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Onset of Quantum Thermalization in Jahn-Teller model
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We investigate the onset of quantum thermalization in a system governed by the Jahn-Teller Hamiltonian

which describes the interaction between a single spin and two bosonic modes. We find that the Jahn-Teller

model exhibits a finite-size quantum phase transition between the normal phase and two types of super-radiant

phase when the ratios of spin-level splitting to each of the two bosonic frequencies grow to infinity. We test the

prediction of the Eigenstate Thermalization Hypothesis in the Jahn-Teller model. We show that the expectation

value of the spin observable quickly approaches its long-time average value. We find that the distance between

the diagonal ensemble average and the microcanonical ensemble average of the spin observable decreases with

the effective thermodynamic parameter. Furthermore, we show that the mean-time fluctuations of the spin

observable are small and are inversely proportional to the effective system dimension.

PACS numbers:

I. INTRODUCTION

An isolated non-integrable quantum system prepared in

an out-of-equilibrium state undergoes a process known as

quantum thermalization [1–4]. One of the most successful

approaches for description of this intriguing quantum phe-

nomenon is the Eigenstate Thermalization Hypothesis (ETH).

It assumes that the expectation values of an observable calcu-

lated in the basis of eigenstates of the non-integrable Hamilto-

nian are equal to the average calculated with the microcanon-

ical ensemble [5–8]. The validity of the ETH has been stud-

ied in various quantum many-body systems by means of exact

diagonalization [9–16]. Moreover, there have been key ex-

periments demonstrating the quantum thermalization in iso-

lated systems using ultracold atoms [17, 18], superconducting

qubits [19], and trapped ions [20–22]. Usually, the quantum

thermalization in these systems is associated with complexity

increase as it requires a large Hilbert space growing exponen-

tially with the system size [23].

In this work we study the emergence of quantum thermal-

ization in a small system consisting solely of a single spin

and two bosonic degrees of freedom, which is represented by

Jahn-Teller (JT) model. The JT model describes electronic

orbitals coupled to vibrational modes either in molecules or

solids [24, 25]. The JT effect in such systems is related to

a structural instability in electronically degenerate states of

molecules, where electron-phonon interaction shifts the po-

tential minima of the nuclei, which causes distortion of the

molecular configuration. Here we show that the quantum-

optical analog of the JT model undergoes a finite-size second-

order quantum phase transition from normal to two types of

super-radiant phases when the ratios of spin level-splitting to

each of the two bosonic frequencies grow to infinity. Such

a second-order quantum phase transition is associated with

macroscopically excited bosonic state of one of the bosonic

modes. We also find that the JT model exhibits a first-order

quantum phase transition between two super-radiant phases

where the bosonic order parameters exhibit jump at the criti-

cal point.

We study the onset of thermalization in the different quan-

tum phases of the JT model. We focus first on the equiva-

lence between diagonal ensemble average and microcanoni-

cal ensemble average of the spin observable. In the normal

phase, the large spin-level splitting prevents the relaxation of

the spin observable and its time-evolution shows fast oscilla-

tions around the initial value. In the super-radiant phase, the

time-evolution of the observable quickly reaches its long-time

average value, around which oscillates for all subsequential

times. The amplitudes of the oscillation, however, decrease

as the effective thermodynamic parameter increases. We also

show that the difference between the diagonal ensemble av-

erage and microcanical ensemble average of the observable

decreases with the effective thermodynamic parameter. Fur-

thermore, we investigate the matrix elements of our observ-

able in the basis of eigenstates of the JT Hamiltonian. For the

eigenstates with energy close to the energy of the initial state

of the JT system, we find that each diagonal matrix element is

approximately equal to the microcanonical average, which is

in agreement with the weak ETH.

Further, we focus on the equilibration aspect of quantum

thermalization which assumes that the mean time-fluctuations

around the time average value of an observable are small and

decrease with the system size. We approach this question by

considering the effective time-averaged dimension deff of the

JT model, which is a measure for ergodicity of the system

[26]. In the normal phase the effective dimension is small

which prevents the thermalization. In contrast, we find that

the effective dimension in the super-radiant phase is large and

increases with the spin-boson couplings, which leads to large

bosonic Hilbert space. The large effective dimension indi-

cates that a large set of eigenvectors of the JT Hamiltonian

are involved in the dynamics of the system such that destruc-

tive interferences can lead to a suppression of the amplitudes

of the time fluctuations on average. Moreover, for ergodic

quantum systems which can be described by the random ma-

trix ansatz, the mean time-fluctuations decrease as d
−1/2

eff [16].

We study the scaling of the mean time-fluctuations in our sys-

tem with the effective dimension. We find that in the super-

radiant phase the mean amplitude of time-fluctuations is in-

versely proportional to the effective system dimension.

Finally, we consider the second-order Rényi entropy (RE)

which measures the entanglement between the spin subsys-
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tem and the two bosonic modes. In the normal phase the RE

is nearly zero which indicates that the subsystems are disen-

tangled. In the super-radiant phase the RE quickly increases

and reaches a level of saturation, where it remains for all sub-

sequential times which is a signature for thermalization.

The article is organized as follows: In Sec. II we show that

the JT model undergoes a finite-size quantum phase transition

in the effective thermodynamic limit which is given by the

ratio between the spin-level splitting and the bosonic frequen-

cies. We show that when the JT spin-boson coupling increases

the system undergoes quantum phase transition from the nor-

mal to a super-radiant phase, where one of the bosonic modes

is excited. The JT system also exhibits a first-order quantum

phase transition between two super-radiant phases. In Sec.

III we discuss the onset of quantum thermalization in the JT

system. We show that the spin observable quickly reaches its

long-time average value which is approximately equal to the

microcanonical prediction. We also show that the mean time

fluctuation of the spin observable decreases with the effective

dimension of the system, which is in agreement with ETH.

Finally, the conclusion is presented in Sec IV.

II. JAHN-TELLER MODEL

We consider a model consisting of a single spin-1/2 system

with energy splitting ∆ and a two-dimensional quantum oscil-

lator with mass m and frequencies ωa and ωb, which interact

via Jahn-Teller coupling [27]. The Hamiltonian is given by

ĤJT =
p̂2

a

2m
+

p̂2
b

2m
+

mω2
a r̂2

a

2
+

mω2
b r̂2

b

2
+

∆

2
σz

+µar̂aσx + µbr̂bσy. (1)

Here p̂i and r̂i (i = a,b) are the momentum and the position

operators of the quantum oscillator, and σx,y,z are the Pauli

matrices. The JT interaction between the spin and the quan-

tum oscillators is given by the last two terms in (1), where

µa and µb are the coupling strengths. We introduce a pair of

creation and annihilation operators â†, â and b̂†, b̂ for each

oscillator by writing p̂a = ip0a(â
† − â) and r̂a = r0a(â

† + â),

and respectively p̂b = ip0b(b̂
†− b̂) and r̂b = r0b(b̂

†+ b̂) where

p0i =
√

mωi/2 and r0i = 1/
√

2mωi (we set h̄ = 1 throughout

the manuscript). Then, the JT Hamiltonian becomes

ĤJT = ωaâ†â+ωbb̂†b̂+
∆

2
σz + gaσx(â

† + â)+ gbσy(b̂
† + b̂),

(2)

where we have omitted the constant term. Hence, in the new

representation the JT Hamiltonian describes dipolar interac-

tion between a single spin and two bosonic modes with spin-

boson couplings gi = µir0i. The total Hilbert space is spanned

in the basis {|s〉|na,nb〉}, where |s〉 (s =↑,↓) is the eigenstate

of σz and |ni〉 is the Fock state of the bosonic mode with oc-

cupation number ni.

The physical realization of JT coupling has been discussed

in various quantum-optical platforms, including, for exam-

ple, cavity QED system [27], Bose-Einstein condensate [28],

and trapped ions [29, 30]. The JT model describes intrigu-

ing quantum phenomena such as ground-state entanglement

[31, 32] and creation of artificial non-Abelian magnetic fields

[33]. Recently, a conical intersection and geometric phase

have been experimentally observed with trapped ion system

[34]. The artificial molecular system with Rydberg atoms con-

fined in optical tweezer traps was proposed in [35], where the

JT effect can be observed which is associated with distortion

of the artificial molecular configuration. The many-particle

extension of the JT model describes collective effects such as

quantum chaos [36] and magnetic-structural phase transition

[29, 30, 37].

For general non-equal couplings ga 6= gb the JT Hamil-

tonian (2) commutes with the parity operator Π̂ =

eiπ(â†â+b̂†b̂+ 1
2 (1+σz)) which measures an even-odd parity of to-

tal excitation number. When either ga 6= 0, gb = 0 or gb 6= 0,

ga = 0 the Hamiltonian (2) describes the well-known quan-

tum Rabi model [38, 39]. In the full symmetric case where

ωa = ωb and ga = gb the JT Hamiltonian becomes U(1) in-

variant. In the following we focus on Z parity symmetry JT

model. Since it possesses two bosonic and one spin degrees

of freedom the parity symmetry is not sufficient for our model

to be integrable.

A. Finite-size quantum phase transition

In this work we consider the limit when the ratios of level-

splitting ∆ to bosonic frequencies ωi grows to infinity, ηi =
∆/ωi → ∞, which essentially play the role of an effective

thermodynamic limit in our model. Such a limit was consid-

ered for the quantum Rabi model, which exhibits a finite-size

quantum phase transition [40–42]. Here we show that the JT

model undergoes a second-order quantum phase transition be-

tween normal and super-radiant phase, and a first-order quan-

tum phase transition between the two super-radiant phases,

which is associated with the jump of the order parameter at

the critical point.

B. Normal Phase

It is convenient to introduce dimensionless spin-boson cou-

plings λi = 2gi/
√

ωi∆. The JT system is in a normal phase

when λi ≤ 1, which is characterized by zero mean-field

bosonic excitations of the two bosonic modes and polarized

spin along the z axis, namely (see Appendix A)

lim
ηa→∞

〈â†â〉G

ηa

= 0, lim
ηb→∞

〈b̂†b̂〉G

ηb

= 0, 〈σz〉G =−1. (3)

The excitations are εnp = ωa

√

1−λ 2
a +ωb

√

1−λ 2
b , which

are real for λi ≤ 1.
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C. Super-radiant phase

The presence of two critical couplings makes the transition

to super-radiant phase more complicated. When these cou-

plings attain values, such that λa > 1 and λb < 1, or equiva-

lently λa < 1 and λb > 1, the system undergoes a second-order

quantum phase transition to a super-radiant phase where either

one of the two bosonic modes is macroscopically excited and

the spin state is rotated along the y or x axis. We have for

λa < 1 and λb > 1

lim
ηa→∞

〈â†â〉G

ηa

= 0, lim
ηb→∞

〈b̂†b̂〉G

ηb

=
λ 4

b − 1

4λ 2
b

,

〈σz〉G =− 1

λ 2
b

(4)

and similarly for λa > 1 and λb < 1 interchanging b ⇔ a. The

excitations now are εsp = ωa

√

1− (λa/λb)2 +ωb

√

1−λ−4
b

which are positively defined for λb > 1 and λa ≤ λb. In the

following we refer to these quantum phases as a- and b-super-

radiant phases when either a or respectively b bosonic mode

is excited.

Furthermore, we may consider the transition between a-

and b-super-radiant phases by varying one of the spin-boson

couplings. For instance, consider that λa < 1 and λb > 1 such

that the system is in super-radiant phase where only b-mode

is excited, see Eq. (4). Now, the system undergoes a first-

order quantum phase transition to a-super-radiant phase when

λa > 1 and λa > λb > 1. We have

lim
ηa→∞

〈â†â〉G

ηa

=
λ 4

a − 1

4λ 2
a

, lim
ηb→∞

〈b̂†b̂〉G

ηb

= 0,

〈σz〉=− 1

λ 2
a

. (5)

Since the quantum phase transition is associated with spon-

taneous symmetry breaking of the parity symmetry, only one

of the bosonic modes is excited. We plot in Fig. 1 the mean

bosonic excitations and the mean field result for σz. In Figs.

1(a) and 1(b) we set λb < 1 and vary the coupling λa. The

JT system undergoes a second-order quantum phase transition

from the normal phase to the a-super-radiant phase at critical

coupling λa(c) = 1. In Figs. 1(c) and 1(d) we set λb > 1 such

that the system is in a b-super-radiant phase and again vary

λa. When λa > λb the system undergoes a first-order quan-

tum phase transition to a-super-radiant phase where the or-

der parameters 〈ni〉G exhibit discontinuity at the critical point

λa = λb > 1.

III. ONSET OF QUANTUM THERMALIZATION IN

JAHN-TELLER SYSTEM

In the following we investigate the onset of quantum ther-

malization in JT system in the different quantum phases. At

the core of our understanding of thermalization of closed

quantum system is the Eigenstate Thermalization Hypothesis
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Figure 1: Mean bosonic excitation 〈n̂a〉G/ηa and mean-field value of

〈σz〉G as a function of the dimensionless spin-boson coupling λa for

various ∆. a) and b) Second order quantum phase transition between

normal phase to a-super-radiand phase, where we set λb = 0.96. c)

and d) First order quantum phase transition between b-super-radiant

phase and a-super-radiant phase. We set λb = 1.13 and vary λa across

the transition point λa = λb. The mean bosonic excitations 〈n̂a〉G/ηa

and 〈n̂b〉G/ηb (inset) show jump at λa = λb. The bosonic Hilbert

space is truncated at nmax = 80 for a- and b-modes.

which states that (i) expectation value of a thermalizing ob-

servable in the eigenstates of the non-integrable Hamiltonian

is equal to the microcanonical prediction and (ii) the mean

amplitudes of time-fluctuation decrease with the system size

[5–8].

The energy spectrum of the JT Hamiltonian is ĤJT|ψµ〉 =
Eµ |ψµ〉, where |ψµ〉 and Eµ are the eigenvectors and eigen-

ergies. We assume that the system is initially prepared in

an out-of-equilibrium state |Ψ0〉 = ∑µ aµ |ψµ〉 with mean

energy E0 = 〈Ψ0|ĤJT|Ψ0〉 and this state evolves under the

action of the unitary propagator |Ψ(t)〉 = e−iĤJTt |Ψ0〉 =
∑µ aµe−iEµ t |ψµ〉. The long-time average of an observable Ô

is given by

〈Ō〉= lim
τ→∞

1

τ

∫ τ

0
〈Ψ(t)|Ô|Ψ(t)〉dt = ∑

µ

|aµ |2Oµµ , (6)

where Oµµ = 〈ψµ |Ô|ψµ〉 and we have assumed that the eigen-

ergies Eµ are non-degenerate. Hence, the long-time aver-

age of Ô can be written as 〈Ō〉 = Tr(Ôρ̂DE), where ρ̂DE =
∑µ |aµ |2|ψµ〉〈ψµ | is the density matrix of the so-called diag-

onal ensemble (DE). The equilibration of a closed quantum

system into a thermal state implies that

〈Ō〉 ≈ 〈O〉micro, (7)

where 〈O〉micro is the microcanonical average of Ô taken over

an energy shell of eigenstates with energies Eµ close to E0.

The ETH for the diagonal elements of an observable Ô sug-
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Figure 2: Time-evolution of the spin population 〈P(t)〉 compared to

the DE prediction in various quantum phases. The initial state is

|Ψ0〉= |↓〉 |5a,10b〉 and the parameters are set to: ωa∆ = 90, ωb∆ =
100 and ga = 1.5, gb = 2.0 (normal phase); ga = 1.5, gb = 5.5 (λa <
1, λb > 1); ga = 5.2, gb = 5.5 (λb > λa > 1).

gests that the matrix element Oµµ is a smooth function of the

energy Eµ . The density matrix of the microcanonical ensem-

ble is given by

ρ̂ME =
1

N
∑

µ:|Eµ−E0|<δE

|ψµ〉〈ψµ |, (8)

where the sum runs through the N eigenstates |ψµ〉 of ĤJT

that are within an energy shell of width 2δE centered at

E0. Hence, the microcanonical average of an observable Ô

is 〈O〉micro = Tr(Ôρ̂ME).
In Fig. 2 we show the time evolution of the spin observ-

able Ô = P̂, where P̂ = |↓〉〈↓| in the different quantum phases

for initial state |Ψ(0)〉 = |↓〉 |na,nb〉. In the normal phase,

λi < 1, the large energy splitting ∆ suppresses the spin os-

cillation such that the spin population 〈P(t)〉 is nearly frozen

around its initial value, namely 〈P(t)〉 ≈ 1. In the b-super-

radiant phase λa < 1 and λb > 1 the spin population shows ini-

tial fast oscillations with large amplitude which subsequently

decrease and tend to a long-time average value 〈P̄〉. Again

in the b-super-radiant phase, but now for λa > 1 and λb > 1,

the spin population approaches faster the long-time average

value, with smaller temporal fluctuations.

In Fig. 3(a) we show the difference between the expec-

tation value of our observable and its infinite time-average,

d(t) = |P(t)− 〈P̄〉| as a function of time. We see that the

expectation value quickly approaches the value predicted by

the diagonal ensemble where it remains for all subsequential

times, while oscillating with a small amplitude. The small

time variations, however, decrease as we increase the effec-

tive thermodynamic parameter. We now compare our results

with the microcanonical ensemble average. The ETH for di-

agonal elements of an observable consists of the assumption

-50 0 50 100 150 200 250 30010-6
10-5
10-4
10-3
10-2
10-1
100

× 10-2
 b = 80 b = 100

|P - <
P> micro|

E

30 40 50 60 70 80 90 1001.701.751.801.851.901.952.002.05

mic [P]

b
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1
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 2 ()
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3
5
7
9

D

b

 Superradiant phase, a < 1, b > 1 Superradiant phase, b > a > 1
× 10-2c)0 40 80 120 1600

5

10

d(t)

t

 b = 60 
 b = 80  b = 100 

× 10-2 b)a)

Figure 3: a) The absolute difference between the expectation value

of P̂ and the average predicted by the DE for various ηb. We set

λa = 1.096 and λb = 1.10 such that the system is in a b-super-radiant

phase. b) The difference between the eigenstate expectation values

and the microcanonical average in a b-super-radiant phase. (inset)

Deviation of the EEVs for P̂ with respect to the microcanonical re-

sult as a function of the effective thermodynamic parameter. c) Com-

parison between the DE and ME averages of P̂ as a function of the

effective system size. d) The long-time fluctuations of the spin pop-

ulation. The bosonic Hilbert space is truncated at nmax = 150 for a-

and b-modes.

that the matrix element Oµµ is a smooth function of the energy

Eµ such that microcanonical average is identical to the predic-

tion of each eigenstate. In Fig. 3(b) we show |Pµµ −〈P〉micro|
for two regions of eigenstates of ĤJT as a function of the en-

ergy. We see that the expectation value for each eigenstate

is approximately equal to the microcanonical average close to

the mean energy and hence these eigenstates of the JT system

exhibit thermal properties. However, for eigenstates with en-

ergies close to the edge of the JT spectrum we observe devia-

tion between both results. The increase of the effective system

size ameliorates this result. In order to show this, we consider

the deviation of the eigenstate expectation values (EEVs) with

respect to the microcanonical value [14]

∆mic[P̂] =
∑µ |Pµµ −〈P〉micro|

∑µ Pµµ
, (9)

where the eigenstates are taken from an energy shell centered

at the initial state energy. We observe monotonic decrease

of the deviation with the effective thermodynamic parameter

as is shown in Fig. 3(b) (inset). Next, we study the difference

D= |〈P̄〉−〈P〉micro| between the diagonal and microcanonical

averages. In Fig. 3(c) we show the difference D as a function

of our effective thermodynamic parameter ηb when the system

is in a b-super-radiant phase for λa < 1 and λb > 1 as well as

for λb > λa > 1. In the limiting case λa = 0 the JT system

is reduced to quantum Rabi system. In that case we observe

no agreement between both predictions [43]. In the other two
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Figure 4: a) The effective dimension as a function of the spin-boson

coupling gb in a-super-radiant phase with λa(ga = 5.9) = 1.24 and

for various initial states. The other parameters are set to nmax = 90,

ηa = 77.78 and ηb = 70. b) The effective dimension as a function of

the bosonic Hilbert space truncation nmax. c) The scaling of the long

time-average of the temporal fluctuations of 〈P̄〉 with the effective

dimension deff in a-super-radiant phase. The bosonic Hilbert space

is truncated at nmax = 90.

cases we see that the difference is small and decreases with

ηb where the agreement between both averages becomes more

pronounced for λb > λa > 1. Finally, we emphasize that the

microcanonical energy shell is chosen to be δE = p∆E where

∆E = E0 −EG with EG being the ground state energy and p

varies from 25% to 85%. The observed difference between

the results for the microcanonical average is of order 10−3.

Further, we consider the long-time average of the tempo-

ral fluctuations of the expectation value of the observable Ô

which is given by

δ 2
O(∞) = lim

τ→∞

1

τ

∫ τ

0
〈Ψ(t)|Ô|Ψ(t)〉2dτ −〈Ō〉2. (10)

Assuming non-degenerate energy gaps the infinite fluctua-

tions can be expressed using the off-diagonal elements of an

observable, namely δ 2
O(∞) = ∑ µν

µ 6=ν
|aµ |2|aν |2|Oµν |2. In Fig.

3(d) we plot δ 2
O(∞) for Ô = P when the system is in a b-super-

radiant phase. We see that the temporal fluctuations decrease

with increasing ηb. As a measure for ergodicity of our system

we introduce the effective dimension which is given by

deff =
1

∑µ |cµ(α)|4 . (11)

Here we have assumed that the initial state is an eigenstate

of non-interacting Hamiltonian Ĥ0 = ωan̂a+ωbn̂b +(∆/2)σz,

namely Ĥ0|ϕα〉 = E0
α |ϕα〉 such that cµ(α) = 〈ψµ |ϕα〉. The

effective dimension quantifies the ability of a quantum sys-

tem to thermalize [26]. Indeed, a large value of deff implies

that a large set of eigenvectors are involved in the dynamics

0 10 20 30 40 50 60 70 80 90 1000.00.10.20.30.40.50.60.7

S Rény
i

t

 a = 0.21, b = 0.23  a = 1.05, b = 0.81 a = 1.05, b = 1.08 a = 1.05, b = 1.15 maximally entangled state

Figure 5: a) The time evolution of the Rényi entropy in normal, a-

super-radiant and b-super-radiant phase. The initial state is |Ψ(0)〉=
|↓〉 |7a,8b〉. The other parameters are set to ωa∆ = 90, ηb = 75 and

nmax = 90.

of an observable, such that destructive interferences cause a

suppression of the size of the time fluctuations on average. In

Fig. 4(a) we show the effective dimension as a function of

the spin-boson coupling gb. We see that deff is large in the

super-radiant phase and increases with the coupling strength.

We also check the convergence of the result for deff by varying

the bosonic Hilbert space truncation nmax for the two bosonic

modes, see Fig. 4(b). We see that deff reaches a constant value

for approximately nmax ≈ 80 for all cases.

In Fig. 4(c) we show the scaling of the mean amplitudes

of time-fluctuations with the effective dimension. Recently,

it was shown that for systems which can be well described

by a random matrix ansatz, the mean amplitudes of time-

fluctuations scale as δ 2
O(∞) ∝ 1/deff [16]. We numerically

check this scaling in our system. We vary deff through its de-

pendence on the spin-boson coupling gb. The long-time aver-

age is taken on sufficiently large time scales, which guarantees

the convergence of the result. We find that the mean-time fluc-

tuations follow approximately the inverse dependence of deff

which is in agreement with ETH prediction.

Finally, we study the Rényi entropy SR =− lnTr(ρ̂2
S ) which

measures the entanglement between the spin subsystem and

its complement, where ρ̂S is the reduced density matrix after

tracing over the two bosonic degrees of freedom. As can be

expected SR is nearly zero in the normal phase, which indi-

cates that there is no entanglement between the spin system

and the two bosonic modes, see Fig. 5. Increasing λi the

entanglement between the spin and the two bosonic modes

increases as well. Accordingly the RE grows rapidly and

reaches a level of saturation, which is signature for thermal-

ization. The level of saturation increases with λi and is more

prominent for λi > 1 as can be seen from Fig. 5.
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IV. SUMMARY

We have shown that the Jahn-Teller system consisting of

single spin and two bosonic modes exhibits signatures of

quantum thermalization. We have considered an effective

thermodynamic limit in which the ratio of spin-level split-

ting to the bosonic mode frequencies grows to infinity. In

this limit, the JT system undergoes a finite-size quantum

phase transition between normal phase and two types of super-

radiant phases. We have found that the JT undergoes a first-

order quantum phase transition between two super-radiant

phases where the order parameters show a jump at the criti-

cal point. We studied the signatures of quantum thermaliza-

tion in the different quantum phases of JT system. In the nor-

mal phase the large energy-level splitting suppresses the time-

evolution of the spin observable which is nearly frozen around

its initial value. In the super-radiant phase, we found that the

JT system quickly approaches its long-time average value. We

have shown that the long-time average of the observable ap-

proaches the microcanonical ensemble average when the ef-

fective thermodynamic parameter is increased. Moreover, the

individual matrix elements of the spin observable, correspond-

ing to energies close to the initial one, are approximately equal

to the microcanonical ensemble average which is in agreement

with the weak ETH.

Further, we have shown that the mean time-fluctuation of an

observable is small and decreases with the effective thermo-

dynamic parameter. We also have studied the scaling of the

mean time-fluctuation with the effective dimension of the JT

system. According the ETH the mean time-fluctuation scales

as δ 2
O(∞) ∝ 1/deff. We vary the effective dimension through

its dependence on the JT spin-boson coupling and confirm that

the mean time-fluctuation decreases with the effective dimen-

sion. Finally, we have shown the the Rényi entropy increases

in the super-radiant phase and reaches a level of saturation

which is signature for thermalization of the spin observable.
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Appendix A: Normal phase

We consider the quantum Jahn-Teller Hamiltonian

ĤJT = ωaâ†â+ωbb̂†b̂+
∆

2
σz + gaσx(â

† + â)+ gbσy(b̂
† + b̂),

(A1)

in the effective thermodynamic limit ηi → ∞. In order to

describe the normal phase we perform canonical transfor-

mation Ĥ1 = e−ÂnpĤJTeÂnp with Â†
np = −Ânp. Applying the

Baker–Campbell–Hausdorff formula to Ĥ1 we obtain

Ĥ1 = Ĥ0 + ĤI +[Ĥ0, Ânp]+ [ĤI, Ânp]+
1

2!
[[Ĥ0, Ânp], Ânp]

+
1

2!
[[ĤI, Ânp], Ânp]+ . . . , (A2)

where Ĥ0 = ωaâ†â+ωbb̂†b̂+ ∆
2

σz and ĤI = gaσx(â
† + â)+

gbσy(b̂
† + b̂). Our goal is to eliminate the terms in Ĥ1 which

are linear in either of the couplings ga or gb. In order to

achieve this we choose Ânp to satisfies ĤI = −
[

Ĥ0, Ânp

]

. We

find

Ânp =−i
ga

∆
σy(â

† + â)+ i
gb

∆
σx(b̂

† + b̂). (A3)

In this limit the effective Hamiltonian is given by Ĥ1 ≈ Ĥ0 +
1
2

[

ĤI , Ânp

]

. Hence, we obtain

Ĥ1 =ωaâ†â+ωbb̂†b̂+
∆

2
σz+

g2
a

∆
σz(â

†+ â)2+
g2

b

∆
σz(b̂

†+ b̂)2,

(A4)

which is diagonal in the basis of σz. Consider the subspace

corresponding to spin state |↓〉 we get

Ĥ
↓
1 = ωa

(

1− 2g2
a

ωa∆

)

â†â+ωb

(

1− 2g2
b

ωb∆

)

b̂†b̂

−g2
a

∆
(â†2

+ â2)− g2
b

∆
(b̂†2

+ b̂2)− ∆

2
− g2

a

∆
− g2

b

∆
.(A5)

We apply the transformation Ĥ
↓
np = Ŝ(ra)Ŝ(rb)Ĥ

↓
1 Ŝ†(ra)Ŝ

†(rb)

with Ŝ(ra) = e
ra
2 (â†2−â) and Ŝ(rb) = e

rb
2 (b̂†2−b̂) where the

squeezing magnitude is given by

ri =−1

4
ln(1−λ 2

i ). (A6)

The final diagonal Hamiltonian is given by

Ĥ↓
np = ωa

√

1−λ 2
a â†â+ωb

√

1−λ 2
b b̂†b̂+Enp, (A7)

where we define λi = gi/gi(c) with gi(c) =
√

∆ωi/2 being the

critical coupling parameters. The normal phase is defined by

gχ < gχ(c) or equivalently λχ < 1. The ground state energy

is

Enp =−1

2
(∆+ωa+ωb)+

ωa

2

√

1−λ 2
a +

ωb

2

√

1−λ 2
b . (A8)

with corresponding ground state |Ψnp〉G =

Ŝ(ra)Ŝ(rb) |↓〉|0a,0b〉.
In the thermodynamic limit the normal phase is charac-

terized with mean spin magnetization 〈σz〉G = −1 along

the z-axis and mean bosonic excitation 〈â†â〉G/ηa → 0,

〈b̂†b̂〉G/ηb → 0.
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Appendix B: Super-radiant phase

In order to describe the super-radiant phase when for ex-

ample λa > 1 and λb < 1, we displace first the a-bosonic

mode in the following way: The JT Hamiltonian ĤJT is given

by (2) and we now apply the displacement transformation

Ĥ2 = D̂†(αa)ĤJTD̂(αa) with D̂(αa) = eαa(â
†−â) where αa is

the displacement amplitudes. Thus we obtain

Ĥ2 = ωa(â
† +αa)(â+αa)+ωbb̂†b̂+

∆

2
σz

+gaσx(â
† + â+ 2αa)+ gbσy(b̂

† + b̂). (B1)

Extracting solely non-interacting terms that characterize the

spin, we have

Ĥspin =
∆

2
σz + 2αagaσx, (B2)

This is a two-state Hamiltonian which has eigenenergies ±Ω̃,

where Ω̃ =
√

∆2 + 16α2
a g2

a. The corresponding eigenvectors

are

|↑̃〉= sin(θ ) |↑〉+ cos(θ ) |↓〉 , |↓̃〉= sin(θ ) |↓〉− cos(θ ) |↑〉 ,
(B3)

where the angle θ is given by cos(2θ ) =−∆/Ω̃. In the eigen-

state basis the spin Hamiltonian is Ĥspin =
Ω̃
2

σ̃z The Hamilto-

nian (B1) takes the form

Ĥ2 = ωaâ†â+ωbb̂†b̂+
Ω̃

2
σ̃z +[ωaαa + ga sin(2θ )σ̃z]

×(â† + â)− cos(2θ )gaσ̃x(â
† + â)+ gbσ̃y(b̂

† + b̂)

+ωaα2
a . (B4)

In order to determine the displacement amplitude αa we

project the term which multiple (â† + â) in (B4) onto the sub-

space corresponding to spin state |↓̃〉. In this representation

the condition for cancelling linear term in the bosonic opera-

tors leads to the following result for the displacement param-

eter:

α2
a =

ηa

4λ 2
a

(λ 4
a − 1). (B5)

The Hamiltonian (B4) becomes

Ĥ2 = ωaâ†â+ωbb̂†b̂+
Ω̃

2
σ̃z + g̃aσ̃x(â

† + â)+ gbσ̃y(b̂
† + b̂)

+ωa
ηa

4λ 2
a

(λ 4
a − 1), (B6)

where we set g̃a = −ga cos(2θ ). Next, we perform transfor-

mation according to Ĥ3 = e−ÂspĤ2eÂsp , where

Âsp =−i
g̃a

Ω̃
σ̃y(â

† + â)+ i
gb

Ω̃
σ̃x(b̂

† + b̂). (B7)

Then, in the limit Ω̃ ≫ ωi the effective Hamiltonian becomes

Ĥ3 = ωaâ†â+ωbb̂†b̂+
Ω̃

2
σ̃z +

g̃2
a

Ω̃
σ̃z(â

† + â)2

+
g2

b

Ω̃
σ̃z(b̂

† + b̂)2 +ωa
ηa

4λ 2
a

(λ 4
a − 1). (B8)

Projecting onto the subspace of spin state |↓̃〉 and subsequent

application of the squeeze operators Ŝ(r̃a) = er̃a(â
†2−â2)/2 and

Ŝ(r̃b) = er̃b(b̂
†2−b̂2)/2 where

r̃a =−1

4
ln

(

1− 1

λ 4
a

)

, r̃a =−1

4
ln

(

1− λ 2
b

λ 2
a

)

, (B9)

brings the Hamiltonian into diagonal form

Ĥ
↓
a−sp = ωa

√

1− 1

λ 4
a

â†â+ωb

√

1−
(

λb

λa

)2

b̂†b̂+Ea−sp,

(B10)

which is positively defined for λa > 1 and λa > λb. The

ground state energy is

Ea−sp =
∆

4λ 2
a

(λ 4
a − 1)− ∆λ 2

a

2
− 1

2
(ωa +ωb)

+
ωa

2

√

1− 1

λ 4
a

+
ωb

2

√

1− λ 2
b

λ 2
a

. (B11)

The corresponding ground state is displaced squeezed state

for a-mode and squeezed state for b-mode, namely

|Ψa−sp〉G = Ŝ(r̃a)D̂(αa)Ŝ(r̃b)|↓̃〉|0a,0b〉. (B12)

The a-super-radiant phase is characterized with mean

spin orientation 〈σz〉 = −λ−2
a and mean bosonic

excitation limηa→∞〈â†â〉G/ηa = (λ 4
a − 1)/4λ 2

a and

limηb→∞〈b̂†b̂〉G/ηb = 0.

The JT system in the a-super-radiant phase may un-

dergo a quantum phase transition to b-super-radiant phase,

where λb > 1 and λb > λa. In that case the quan-

tum phase is characterized with 〈σz〉 = −λ−2
b and mean

bosonic excitation limηb→∞〈b̂†b̂〉G/ηb = (λ 4
b − 1)/4λ 2

b and

limηa→∞〈â†â〉G/ηa = 0.
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