 1. At the
end of the free segment (i.e., after a duration τLC/4),
photon loss has thus shrunk phase space by a factor
≈ (1 − γτLC/4), and diffused it with a diffusion kernel

of width ∆ =
√
γ coth(hfLC/2kBT )τLC/4. To obtain a

condition on Q, we require that the domain boundaries of
the logical operators at ±1/2 is beyond 4 standard devia-
tions of the diffusion kernel, and that shrinkage-induced
phase-space displacement is below 1/2 within 4κ from
the phase space origin. Using Q = 2π/γτLC, this leads
to the conditions

Q ≥ max

(
100 coth

(
hfLC
2kBT

)
,
4

λ

)
(Quality factor)

(26)
Note that the requirement on the Q factor can be rela-
tively mild: for fLC ∼ GHz, T ∼ 100mK, and λ ∼ 1/8,
the Q factor threshold is ∼ 240.

B. Noise thresholds

We finally estimate the qubit’s tolerance for flux and
charge noise.
We model charge noise as a fluctuating charge ξ(t)

capacitively coupled to the circuit through Hq(t) =
ξ(t)q/C. For simplicity, we assume ξ(t) a white-noise sig-
nal, with uniform power spectral density γq/2π, such that
⟨ξ(t)ξ(t′)⟩ = γqδ(t− t′) (we analyze generic noise spectra
in a separate work [28]). On its own, Hq(t) generates
Brownian motion of the flux, φ, with diffusion constant
Dq = γq/C

2 [63]. Within the stabilizer segment, dissipa-
tion from the resistor counteracts the diffusion, driving φ
towards the minima of the flux potential, φ = nφ0. We
expect the qubit to remain stable in the stabilizer seg-
ment if the effective diffusion length within the resistor-
induced relaxation time Γ−1 is much smaller than φ0/2,
i.e., if Dq ≪ Γφ2

0.
Within the free segment, Hq(t) generates

diffusion in phase space along the direction
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(φ0 cos(2πfLCt), e sin(2πfLCt)) with normalized dif-
fusion constant Dq in units where e = φ0 = 1. As
a result, Hq(t) generates (correlated) flux and charge
displacements with variances both given by DτLC/8 in
the free segment. We again require these displacements
remain below 1/2 within 4 standard deviations of the
diffusion kernel. Using C = e

2πφ0hfLC
. This leads to the

condition [65]

γq ≲
e2

320fLC
. (Charge noise) (27)

For noise strength γq below this threshold—and likely
even above—our protocol resets noise-induced fluctua-
tions before they accumulate to induce a logical error.
We thus expect the qubit lifetime remains exponentially
long.

We finally consider flux noise, which we model as a
fluctuating flux ξφ(t) coupled to the system through
Hφ = ξφ(t)φ/L, where ξφ has uniform power spec-
tral density: ⟨ξφ(t)ξφ(t′)⟩ = γφδ(t − t′). On its own,
this term generates random diffusion of the charge, and
causes a phase space displacement during the free seg-
ment, (∆φ,∆q). Since no mechanism counteracts charge
diffusion during the stabilizer segment, flux noise also
generates a charge displacement in the stabilizer segment
with diffusion constant Dφ = γφ/L

2. This displacement
is only corrected in the following cycle, where it has been
mapped to a flux displacement. Combining the diffusion
during the stablizer and free segment, an analysis simi-
lar to the one performed for charge noise results in the
criterion

γφ ≲
1

320 + 80τsfLC

φ2
0

fLC
. (Flux noise) (28)

This sets the system’s tolerance for flux noise.

C. Operation timescales

We finally estimate the relevant operation timescales
for the qubit, including, gate, readout, initialization, and
coherence times.

We estimate the readout and initialization times us-
ing the native protocol described in Sec. V, assuming
the squared supercurrent of the Josephson junction can
be detected within ∼ 75 ns with a Josephson-device
based magnetometer [59, 60]. The detection time is
estimated assuming the magnetometer is located 5µm
from the Josephson junction, and has a sensitivity of
∼ 10 pT/

√
Hz, as has been realized recently [59, 60]. The

initialization time is estimated assuming a 50% proba-
bility for successful initialization at each attempt (see
Sec. V), implying that an average of 4 attempts are re-
quired to initialize the qubit.

The gate times are estimated using the native gates of
the qubit, described in Sec. IV: the S gate e−iπσz/4 is gen-
erated by a stabilizer segment with duration 1/(2πfLC),

while the Hadamard gate is generated by an free seg-
ment, with duration 1/(4fLC). See Sec. IV for further
discussion of the gates.

VII. NUMERICAL RESULTS

Here we demonstrate the emergence of dissipative error
correction in simulations of the qubit. To demonstrate
the robustness of the qubit to extrinsic noise, we also
include charge noise in our simulations.
We model the system via the master equation

∂tρ = (Ls(t) + Lnoise(t)) [ρ], (29)

where Ls(t) and Lnoise(t) are the time-evolution genera-
tors (Liouvillians) of the stabilizer protocol and the noise,
respectively. The Liouvillian of the stabilizer protocol
was obtained in Eq. (9),

Ls(t)[ρ] = − i

ℏ
[HS(t), ρ] + ws(t)

[
ℓρℓ− 1

2
{ℓ†ℓ, ρ}

]
. (30)

Here HS(t) = q2/2C + φ2/2L − ws(t)EJ cos(2πφ/φ0)
denotes the system Hamiltonian, and ℓ ≡
(ℏCR)

−1
∑

mn |ψm⟩⟨ψn|
√
2πγJ([En − Em]/ℏ)⟨ψm|q|ψn⟩

denotes the ULE jump operator for the sys-
tem with the switch activated, with |ψn⟩ and
En denoting the energies and eigenstates of
Hs ≡= q2/2C + φ2/2L− EJ cos(2πφ/φ0).
We model the resistor as an Ohmic bath at temper-

ature T = 1/kBβ, with power spectral density J(ω) =
g2ω(1−e−βℏω)−1. Note that the resistor parameters only
enter in Eq. (29) through the dimensionless ratio eg/ℏCR,
which defines an effective conductance relative to the
quantum conductance. The loss rate fixes this ratio via
Eq. (14):

ℏΓ = 4π

(
eg

ℏCR

)2

EJ , (31)

where we used ε0 = 4π2λ2EJ .
We model charge noise as in Sec. VIB, through

Lnoise[ρ] = −i ξq(t)
ℏC

[q, ρ], (32)

where ξq(t) is a white-noise signal satisfying ⟨ξ(t)ξ(t′)⟩ =
γqδ(t − t′), with γq defining the charge noise strength.
We initially set the charge noise strength to γq =
10−12 e2/Hz.
We numerically solve Eq. (29) with the parameters

L,C,EJ ,Γ and T from example 2 in Tab. I, using the
Stochastic Schrodinger equation (SSE) [66, 67]. In our
simulations, we compute ℓ through exact diagonaliza-
tion. Our simulations are thus agnostic to the analysis
in Secs. II A-III, thereby serving as an independent check
of its conclusions.
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FIG. 6. Numerical simulations of GKP state stabilization
(see Sec. VIIA for details). (a) Evolution of flux probabil-
ity distribution over 3 cycles resulting obtained for a single
SSE trajectory and starting from a random initial state. (b)
Wigner function of the final state and (c) evolution of stabi-
lizers 1 (purple) and 2 (orange) for the trajectory depicted in
panel (a). shaded regions indicate stabilizer segments. Note
that ⟨S2⟩ is only required to take value near 1 at the end of
each stabilizer segment for GKP states to be stabilized. (d)
Mean value of stabilizers at the end of each stabilizer segment
for the first 12 cycles, averaged over 100 trajectories.

A. Stabilization of GKP states

To verify that the protocol stabilizes GKP states, we
initialized the system in a random high-energy state far
outside the code subspace [68], and computed the result-
ing evolution under the protocol via the SSE. Fig. 6(a)
shows the evolution of the flux probability density for
a representative SSE trajectory from this simulation.
The single trajectory approaches the center of the wells
of the Josephson potential (integer multiples of φ0) in
each stabilizer segment, while retaining support in differ-
ent wells—reflecting maintenance of inter-well coherence,
consistent with our discussion in Sec. III. After 3 proto-
col cycles, the Wigner function of the trajectory has the
characteristic GKP grid structure [Fig. 6(b)], indicating
successful convergence to the code subspace. Indeed, the
expectation values of the two stabilizers have relaxed to
near-unity after 2 cycles [Fig. 6(c)]. Sampling over 100
SSE trajectories, we confirm that stabilization of GKP
states is achieved within 2 − 3 cycles of the protocol
(∼ 8 ns) [Fig. 6(d)].

B. Dissipative error correction

To confirm that the system remains stabilized after the
initial convergence to the code subspace, we compute the
evolution of the system for many subsequent cycles, after
initializing the system in a randomly selected computa-
tional state[69] In Fig. 7 we show the resulting evolution

FIG. 7. Coherence properties of the qubit. (a,b) Evolution
of logical operators in the absence (a) and presence (b) of cou-
pling to the resistor, averaged over 200 SSE trajectories start-
ing from a randomly chosen logical state (see main text). (c,d)
Logarithm of logical state purity, log∥σ∥2, versus time, in the
absence (c) and presence (d) of coupling to the resistor—note
different axis scales in panels (c) and (d). Dashed lines indi-
cate fits used to estimate qubit lifetimes. Data in panel (d)
are obtained by time coarse-graining evolution of ∥σ∥2 over
400 driving periods before taking the logarithm. Shaded re-
gions, where visible, indicate standard error of the mean in
panels (a,b), and standard deviation from bootstrap resam-
pling of SSE trajectories in panels (c,d). In all cases, we use
the parameter set from example 2 in Table I

of logical operators for Γ = 0 and Γ = 1GHz, aver-
aged over 200 trajectories. Whereas the logical operator
expectation values quickly decay in the absence of the
resistor, for Γ = 1GHz, the logical operators remain sta-
tionary over the entire window we simulate.
To further illustrate the role of dissipation for stabi-

lization, in Fig. 1(d) we show the stabilizers and logical
operator evolution for representative SSE trajectories at
3 values of Γ. Evidently, increasing Γ causes the fluc-
tuations of the stabilizers away from unity to decrease,
and the logical operator trajectories to become station-
ary, implying stabilization of encoded information. Note
that the logical operators for Γ = 1GHz remains station-
ary in the presence of significant thermal fluctuations of
the stabilizers, and hence also the state. This demon-
strates that the encoded information is successfully de-
coupled from the thermal noise from the resistor. Inter-
estingly, it is also possible to distinguish individual logical
error events for Γ = 0.25GHz in Fig. 1(f): here stabiliz-
ers only reach negative values at a few instances, where
rare (but significant) noise-induced fluctuations takes the
system over the energy barrier that protects the qubit.
Indeed, the logical operator remains near-stationary be-
tween these instances, but changes abruptly at instances
where the stabilizers obtain negative values.
We estimate the qubit lifetime via the decay of the

logical state purity, ∥⟨σ⟩∥2. Fig. 7(c) shows the stro-
boscopic evolution of log∥⟨σ⟩∥2 for Γ = 0. The purity
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remains near-unity for a brief initial period of little de-
cay, which we expect is due to the finite time required
for the system’s phase space support to reach the do-
main boundaries of the logical operators. Beyond this
point, the data shows a clear linear trend consistent with
exponential decay of the purity. From a linear fit [dashed
line in Fig. 7(c)], we estimate a lifetime of 63+19

−9 ns, with
errors indicating 95% confidence interval from bootstrap
resampling of SSE trajectories.

In Fig. 7(d), we show the evolution of log∥⟨σ⟩∥2) for
Γ = 1GHz [note the different x- and y-scale compared
to panel (c)][70]. The logarithm of the purity exhibits a
clear linear decrease after an initial period of ∼ 150µs
where the information is near-stationary [71] From a lin-
ear fit of the data after the onset of exponential decay
[dashed line in Fig. 7(d)] [72], we estimate a lifetime of
1.8+9.9

−1.1 s (where the errors are the 95% confidence inter-
val from bootstrap resampling). While there is significant
uncertainty in our estimate of the lifetime, it is clear that
the presence of the resistor enhances the timescales over
which quantum information is preserved up to macro-
scopic timescales.

To investigate the scaling of qubit lifetime with the
dissipation strength, in Fig. 1(f), we show the evolution
of the obtained coherence times as a function of system-
resistor coupling (parameterized via Γ) for the device pa-
rameters from column 2 of Table I. The data reveal a clear
exponential trend that continues beyond the 1ms range
for Γ ≳ 0.6,GHz, indicating a potential for significant
qubit stability against phase-space local noise.

C. Readout

We finally simulated the readout protocol from Sec. V.
We generated characteristic |0⟩ and |1⟩ logical states of
the protocol by evolving initial states with support in
only even and only odd wells of the cosine potential, re-
spectively, for 18 cycles. We then simulated the evolution
of the system during the readout protocol from Sec. V.
During step 3 of the protocol, we decreased the effective
resistor conductance to ge/CRℏ = 0.00016, in order to
extend the relaxation time of the supercurrent signal to
the ∼ 100ns range, where it can possibly be detected
(see Sec. V and Sec. VI. In the simulation, we used the
charge noise strength γq = 0.1 × 10−13 e2/Hz, because
the smaller value of κe/CRℏ leads to a lower tolerance
for charge noise.

In Fig. 8(a) we show the flux probability density,
⟨ϕ|ρ|ϕ⟩, at the onset of step 3 of the protocol, for the
two different initializations, averaged over 50 SSE trajec-
tories. As described in Sec. V, the distributions resulting
from the two logical states are confined near integer and
half-integer multiples of φ0, respectively. In Fig. 8(b),
we show the evolution of the squared supercurrent dur-
ing step 3, with t = 0 the onset of the readout protocol.
Evidently the two different logical states result in very
different supercurrent signals, that could be detected by

FIG. 8. Numerical Simulations of the readout protocol de-
scribed in Sec. V. (a) Flux probability density, ⟨φ|ρ|φ⟩, at
the onset of step 3 of the protocol, immediately before the
measurement of squared supercurrent, starting from a logi-
cal state produced by the protocol with σz expectation value
0 (red) and 1 (blue). (b) Evolution of squared supercurrent
during step 3 of the protocol (supercurrent measurement), for
the two initializations.

a readout device. This demonstrates the feasibility of the
protocol.

VIII. DISCUSSION

Here we showed that the circuit-QED device and proto-
col in Fig. 1(a,b) can dissipatively generate GKP states
within few cycles. Under continued operation, the de-
vice realizes dissipative error correction, where entropy
induced by local noise (e.g., from flux, charge, or control
noise) is removed dissipatively without affecting encoded
logical information. Our simulations indicate that this
dissipative error correction leads to exponential lifetime
increase, possibly extending to macroscopic timescales
even in the presence of external noise. In a separate
upcoming work, we present analytic expressions for the
lifetime that further support its exponential scaling.
Intriguingly, the qubit supports a set of native, rapidly-

operated, and self-correcting single-qubit Clifford gates,
whose infidelity we expect will be exponentially sup-
pressed. Also enhancing its appeal, our device supports a
native readout/initialization protocol via the Josephson
junction supercurrent. In this sense, our device can be
viewed as an integrated self-correcting quantum informa-
tion processor. For realizations with 1µH inductors and
∼ h × 100GHz Josephson energies (requiring signal res-
olution of ∼ 150 Gs/s), the gate times are of order 1 ns,
while we estimate readout and initialization times to be
of order 75 ns and 300 ns, respectively. In this regime, we
expect coherence time can reach > 100ms in the presence
of finite control, charge, and flux, noise.
An interesting future direction is to explore whether

the device supports a universal set of native, self-
correcting gates, by exploring realizations of self-
correcting multi-qubit and magic gates. Particularly
interesting, our platform supports a self-correcting na-
tive magic (T ) gate with the quasimodular encoding de-
scribed in Sec. IVA. We speculate that this mechanism
can be leveraged as a resource for protected magic gate
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generation—i.e., a magic factory—in a future quantum
information processing architecture [29].

We expect qubit lifetime to be limited by phase-space
nonlocal noise, including quasiparticle poisoning, phase
slips, and spurious cooper pair tunneling from imperfect
deactivation of the switch. Recent advances in under-
standing the origin of quasiparticle poisoning, and miti-
gating its effects [30, 73], could mean that the timescales
for these events could be significantly above the thresh-
old where potential concatenated active error correction
protocols can efficiently operate with current technology.

The main experimental challenges we foresee for
our device is the requirement of high-impedance LC-
resonators, and a rapidly-acting switch that completely
blocks (or exponentially suppresses) cooper pair tunnel-
ing through the Josephson junction. The tradeoff be-
tween the requirements of circuit inductance and switch
operation time is evidenced in Table I: for currently
achievable inductances of order L ∼ 1−10µH, the switch
has to exponentially suppress the rate of cooper pair tun-
neling at control resolutions of 10−200 Gs/s (depending
on acheived inductance). This inevitably requires devel-
opment of new circuit elements. Such elements can pos-
sibly build on existing technology: for reference, tech-
nology supporting control resolutions of 100 Gs/s have
been developed in the telecommunications industry [40],
and control resolutions of ∼ 25 Gs/s has been employed
in circuit-QED contexts. We speculate that a rapidly-
acting switch can be achieved with gate-tuned Joseph-
son junctions, which currently can achieve suppression
of Josephson coupling by many orders of magnitude on
the ns timescale and possibly below [39]. Alternative ap-
proaches could involve accurately-controlled SQUID el-
ements, resistively-shunted Josephson junctions [25], or
voltage-control that leverages the AC Josephson effect.

Realizing the technologies above will have significant

impact by enabling a physical qubit with exponentially-
scaling lifetime, which does not require active error cor-
rection for stabilization. Due to these advantages, we ex-
pect the devise presented here offers a promising alterna-
tive route to scalable quantum computation, by bypass-
ing major scalability challenges for approaches purely
based on active error correction.
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Appendix A: Lindblad equation for the system

Here we describe how we model the dissipative dy-
namics of the system via the universal Lindblad equation
(ULE) from Ref. [27] [80].

To recap, we seek to obtain a master equation for the
system described by the Hamiltonian

HSB(t) = HS(t) +Hint(t) +HB (A1)

where

HS(t) =
q2

2C
+
(φ0

2π

)2 ϕ2

2L
+ f(t)EJ cos(2πφ/φ0), (A2)

and HB describes a fermionic bath (see below). In the
case of capacitive coupling, the system-bath coupling
takes the forms

Hint(t) = ws(t)
qQR

CR
(A3)

Here Qr denotes the charge on the bath-side of the ca-
pacitive coupler, and γ is an energy scale parameterizing
the coupling strength. Note that γ is redundant, and can
be absorbed into QR.

According to the derivation in Ref. [27], in the limit
where the effective system-bath coupling is weak relative
to the inverse characteristic correlation time of the bath
(see Sec. A 1 below for explicit conditions) [81], the sys-
tem is described by the time-dependent Lindblad equa-
tion

∂tρ(t) =− i[HS(t), ρ(t)] (A4)

+ ℓ(t)ρ(t)ℓ†(t)− 1

2
{ℓ†(t)ℓ(t), ρ(t)} (A5)

where we neglected the Lamb shift, which generates a
weak renormalization of the Hamiltonian. The ULE
jump operator ℓ(t) is given by

ℓ(t) =
1

ℏCR

∫
dtg(t− s)U(t, s)q(s)U(s, t). (A6)

Here U(t, s) ≡ T e−i
∫ t
s
dt′HS(t′) is the unitary evo-

lution operator generated by HS(t), and g(t) =
1√
2π

∫
dω

√
J(ω), where J(ω) = 1

2π

∫
dteiωt⟨QR(t)QR(0)⟩

denotes the power-spectral density of QR.

1. Conditions for validity

We now discuss the conditions for validity of the mas-
ter equation for the system. The formal error bounds
identified in Ref. [27] are controlled by a time-scale, τB,
and a rate ΓB and ΓB, where

τB =

∫
dt|g(t)t|∫
dt|g(t)|

, ΓB = 4γ

[∫
dt|g(t)|

]2
(A7)

The rate ΓB is rigorously proven to bound the rate
of bath-induced evolution [27], without any approxima-
tions: ∥∂tρ+ i[HS, ρ]∥ ≤ ΓB/2. The timescale τB defines
a correlation time for the bath.
The ULE is shown to be accurate in the limit where

ΓBτB ≪ 1. (A8)

Specifically, Ref. [27] shows that Eq. (A5) describes the
evolution of the system in a weakly memory-dressed
frame, which is obtained through a near-identity linear
transformation (Defined in Refs· [27, 45]). The dressing
is weak in the sense that the density matrix that results
from the transformation, ρ′, differs from the true density
matrix ρ by a correction bounded by ΓBτB at all times:
∥ρ′(t) − ρ(t)∥ ≤ ΓBτB. Note in particular, that that
∥ℓ(t)∥0 ≤

√
ΓB/2 regardless of the time-dependence of

the Hamiltonian, where ∥·∥0 denotes the spectral norm.
Ref. [27] demonstrated that ρ′ evolves according to

Eq.(A5), up to a correction bounded by Γ2
BτB, which

hence is subleading in the small parameter of the prob-
lem, ΓBτB. The rigorous error bound is expected to
be rather loose in many cases, and hence is proba-
bly not a necessary condition for Eq. (A5) to be valid.
Rather, heuristic considerations about the relationship
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https://doi.org/10.1103/PhysRevB.99.094311
https://doi.org/10.1088/1751-8121/ac9f30
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https://doi.org/10.1103/PhysRevX.5.041050
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between the effective loss rate Γeff = ∥ℓ†ℓρ∥ and the
energy-resolved correlation time of the bath τeff(ω) =
∂ω log(J(ω)) within the spectral range of the system,
likely is a better proxy for determining whether Eq. (A5)
is a good approximation.

2. Quasistatic approximation

Here we discuss how the right-hand side of Eq. (A5)
can be approximated by the piece-wise constant Liouvil-
lian we consider in the main text. We focus on the case
with direct coupling first, and discuss the capacitative-
coupling case in the end.

While the time-dependent jump operators generally
would make Eq. (A5) cumbersome to solve, the step-wise
protocol we consider allows for a significant simplifica-
tion.

The time-dependence of the jump operators arises
when the time-dependence of the system Hamiltonian
and system-bath coupling is significant on the timescale
for bath correlations, τB. In this case, the bath does not
have time to adiabatically adjust to the time-dependence
of the system, causing driving-assisted incoherent pro-
cesses, that can even heat the system when the bath is
at zero temperature [82–84]. In this way, we can view the
time-dependence of the jump operators as a noise source,
arising from driving-assisted incoherent processes.

Note that, for the step-wise driving protocol we con-
sider, ℓ(t) is effectively constant for |t − ti| ≳ τB , where
{ti} denote the instances where ∂tf(t) ̸= 0 (i.e., at the
instances where the switch is turned on or off). Within
these intervals, in the bulk of the LC or stabilizer seg-
ment, ℓ(t) is time-independent in the respective intervals:

ℓ(t) = ws(t)ℓ̄ for |t− ti| ≫ τB, (A9)

where ℓ̄ = 1
CR

∫
dtg(−t)eiHstqe−iHst. Expressing Hs

in terms of its energies and eigenstates, Hs =∑
n |ψn⟩⟨ψn|En yields

ℓ̄ =
1

ℏCR

∑
mn

√
2πJ(ωn − ωm)|ψm⟩⟨ψm|q|ψn⟩⟨ψn|,

(A10)
with ωn = En/ℏ.

Next, we consider the evolution within the intervals
|t − ti| ≲ τB. The action of the dissipator in this time-
interval is bounded by ΓBτB, which is the small param-
eter of our treatment; in a SSE algorithm, ΓBτB would
bound the probability of observing a quantum jump in
this interval. Since the jump operator can be approxi-
mated by a sum of nested commutators of HS(t) with X,
it is a finite polynomial in ϕ and q and cos(ϕ), and hence
generates a small-displacement flow in phase-space, the
noise induced expected to be correctible [28]. Hence, set-
ting ℓ(t) = ℓ̄ within the stabilizer segment and ℓ(t) = 0
in the free segment thus effectively induces a weak local
noise channel that we expect to be correctible. Hence, we

can set ℓ(t) = ws(t)ℓ̄ throughout the protocol at the cost
of introducing a weak-correctible noise channel, which
can be treated on par with other noise sources in the
system.

Appendix B: Perturbative expansion of Hamiltonian
and jump operator

Here we derive the perturbative expansion of the
Hamiltonian and jump operators discussed in Sec. III. To
recap, we consider the Hamiltonian of the system during
the stabilizer segment

Hs =
q2

2C
+
φ2

2L
− EJ cos(2πφ/φ0). (B1)

Our goal is to find the action ofHs on the state |m,µ⟩, de-
fined as the µth eigenstate of a Harmonic oscillator with
vacuum fluctuation length δφ, centered at φ = rmφ0:

|m,µ⟩ =
∫
dφψµ(φ− rmφ0)|φ⟩, (B2)

where

ψµ(φ) ≡
e
− φ2

2δφ2Hµ (φ/δφ)√
2µµ!δφ

√
π

(B3)

We pick the center rmφ0 and width δφ to match the
center and vacuum fluctuation width of the wells of the
potential in Hs; since the potential from the inductor
slightly renormalizes of the center and curvature of the
cosine wells, the actual centers will be offset from inte-
ger multiples φ0, and their curvature be slightly larger

than 4π2EJ

φ2
0

; for this reason, we consider δφ and r free

parameters for now—we will fix their values later, based
on our analysis below [Eqs. (B11)-(B12)]. We moreover
introduce the dimensionless variable λ to parameterize
δφ in terms of φ0 through

δφ = λφ0 (B4)

To analyze the Hamiltonian, we introduce the annihi-
lation operator of the nth well through

am ≡
∑
µ

√
µ|n, µ− 1⟩⟨n, µ|. (B5)

Introducing the dimensionless quadratures of the oscil-
lator, xm = 1√

2
(am + a†m) and pm = 1√

2i
(am − a†m), we

find

q =
e

πλ
pm, φ = λφ0xm +mrφ0. (B6)

where we used φ0 = h/2e. Using C = 2e2

πνℏ2πfLC
, and

L =
νφ2

0

2πℏ2πfLC
, we can express Hs in terms of xm and pm

as follows:
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Hs =
νhfLC
4πλ2

p2m +
hfLC
4πν

(2πλxm + 2πmr)2 − EJ cos(2πλxm + 2πrm). (B7)

Our next step is to separate out the n-independent part of Hs. To this end, we exploit cos(x) = cos(x + 2π) to
extract the quadratic part of the Hamiltonian:

Hs = hm + Vm, (B8)

where hm is purely quadratic:

hm ≡ νhfLC
4πλ2

p2m +
hfLC
4πν

(2πλxm + 2πrm)2 +
EJ

2
(2πλxm − 2πδm)2, (B9)

with δ ≡ 1− r,

Vm = −EJ cos(2πλxm − 2πδm)− EJ

2
(2πλxm − 2πδm)

2
. (B10)

We wish to pick 2πλ and r such that hm is the same for each well (up to a constant shift). In order to do this, we
first expand the parenthesis, obtaining

hm =
νhfLC
4πλ2

p2 + 4πλ2
(
hfLC
2πν

+ EJ

)
x2m +

1

2

(
2πhfLCr

2

ν
+ 4π2δ2EJ

)
m2 + 2πλ

(
rhfLC
ν

− 2πδEJ

)
mxm.

We see that hm is the same for each m, if we pick r
such that the parenthesis in front of the cross terms mxm
cancel out. Using δ = 1− r, we see that this is achieved
if

r =
EJ

EJ + hfLC/2πν
, (B11)

We fix λ such that the coefficients in front of x2 and p2

are the same. This is achieved if

λ =

[
νhfLC

4π2 hfLC

ν + 8π3EJ

]1/4

(B12)

With the choice of r in Eq. (B11), the parenthesis in
front of m2 in Eq. (B11) finally simplifies to πhfLCr/2ν
(this can be shown using δ/r = −hfLC/2πνEJ) With the
choices above, and defining ε0 = νhfLC/2πλ

2, we hence
obtain the simplified expression

hm =
ε0
2
(x2m + p2m) +

πrhfLC
ν

m2. (B13)

which is independent of m (up to a constant shift), as we
wanted.

Our next step is to analyze the nonlinear correction
Vm. We first Taylor expand Vm in 2πδn, obtaining Vm =
V0 + δVm, where

δVm ≡
∞∑
z=1

V (z) (2πδm)z

z!
. (B14)

Note that for z ≥ 2, V (z) ∼ EJ , while V (1) =
−EJ [sin(2πλxm) − 2πλxm]. Moreover, since δ =
4π2λ4/ν2, we conclude, to leading order,

δVm ∼ 32π6

3ν2
EJλ

7x3m. (B15)

Noting that ∥x̂3|m,µ⟩∥ ∼ µ3/2, we conclude

∥δVm|m,µ⟩∥ ∼ ε032π
5λ5µ3/2 , (B16)

In the low temperature limit, the system is confined to
regions where EJ(1 − cos 2πλx) ≲ kBT , implying µ ∼
kBT/4π

2λ2EJ ∼ kBT/ε0.
To summarize, we have

Hs|m,µ⟩ =
(
H0 +

πr

ν
m2 + δVm

)
|m,µ⟩ , (B17)

where

H0 =
νhfLC
2πλ2

p2 +
hfLCπλ

2x2m
2ν

+EJ cos(2πλxm), (B18)

and δVm obeying (B15). This establishes the result we
wished to prove.

1. Perturbative expansion of jump operator

We next consider the action of the jump operator on
|m,µ⟩. To this end, we rewrite the jump operator as

ℓ =
1

ℏCR

∫
dωg(ω)G(ω)[q] (B19)

where g(ω) =
√
J(ω)/2π, G(ω) ≡

∫∞
−∞ dteiωt−iĤt de-

notes the Greens function (i.e., the Fourier transform
of the time-evolution superoperator) of the system, and

Ĥ = [Hs, ·] denotes the commutator with Hs. For
our purpose it is convenient to express G as G(ω) =
limη→0+ i[G(ω + iη)−G(ω − iη)], where

G(ω) ≡ 1

ω − Ĥ
. (B20)
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In this form, perturbation theory can be conveniently
expressed as a geometric series for the Green’s functions.

We first write Ĥ = Ĥ0+δV̂m where δVm ∼ µ3/22πλ5EJ

is the residual nonlinear correction which we found above.
This will be our perturbation. ExpandingG(ω) in powers

of δV̂m, we find

G(ω) =
∞∑
z=0

Gz(ω), (B21)

where Gz(ω) = i[Gz(ω + i0+)−Gz(ω − i0+)] with

Gz(ω) =

[
1

ω − Ĥ0

δV̂m

]z
1

ω − Ĥ0

(B22)

Hence we can perturbatively expand the jump operator
as

ℓ =

∞∑
n=0

ℓz, ℓz =
1

ℏCR

∫
dωg(ω)Gz(ω)[q]. (B23)

Note that the leading-order term of ℓ, ℓ0, is independent
of the well index: I.e.,

ℓ0|m,µ⟩ = |m⟩ ⊗ ℓ0|µ⟩ (B24)

We can find ℓ0 from the eigenstates and energies of H0,
{|ψn⟩} and {En} as follows:

ℓ0 =
2π

ℏCR

∑
ba

g(Eb − Ea)|ψa⟩⟨ψb|⟨ψa|q|ψb⟩ (B25)

While it is possible to find ℓ0 numerically, for small k (in
the bottom of the wells), |ψµ⟩ ≈ |m,µ⟩, and Eµ ≈ µε0.

Then, since q = e√
2πλi

(am − a†m), we find

ℓ0 ≈ 23/2πe

iλhCR
[g(ε0)am − g(−ε0)a†m] (B26)

Next, we use g(−E) = e−βE/2g(E), and introduce

Γ =
4πJ(ε0)e

2

h2λ2C2
RnB(ε0)

, (B27)

where nB(ε) = 1/(e−βε − 1) denotes the Bose-Einstein
distribution. In terms of these quantities, we find (up to
an unimportant global phase)

ℓ0 ≈
√
nB(ε0)Γ[am − e−βε0/2a†m]. (B28)

This is the result we quoted in the main text.
Let us now consider the first subleading order, arising

from G1(ω). Since we work to first subleading order in
λ, we can set

δV̂m ∼ 8π4δλ3EJm

3
x3m (B29)

in our analysis below.
We now recall that q = e

πλpm = e
i
√
2πλ

(am − a†m). We

can also use Ĥ0â = −ε0am to leading order, such that
1

ω−Ĥ
[am] = am

ω+ε0
. Then

G1(ω)[am] =
8π4δλ3EJm

3(ω + ε0)

1

ω − Ĥ
[x3m, am] (B30)

Using x3m = 2−3/2(am + a†m)3, we find [x3m, am] =
− 3√

2
x2m, implying

[x3m, am] = − 3

23/2
(amam + a†ma

†
m + 2a†mam + 1). (B31)

Inserting this in Eq. (B30) and using Ĥ[amam] =

−2ε0anan, H[a†mam] = 0, Ĥ[a†ma
†
m] = 2ε0a

†
ma

†
m, we ob-

tain

G1(ω)[am] =
−δ23/2π4λ3EJm

(ω + ε0)

[
amam
ω + 2ε0

+
a†ma

†
m

ω − 2ε0
+

2a†mam + 1

ω

]
(B32)

Likewise, using [x3m, a
†
m] = 3√

2
x2m and Ĥ[a†m] = ε0a

†
m, we find

G1(ω)[a
†
m] =

π423/2δλ3EJm

(ω − ε0)

[
amam
ω + 2ε0

+
a†ma

†
m

ω − 2ε0
+

2a†mam + 1

ω

]
(B33)

Combining the above results with q = e√
2πλi

[am − a†m] hence yields

G1(ω)[q] =
4π3eωδλ2EJm

i(ε20 − ω2)

[
amam
ω + 2ε0

+
a†ma

†
m

ω − 2ε0
+

2a†mam + 1

ω

]
(B34)
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This implies

G1(ω)[q] = −2π2ieδλ2EJn
[
amamf2(ω) + a†ma

†
mf−2(ω) + (2a†mam + 1)f0(ω)

]
(B35)

where

fn(ω) ≡ 2i lim
η→0+

ℑ
[

ω + iη

(ε20 − [ω + iη]2)(ω + iη + nε0)

]
(B36)

Inserting this into the expression for ℓ1 we hence obtain

ℓ1 =
8π3eδλ2EJm

ℏCR

(
amamc2 + a†ma

†
mc−2 + [2a†mam + 1]c0

)
(B37)

where

cn ≡
∫
dω

1

2i
g(ω)fn(ω). (B38)

We see that

cn = ℑ
[∫

dω
ω + iη

([ω + iη]2 − ε20)

g(ω)

[ω + iη] + nε0

]
(B39)

In the η → 0 limit, the imaginary part of the integrand
is only nonvanishing in the neighborhood of 3 distinct
values of ω: ω = ±ε0 and ω = −nε0 (where we recall n
takes value either 0, 2, or −2). Summing the contribu-
tions from these three neighborhoods results in

cn =
2πε0
2ε0

g(ε0)

ε0 + nε0
+

−2πε0
−2ε0

g(−ε0)
−ε0 + nε0

− 2πnε0g(−nε0)
[n2 − 1]ε20

(B40)
Which can be simplified to

cn =
π

ε0

(
g(ε0)

n+ 1
+
g(−ε0)
n− 1

− 2g(−nε0)
n− 1/n

)
(B41)

Eqs. (B37) and (B41) together provide the leading order
correction to the jump operator.

To estimate its scale, we note that Γ = 2πe2

λ2h2C2
R
g(ε0)

2.

Note that cn ≲ πg(ε0)/ε0 ∼
√
ΓλhCR/eε0, and δ =

4π2λ4/ν2, and 4π2λ2EJ ∼ ε0. Inserting these relations,
we find

∥ℓ1|m,µ⟩∥ ∼ 32π5λ5mµ
√
Γ (B42)

This concludes this Appendix.

Appendix C: Emergence of peak structure in the
charge probability distribution

Here, we demonstrate how the characteristic fractal
peak structure of the charge probability distribution in
Fig. 5 emerges—leveraged in the readout protocol dis-
cussed in Sec. V.
When dissipatively stabilized, the system will be in a

thermal mixture of coherent superposition of high-energy
well states. We consider the evolution of one of such
superpositions: |ψ(0)⟩ =

∑
m cmµ|m,µ⟩; here cmµ is

nonzero only for even or odd m when the system is in an
+1 or −1 eigenstate of σz, respectively. Since the system
is dissipatively stabilized, ⟨S2⟩ ≈ 1, and the superposi-
tion is phase-coherent: cmµ ≈ cm+2,µ. After evolution
with Hs for a time t, the state of the system is hence

given by e−iHst|ψ(0)⟩ ≈
∑

m cmµe
−i[m2εL+µε0]t/ℏ|m,µ⟩

[See Eq. (12) of the main text].
To obtain charge probability distribution, we consider

the evolution of the Wigner function of the system,
W (φ, q, t) ≡ 1

πℏ
∫∞
−∞ dφ′ ⟨φ+φ′|ρ(t)|φ−φ′⟩e2iqφ/ℏ, from

which we may obtain the charge probability distribu-
tion through p(q, t) =

∫
dφW (φ, q, t). A straightforward

derivation shows that

W (φ, q, t) =
∑
kl

c∗mµcnηe
πi

q(m−n)
e +i[εL(m2−n2)+ε0(µ−η)]t/ℏwµη

(
φ− φ0(k + l)

2
, q

)
(C1)

where wµη(ϕ, q) is the cross-term Wigner function of eigenstates µ and η of the Harmonic oscillator corresponding to
the central well:

wµη(φ, q) =
1

πℏ

∫ ∞

−∞
dφψ∗

µ(φ+ φ′)ψη(φ− φ′)e2iqφ
′/ℏ. (C2)

Introducing l = m+ n, such that (m2 − n2) = l(l − 2n), along with εL = πℏ2πfLC/2, we find

W (φ, q, t) =
∑
l∈Z

e−iε0(µ−η)t/ℏwµη(φ− lφ0/2, q)f
µη
l

(
q − le

2πfLCt

2

)
, fµηl (q) ≡

∑
n

c∗l−n,µcn,η e
−πiq(l−2n)/e. (C3)

Since cn ≈ cn+2, each fn(q) is sharply peaked around q ≈ ze for z ∈ Z; i.e., each fn(q) is a nascent Dirac
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comb with periodicity e. Since cl is only nonzero when
l = s mod 2, the sign of the peaks alternate based on
the parity of n. Since wµη(ϕ, q) is sharply peaked around
ϕ = 0, W (ϕ, q, 0) has its support confined as peaks near
(φ, q) = (n1φ0, n2e) for integer n1, n2, with correspond-
ing sign (−1)(s+n1)n2 . This grid structure is clearly vis-
ible in Fig. 5(b) of the main text, where we plot the
Wigner function numerically obtained for the system in
panel (a) at t = 0. As t increases, Eq. (C3) the column of
peaks where φ = φ0n1 shifts in the positive q-direction
with velocity πn1efLC.

When t = a
b
τLC

2π for integers a, b, peaks from columns
where an1 ∼ c ( mod b) align at values q/e = c/2b.
Thus, the charge probability distribution, p(q, t) =∫
dφW (φ, q, t), has its support confined around values

q = ec/2b for each integer c. However, due to the al-
ternating sign of peaks in columns where n1 and s have
opposite parities, the peaks of the Wigner function will
only interfere constructively at values of c with parity
s, provided b is even. This interference is in indicated
with the dashed arrows in Fig. 5(a) at t = τLC/8π.
Consequently, p(q, t) consists of peaks centered at values
q/e = (2n+ s)/b where n ∈ Z.

Appendix D: Wigner function envelope

We obtain the low-temperature Wigner function enve-
lope using the results of Appendix C.
First, we note that the low-temperature limit implies

that the system is relaxed to well ground states at the
onset of the stabilizer segment: |ψ(0)⟩ ≈

∑
n dn|n, 0⟩.

The Wigner function can then be found from Eq. (C3)

W (φ, q) =
∑
l∈Z

w00(φ− lφ0/2, q)
∑
n

d∗l−ndn e
−πiq(l−2n)/e

(D1)
with w00(φ, q) the Wigner function of the well-ground
state. The sum

∑
n dl−ndn0 e

−πiq(l−2n)/e is by construc-
tion 2e-periodic in q, and thus w00(φ, q) defines the q
envelope of the Wigner function. We note that w00(φ, q)
is the Wigner function of a well ground state with vac-
uum fluctuation width λφ0 in the flux quadrature, and
thereby vacuum fluctuation width ℏ/λφ0 = e/πλ in the
charge quadrature. Thus

w00(φ, q) =
1

h
e
− φ2

2φ2
0λ2 − q2π2λ2

2e2 (D2)

Hence the envelope of the Wigner function in the charge
quadrature is a Gaussian with characteristic width e/πλ.
Similar arguments, based on the peak structure of the

wavefunction in the charge quadrature, show that the en-
velope of the Wigner function decays with φ as a Gaus-
sian with characteristic width φ0/

√
2πλ.
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