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Quantum interferometric power (IP) is a discordlike measure. We study the dynamics
of IP for two-qubit X shape states under different noisy environments. Our study shows
that IP exhibits sudden change, and one side quantum channel is enough for the occur-
rence of a sudden change of IP. In particular, we show that the initial state having no
sudden change of quantum discord exhibits a sudden change of IP under the dynamics of
amplitude noise, but the converse is not true. Besides, we also investigate the dynamics
of IP under two different kinds of composite noises. Our results also confirm that sudden
change of IP occurs under such composite noises.
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1. Introduction

Quantum correlations characterize the quantum feature of bipartite or multipartite

system.1 For a long time, entanglement was considered to be the only quantum

correlation that was useful for quantum information processing. However, it is re-

alized that there exists another quantum correlations weaker than entanglement

called quantum discord,2, 3 which can be found in separable mixed states and may

play an important role in quantum information processing. For instance, quantum

discord can be found to be present in the deterministic quantum computation with

one qubit (DQC1) while there is no entanglement.4, 5 In the past two decades, a

great deal of attentions have been received for quantum discord.4, 6–27

One interesting and challenging topic in quantum information theory is charac-

terizing and quantifying such nonclassical correlation. Recently, several discordlike

quantum correlation measures were proposed and studied from different perspec-

1
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tives, one of which was interferometric power (IP).28, 29 Based on quantum fisher in-

formation, the definition of IP naturally quantified the guaranteed sensitively of the

probe states in some interferometric devices.29 As one of the discordlike measures,

IP has some basic properties, such as invariance under local unitary operations,

and nonnegativity for states of classical correlation.30

We already know that sudden change12, 23 is a peculiar dynamical behavior of

the dynamics of quantum discord for two-qubit systems passing through quantum

noise channels. But there are no investigations to show that the sudden change of

IP exists for two-qubit systems under the same cases. In this paper, we investigate

the dynamics of IP for two-qubit X shape states under several different kinds of

quantum noises. Our results show that compared to depolarizing noise, IP exhibits

sudden change under amplitude noise and phase noise acting on the first qubit of

the two-qubit system. In particular, our findings show that the condition of the

sudden change of IP differs from quantum discord under amplitude noise acting

on the first qubit of the two-qubit system. Our studies also show that IP exhibits

sudden change under the two different kinds of dephasing noise acting on both

two-qubit systems.

2. Quantum IP as the discordlike measure of X shape states

The concept of IP of quantum states has been introduced explicitly in Ref. 29. As

one of the measure of discordlike quantum correlations, IP provides a computable

way of quantum discord quantification. For a bipartite system ρAB, the IP is defined

as the minimum of the Quantum Fisher Information (QFI)32 by taking over all the

local Hamiltonians HA acted only on the subsystem A,

IP(ρAB) =
1

4
min
HA

F(ρAB , HA), (1)

where

F(ρAB, HA) = 4
∑

i6=j;qi+qj 6=0

(qi − qj)
2

qi + qj
|〈ψ1|HA ⊗ 1B|ψj〉|2 (2)

with {qi, |ψi〉} being the eigenvalues and eigenvectors of ρAB, respectively. For the

case of subsystem A being a qubit, one can take the set of Hamiltonians HA = ~n ·~σ
with ~n = 1 and ~σ = (σx, σy , σz). Then Eq. (1) can be reduced to a closed formula

IP(ρAB) = ζmin[M ], (3)

where ζmin[M ] is the smallest eigenvalues of the matrix M with elements29

Mm,n =
1

2

∑

i,l;qi+ql 6=0

(qi − ql)
2

qi + ql
〈ψi|σm ⊗ 1|ψl〉〈ψl|σn ⊗ 1|ψi〉. (4)

One can note that IP has the following properties: (i) IP(ρAB) equals to zero if ρAB

is a classical state (with respect to A); (ii) IP(ρAB) is invariant under local unitary

operation; (iii) IP(ρAB) is monotonically decreasing under local completely positive
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and trace preserving maps on subsystem B; (iv) IP(ρAB) reduces to a measure of

entanglement if ρAB is a pure state.29 These properties imply that IP(ρAB) is a

proper measure of discord-type correlation.

Let us consider the following X shape states of two-qubit system,17

ρAB =
1

4
(1 ⊗ 1 + ~r · ~σ ⊗ 1 + 1 ⊗ ~s · ~σ +

3
∑

j=1

cjσj ⊗ σj), (5)

where 1 is the 2 × 2 identity matrix, ~r = (0, 0, r), ~s = (0, 0, s), cj ∈ R, and σj(j =

1, 2, 3) are the Pauli matrices. It is easy to see that Eq. (5) reduces to Bell-diagonal

states when r = s = 0.

The form of IP of ρAB can be given by Eq. (4), that is

IP(ρAB) = min{M11,M22,M33}, (6)

where

M11 =
(λ1 − λ3)

2

λ1 + λ3
· (x1 + y1)

2

(1 + x21)(1 + y21)
+

(λ1 − λ4)
2

λ1 + λ4
· (x1 + y2)

2

(1 + x21)(1 + y22)

+
(λ2 − λ3)

2

λ2 + λ3
· (x2 + y1)

2

(1 + x22)(1 + y21)
+

(λ2 − λ4)
2

λ2 + λ4
· (x2 + y2)

2

(1 + x22)(1 + y22)
,

M22 =
(λ1 − λ3)

2

λ1 + λ3
· (x1 − y1)

2

(1 + x21)(1 + y21)
+

(λ1 − λ4)
2

λ1 + λ4
· (x1 − y2)

2

(1 + x21)(1 + y22)

+
(λ2 − λ3)

2

λ2 + λ3
· (x2 − y1)

2

(1 + x22)(1 + y21)
+

(λ2 − λ4)
2

λ2 + λ4
· (x2 − y2)

2

(1 + x22)(1 + y22)
,

M33 =
(λ1 − λ2)

2

λ1 + λ2
· (x1x2 − 1)2

(1 + x21)(1 + x22)
+

(λ3 − λ4)
2

λ3 + λ4
· (y1y2 − 1)2

(1 + y21)(1 + y22)
.

(7)

Here λi ≥ 0 are the eigenvalues of ρAB, x1 = r−s−2(λ2−λ1)
c1+c2

, x2 = r−s+2(λ2−λ1)
c1+c2

,

y1 = r+s−2(λ4−λ3)
c1−c2

and y2 = r+s+2(λ4−λ3)
c1−c2

. From the above expressions, one can

find that M11 ≥M22 (or M11 < M22) if |c1| ≤ |c2| (or |c1| > |c2|). Hence, the IP of

ρAB can be rewritten as

IP(ρAB) =

{

min{M22,M33}, if|c1| < |c2|,
min{M11,M33}, if|c1| > |c2|.

(8)

3. Sudden change of IP under one side quantum channel

In this section, based on the analytical formula of IP which has been given above,

we can study the dynamics of IP for two-qubit system over three kinds of quantum

noises acted on the first qubit: amplitude noise, phase noise and depolarizing noise.

For simplicity, we consider the Bell-diagonal states as the initial states of two-qubit

system,9

ρ =
1

4
(1 ⊗ 1 +

3
∑

i=1

ciσi ⊗ σi). (9)
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3.1. Amplitude noise

Amplitude damping, or amplitude noise, which is used to characterize spontaneous

emission, describes the energy dissipation from a quantum system. One can consider

a two-qubit system where the first qubit is through this quantum channel. Then

the Kraus operators for the whole system are given by33

K1a =

(

η 0

0 1

)

⊗
(

1 0

0 1

)

,

K2a =

(

0 0
√

1− η2 1

)

⊗
(

1 0

0 1

)

,

(10)

where η = e−
τt
2 , τ is the amplitude decay rate, t is time. The evolution of the initial

states Eq. (9) under this quantum channel can be described by

Ea(ρ) = K1aρK
†
1a +K2aρK

†
2a

=
1

4









η2(1 + c3) 0 0 η(c1 − c2)

0 η2(1− c3) η(c1 + c2) 0

0 η(c1 + c2) 2− η2 − η2c3 0

η(c1 − c2) 0 0 2− η2 + η2c3









=
1

4
(1 ⊗ 1 + r(t)σ3 ⊗ 1 + s(t)1 ⊗ σ3 +

3
∑

j=1

cj(t)σj ⊗ σj),

(11)

where r(t) = η2 − 1, s(t) = 0, c1(t) = ηc1, c2(t) = ηc2 and c3(t) = η2c3. By Eq. (8),

the IP of Ea(rho) is

IP(Ea(ρ)) =
{

min{M22(t),M33(t)}, if|c1(t)| < |c2(t)|,
min{M11(t),M33(t)}, if|c1(t)| > |c2(t)|.

(12)

In particular, Eq. (7) can reduce to the following simple form when t = 0:

M11(t) =
c22 + c33 + 2c1c2c3

1− c21
,

M22(t) =
c21 + c33 + 2c1c2c3

1− c22
,

M33(t) =
c22 + c32 + 2c1c2c3

1− c23
.

(13)

It is easy to find that M11(0) > M22(0) (or M11(t) < M22(0)) if |c1| < |c2|
(or |c1| > |c2|), and when t → ∞, M11(∞) = M22(∞) > M33(∞). Hence, a

sudden change of IP occurs when |c3| < max{|c1|, |c2|} in the initial Bell-diagonal

state ρ with this kind of amplitude noisy channel. However, a sudden change of

quantum discord occurs when |c3| > max{|c1|, |c2|} in the initial state ρ with the

same noise environment. We find that the initial state satisfying the condition of

a sudden change of quantum discord also exhibits a sudden change of IP, which

means that the conditions of the sudden change of IP and quantum discord are not

complementary. These results have been shown in Fig. 1.
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(a) c1 = 0.4, c2 = 0.2, c3 = 0.3
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(b) c1 = 0.4, c2 = 0.2, c3 = 0.3
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(c) c1 = 0.3, c2 = 0.2, c3 = 0.301
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(d) c1 = 0.3, c2 = 0.2, c3 = 0.301

Fig. 1. The evolution of IP ((a) and (c)) versus the evolution of quantum discord ((b) and (d))
under amplitude noise acting on the first qubit of the bipartite system. Considering the initial state
not satisfying the condition of a sudden change of quantum discord (c1 = 0.4, c2 = 0.2, c3 = 0.3),
we can see that IP exhibits a sudden change with the same situation. On the other hand, if
we consider the initial state satisfying the condition of a sudden change of quantum discord
(c1 = 0.3, c2 = 0.2, c3 = 0.301), one can see that a sudden change of IP still occurs with the same
situation.

3.2. Phase noise

Next we investigate the dynamics of IP over phase noise channel. Phase noise de-

scribes the loss of quantum information without loss of energy. The Kraus operators

of phase noise for the whole system can be read as1, 34

K1p =
√
α

(

1 0

0 1

)

⊗
(

1 0

0 1

)

,

K2p =
√
1− α

(

1 0

0 −1

)

⊗
(

1 0

0 1

)

,

(14)
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where α = 1
2 (1 +

√
1− γ), γ = e−

τt
2 and τ denotes transversal decay rate. The

output states from this quantum channel is

Ep(ρ) = K1pρK
†
1p +K2pρK

†
2p

=
1

4









1 + c3 0 0 γ(c1 − c2)

0 1− c3 γ(c1 + c2) 0

0 γ(c1 + c2) 1− c3 0

γ(c1 − c2) 0 0 1 + c3









=
1

4
(1 ⊗ 1 +

3
∑

i=1

ci(t)σi ⊗ σi),

(15)

where c1(t) = γc1, c2(t) = γc2 and c3(t) = c3. By Eq. (8), the expression of IP of

Ep(ρ) can be obtained, that is

IP(Ep(ρ)) =
{

min{M22(t),M33(t)}, if|c1(t)| < |c2(t)|,
min{M11(t),M33(t)}, if|c1(t)| > |c2(t)|.

(16)

where

0 1 2 3 4 5

0.00

0.05

0.10

0.15

t

IP

Fig. 2. IP of the initial Bell-diagonal states under phase noise acting on the first qubit of the
quantum system. (1) c1 = 0.4, c2 = 0.1, c3 = 0.3 (solid line). (2) c1 = 0.1, c2 = 0.3, c3 = 0.4
(dashed line). (3) c1 = 0.4, c2 = 0.3, c3 = 0 (dotted line). The sudden change only happens at
situation (1).
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M11(t) =
γ2c22 + c23 + 2γ2c1c2c3

1− γ2c21
,

M22(t) =
γ2c21 + c23 + 2γ2c1c2c3

1− γ2c22
,

M33(t) =
γ2c21 + γ2c22 + 2γ2c1c2c3

1− c23
.

(17)

One can find that the IP of Ep(ρ) can be rewritten as the following form:

IP(Ep(ρ)) =
‖C(t)‖2 − ‖C(t)‖2∞ + 2detC(t)

1− ‖C(t)‖2∞
, (18)

where ‖C(t)‖2 = Tr[CTC] = c21(t) + c22(t) + c23(t) the square Hilbert-Schmidt

of C(t) and ‖C(t)‖2∞ = max{c21(t), c22(t), c23(t)} the operator norm of C(t).29

If |c3| ≥ max{|c1|, |c2|}, ‖C(t)‖2∞ will reduce to c23(t) since the decay rate of

max{|c1(t)|, |c2(t)|} and |c3(t)| is different, then the IP IP(Ep(ρ)) decays monoton-

ically. If |c3| < max{|c1|, |c2|} and c3 6= 0, the decay rate of IP IP(Ep(ρ)) sudden

changes at t0 = − 2
τ
ln
∣

∣

∣

c3
max{|c1|,|c2|}

∣

∣

∣. In Fig. 2, we choose three different {ci} to

represent the dynamics of IP of ρ under single qubit phase noise. As a result, a

sudden change of IP may occur under this kind of noise environment.

3.3. Depolarizing noise

As one of the important types of quantum noise, the depolarizing noise describes a

process that takes a state into completely mixed state 1/2 with probability p and

the state being left untouched with probability 1 − p. The operation elements for

depolarizing noise are shown as {
√

1− 3p/41,
√
pσx/2,

√
pσy/2,

√
pσz/2} and the

Kraus operators for the whole system are given by1

K1d =

√

1− 3p

4

(

1 0

0 1

)

⊗
(

1 0

0 1

)

, K2d =

√
p

2

(

0 1

1 0

)

⊗
(

1 0

0 1

)

,

K3d =

√
p

2

(

0 −i
i 0

)

⊗
(

1 0

0 1

)

, K4d =

√
p

2

(

1 0

0 −1

)

⊗
(

1 0

0 1

)

,

(19)

where p = 1− e−τt. The Bell-diagonal states after this noise is

Ed(ρ) =
4

∑

j=1

KjdρK
†
jd

=
1

4









1+(1−p)c3 0 0 (1−p)(c1−c2)
0 1−(1−p)c3 (1−p)(c1+c2) 0

0 (1−p)(c1+c2) 1−(1−p)c3 0

(1−p)(c1−c2) 0 0 1+(1−p)c3









=
1

4
(1 ⊗ 1 +

3
∑

i=1

ci(t)σi ⊗ σi),

(20)
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where ci(t) = (1− p)ci, i = 1, 2, 3. Similarly, the form of the IP of Ed(ρ) is Eq. (18)
but ci(t) = (1− p)ci, i = 1, 2, 3. Since the identical decay rate of |c1(t)|, |c2(t)| and
|c3(t)|, ‖C(t)‖2∞ will be determined once {ci} has been chosen. Therefore, there is

no sudden change of IP of ρ under depolarizing noise, see Fig. 3.

4. Sudden change of IP under two-qubit dephasing model

In this section, we investigate the dynamics of IP of Bell-diagonal states which

are independently interacting with identical colored dephasing environment or are

interacting with a common dephasing bath.

4.1. Identical colored dephasing noise

The study of the dynamics quantum open system based on the Markov approxima-

tion contains the majority of physical situation but lacking the case of system-

environment interactions with memory. In Ref. 35, a model describing system-

environment interactions with memory without using Born-Markov approximation

has been presented, and the conditions for system evolution to satisfy the complete

positive trace-preserving map have been given.

The Kraus operators describing the above dynamics are given as follows:36

M1 =
√

β

(

1 0

0 1

)

, M2 =
√

1− β

(

1 0

0 −1

)

, (21)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

τt

IP

Fig. 3. IP of the initial Bell-diagonal states under depolarizing noise acting on the first qubit of
the quantum system. (1) c1 = 0.4, c2 = 0.3, c3 = 0.2 (solid line). (2) c1 = 0.1, c2 = 0.3, c3 = 0.4
(dashed line). (3) c1 = 0.1, c2 = 0.4, c3 = 0.2 (dotted line).
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where the operators satisfy
∑2

kM
†
kMk = 1, β = 1+Λ(ν)

2 and Λ(ν) = e−ν [cos(µν) +

sin(µν)/µ], µ =
√

(4aτ)2 − 1, and a is a coin-flip random variable, ν = t
2τ is the

dimensionless time. After the evolution of Bell-diagonal states under the indepen-

dent interaction with identical colored dephasing environment, the output density

matrix can be obtained as

Eic(ρ) =
∑

i,j

(Mi ⊗Mj)ρ(Mi ⊗Mj)
†, (22)

where the operatorsMi andMj act on the first and second qubits, respectively. Ac-

tually, this is a completely positive trace-preserving map. After the straightforward

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

IP

Fig. 4. The dynamics of the IP of the initial Bell-diagonal state ρ, described by parameters
c1 = 0.3, c2 = 0.4, c3 = 0.2, independently interacting with identical colored dephasing noise
having a = 1s, τ = 0.5s. The decay rate of IP sudden changes at ν = 0.455.

calculation, one can obtain that

Eic(ρ) =
1

4









1 + c3 0 0 Λ2(ν)(c1 − c2)

0 1− c3 Λ2(ν)(c1 + c2) 0

0 Λ2(ν)(c1 + c2) 1− c3 0

Λ2(ν)(c1 − c2) 0 0 1 + c3









=
1

4
(1 ⊗ 1 +

3
∑

i=1

ci(t)σi ⊗ σi),

(23)

where c1(t) = Λ2(ν)c1, c2(t) = Λ2(ν)c2 and c3(t) = c3. By Eq. (18), we get the

form of the IP of Eic(ρ). Since Λ2(ν) is monotonically decreasing as similar as γ,
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the sudden change of IP for Eic(ρ) can occur with the proper {ci}, see Fig. 4.

4.2. Two qubits coupling to common bath

Considering the two-qubit system coupling to a same bosonic environment, the

total Hamiltonian can be written as37

Hc =
1

2

∑

j=1,2

σj
z +

∑

k

ωkb
†
kbk +

∑

j=1,2

∑

k

σj
z(gkb

†
k +H.c.). (24)

The dynamics of Bell-diagonal states under such common dephasing bath can be

0.0 0.1 0.2 0.3 0.4 0.5

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

t

IP

Fig. 5. IP of the initial Bell-diagonal states under the two-qubit dephasing model with colored
noise with (1) c1 = 0.4, c2 = −0.1, c3 = 0.16 (solid line) and (2) c1 = 0.4, c2 = −0.1, c3 = 0.14
(dotted line), respectively. Sudden change of IP happens only at situation (2).

expressed by the following Kraus operators:

K1cb =











√
χ 0 0 0

0 1√
2

0 0

0 0 1√
2

0

0 0 0
√
χ











, K2cb =











√
1− χ 0 0 0

0 1√
2

0 0

0 0 1√
2

0

0 0 0 −√
1− χ











(25)

where χ = ξ4+1
2 , ξ(t) = exp[−Γ(t)], and Γ(t) is the decoherence function with the

form

Γ(t) =

∫ ∞

0

1− cos(ωt)

ω2
J(ω)d(ω). (26)
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By considering the spectral density as J(ω) = ωs

ω
s−1
c

exp(− ω
ωc
) with the cut-off fre-

quency ωc = 1 and the positive parameter s = 4, we can investigate the dynamics

of the Bell-diagonal states coupling to a same bosonic environment.

The matrix form of Ecb(ρ) with the initial Bell-diagonal state is as follow:

Ecb(ρ) = K1cbρK
†
1cb +K2cbρK

†
2cb

=
1

4









1 + c3 0 0 ξ4(t)(c1 − c2)

0 1− c3 c1 + c2 0

0 c1 + c2 1− c3 0

ξ4(t)(c1 − c2) 0 0 1 + c3









=
1

4
(1 ⊗ 1 +

3
∑

i=1

ci(t)σi ⊗ σi),

(27)

where c1(t) = [(1+ξ4(t))c1+(1−ξ4(t))c2]/2, c2(t) = [(1−ξ4(t))c1+(1+ξ4(t))c2]/2,

and c3(t) = c3. By Eq. (18) with the proper parameter s = 4, we find that if c1 = c2,

c1(t) and c2(t) will equal to c1, then the IP of Ecb(ρ) will reduce to a constant. If

c1 6= c2, the sudden change of IP happens when c3 > (c1 + c2)/2 with this kind of

noise environment. We show this in Fig. 5.

5. Conclusion

In summary, we have investigated the dynamics of IP of the X class of quantum

states under several different kinds of noise channel, such as amplitude noise, phase

noise and depolarizing noise acting only on one qubit of the quantum system, and

two different types of phase noise acting on both two qubits of the quantum system.

Our results show that, as one of the discordlike measure, IP exhibits sudden change

behavior, which is as similar as quantum discord. Compared with dynamics of IP

under depolarizing noise, the sudden change of IP occurs under amplitude noise and

phase noise if chosen proper initial states. In Ref. 31, sudden change of quantum

discord under one side quantum channel is shown. In comparison, we show that

sudden change of IP occurs when the quantum noise acts only on one qubit of the

quantum system, which means that composite noise is not the necessary condition

for the occurrence of sudden change of IP. Furthermore, our results show that the

initial state ρ having no sudden change of quantum discord exhibits a sudden change

of IP under the dynamics of amplitude noise, but the converse is not true.
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