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Abstract

Background: The serotonergic system modulates brain processes via func-
tionally distinct subpopulations of neurons with heterogeneous properties,
including their electrophysiological activity. In extracellular recordings, sero-
tonergic neurons to be investigated for their functional properties are com-
monly identified on the basis of “typical” features of their activity, i.e. slow
regular firing and relatively long duration of action potentials. Thus, due to
the lack of equally robust criteria for discriminating serotonergic neurons with
“atypical” features from non-serotonergic cells, the physiological relevance of
the diversity of serotonergic neuron activities results largely understudied.

New Methods: We propose deep learning models capable of discriminat-
ing typical and atypical serotonergic neurons from non-serotonergic cells with
high accuracy. The research utilized electrophysiological in wvitro recordings
from serotonergic neurons identified by the expression of fluorescent proteins
specific to the serotonergic system and non-serotonergic cells. These record-
ings formed the basis of the training, validation, and testing data for the
deep learning models. The study employed convolutional neural networks
(CNNs), known for their efficiency in pattern recognition, to classify neurons
based on the specific characteristics of their action potentials.

Results: The models were trained on a dataset comprising 27,108 orig-
inal action potential samples, alongside an extensive set of 12 million syn-
thetic action potential samples, designed to mitigate the risk of overfitting
the background noise in the recordings, a potential source of bias. Results
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show that the models achieved high accuracy and were further validated on
"non-homogeneous” data, i.e., data unknown to the model and collected on
different days from those used for the training of the model, to confirm their
robustness and reliability in real-world experimental conditions.

Comparison with existing methods: Conventional methods for identify-
ing serotonergic neurons allow recognition of serotonergic neurons defined as
typical. Our model based on the analysis of the sole action potential reliably
recognizes over 94% of serotonergic neurons including those with atypical
features of spike and activity.

Conclusions: The model is ready for use in experiments conducted with
the here described recording parameters. We release the codes and proce-
dures allowing to adapt the model to different acquisition parameters or for
identification of other classes of spontaneously active neurons.

Keywords: Deep Learning Models, Serotonergic Neurons, Convolutional
Neural Networks, Dorsal Raphe Nucleus, Spike Recognition
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1. Introduction

Activity of serotonergic neurons is known to regulate a wealth of auto-
nomic and higher functions in mammals (Steinbusch et al., 2021; Faulkner
and Deakin, 2014; Pilowsky, 2014; Lesch et al., 2012; Monti, 2011). Present
knowledge of the physiological and pharmacological properties of serotoner-
gic neurons is mostly based on electrophysiological recordings of neuronal
activity from raphe nuclei of laboratory animals both in vivo and in wvitro.
However, most of recordings have been performed on neurons whose sero-
tonergic identity was based on criteria that were empirically developed in
the years to restrict the investigations to recordings from neurons that dis-
played very typical activity. For serotonergic neurons, the accepted criteria
require the concomitant regularity of firing, broad action potential and, when
pharmacological assays were allowed by the experimental design, sensitivity
to serotoninl A receptor agonists that typically produce reversible slowing or
cessation of neuron firing. When recordings are conducted in slices under mi-
croscopy guidance, the large size of serotonergic neuron soma could be used
as an additional criterion. Adhering to these strict criteria for serotonergic
neuron identification, however, results in a selection bias that has limited the
studies to the “typical” neurons which might underrepresent the variety of



serotonergic neuron population. The implication of serotonin neuron activ-
ity in behavioural tasks in mice has been studied using selective optogenetic
activation and recording from raphe neurons in vivo (Liu et al., 2014) as well
as with one-photon calcium imaging (Paquelet et al., 2022). Interestingly,
the latter study revealed anatomically defined subpopulations of DRN sero-
tonin neurons with different activity and projecting to either reward-related
or anxiety-related brain areas. This confirmed previous evidence for the
existence of subpopulations of serotonergic neurons with distinctive neuro-
chemical and pharmacological properties as well as firing patterns, emerged
in the course of the past 40 years of dedicated research (e.g. Calizo et al.,
2011; Paquelet et al., 2022; see also in Gaspar et al., 2012; Andrade and Haj-
Dahmane, 2013; Commons, 2020). For instance, using in vitro recordings
from dorsal raphe nucleus the possibility that serotonergic neurons display
also irregular firing or peculiar rhythmic fluctuations in firing activity has
been described since early recordings both in vivo and in vitro (Mosko and
Jacobs (1974, 1976) and more recently confirmed with recordings of seroton-
ergic neurons from transgenic mice selectively expressing fluorescent proteins
in serotonergic neurons (Mlinar et al, 2016). Thus, the principal drawback of
the intra-experiment recognition of 5-HT neurons is that serotonergic neurons
displaying atypical activity or spikes narrower than expected are discarded
and their pharmacological and physiological characteristics remain elusive.
In addition, in the course of our research on genetically fluorescent seroton-
ergic neurons (Montalbano et al., 2015; Mlinar 2016) we also noticed the
existence of non-serotonergic (non-fluorescence labelled) neurons with regu-
lar activity and relatively broad spikes whose duration often overlaps that of
action potentials recorded in serotonergic neurons. Thus, in “real life” exper-
imental conditions the activity characteristics of a non-neglectable number
of serotonergic and non-serotonergic neurons could overlap and adherence to
the above-mentioned strict criteria for identification of typical serotonergic
neurons has the advantage to ensure a reasonable homogeneity of the pop-
ulation under study, in spite of the selection bias introduced. On the other
hand, the characteristics of what we define “atypical” serotonergic neurons
remain understudied.

In the present work we have taken advantage of the recordings present
in our internal database and obtained from transgenic mice selectively ex-
pressing fluorescent proteins in serotonergic neurons to develop deep-learning
based models for recognition of serotonergic and non-serotonergic neurons
with relatively high accuracy and that can be implemented in the recording



programs to quickly help the experimenter in the decision of continuing the
recording or to change the experimental design, should an atypical seroton-
ergic or non-serotonergic neuron be identified.

2. Material and Methods

2.1. Source database

To train, test and validate our deep-learning based models we used the
original recordings from our internal database built in the occasion of our
studies in which we described the firing characteristics of genetically iden-
tified dorsal raphe serotonergic neurons in brain slices. Serotonergic and
non-serotonergic neurons were thus identified on the basis of a parameter
independent from their electrophysiological features, i.e., on serotonergic
system-specific fluorescent protein expression (serotonergic) or lack of ex-
pression (non-serotonergic). In our original articles (Mlinar et al., 2016;
Montalbano et al., 2015) we detailed the procedure to obtain the three
transgenic mouse lines with serotonergic system-specific fluorescent protein
expression used in the present work: Tph2::SCFP; Pet1-Cre::Rosa26.YFP ;
Pet1-Cre::CAG.eGFP.

2.2. Loose-seal cell-attached recordings

Detailed description of the electrophysiological methods and of the mea-
sures for improving reliability of loose-seal cell-attached recordings has been
previously published (Montalbano et al., 2015; Mlinar et al., 2016). In
brief, mice (4-28 weeks of age) were anesthetized with isofluorane and de-
capitated. The brains were rapidly removed and dissected in ice-cold gassed
(95% 02 and 5% CO2) ACSF composed of: 124 mM NaCl, 2.75 mM KCI,
1.25 mM NaH2PO4, 1.3 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3, 11
mM D-glucose. The brainstem was sliced coronally into 200 pm thick slices
with a vibratome (DSK, T1000, Dosaka, Japan). Slices were allowed to
recover for at least 1 h at room temperature and then were individually
transferred to a submersion type recording chamber and continuously su-
perfused at a flow rate of 2 ml min-1 with oxygenated ACSF warmed to
37°C by a feedback-controlled in-line heater (TC-324B / SF-28, Warner In-
struments, Hamden, CT). Slices were allowed to equilibrate for 10-20 min
before the beginning of the recording. To reproduce in brain slices nora-
drenergic drive that facilitates serotonergic neuron firing during wakeful-
ness (Baraban and Aghajanian, 1980; Levine and Jacobs, 1992), ACSF was
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supplemented with the natural agonist noradrenaline (30 uM) or with the
al adrenergic receptor agonist phenylephrine (10 uM; Vandermaelen and
Aghajanian, 1983). Neurons within DRN were visualized by infrared Dodt
gradient contrast video microscopy, using a 40X water-immersion objective
(N-Achroplan, numerical aperture 0.75, Zeiss, Gottingen, Germany) and a
digital CCD camera (ORCA-ER C4742-80-12AG; Hamamatsu, Hamamatsu
City, Japan) mounted on an upright microscope (Axio Examiner Z1; Zeiss)
controlled by Axiovision software (Zeiss). Loose-seal cell-attached recordings
were made from fluorescent protein-expressing or not expressing neurons,
visually identified by using Zeiss FilterSet 46 (eGFP and YFP, excitation
BP 500/20, emission BP 535/30) or Zeiss FilterSet 47 (CFP, excitation BP
436/20, emission BP 480/40). Fluorescence was excited using a Zeiss HXP
120 lamp. Patch electrodes (3-6 M) were pulled from thick-walled borosili-
cate capillaries (1.50 mm outer diameter, 0.86 mm inner diameter; Corning)
on a P-97 Brown-Flaming puller (Sutter Instruments, Novato, CA) and filled
with solution containing (in mM): 125 NaCl, 10 HEPES, 2.75 KCI, 2 CaCl2
and 1.3 MgCI2, pH 7.4 with NaOH. After positioning the pipette, devel-
opment of loose-seal was monitored by using a voltage-clamp protocol with
holding potential of 0 mV and test pulse of 1 mV / 100 ms, repeated every
second. Weak positive pressure was released and gentle suction was slowly
applied until detected spikes increased to 50 - 100 pA peak-to-peak ampli-
tude. In some experiments this procedure was repeated during recording to
increase signal to noise ratio. Corresponding seal resistance was in 10 to 20
MQ range. Recordings were made using an Axopatch 200B amplifier (Molec-
ular Devices, Sunnyvale, CA) controlled by Clampex 9.2 software (Molecular
Devices). Signals were low-pass filtered with a cut-off frequency of 5 kHz
(Bessel) and digitized with sampling rate of 40 kHz (Digidata 1322A, Molec-
ular Devices). After the recording, images of recorded neuron were acquired
to document the expression of the fluorescent marker in the recorded neuron.

2.3. Offtine Analysis of recordings

Detection of spikes was performed using event detection routine of Clamp-
fit 9.2 software. Spike duration (width) was determined from the shape of
averaged action potential by measuring the interval between the spike up-
stroke and the downstroke (or second downstroke, whenever present) hereby
named UDI (Upstroke-Downstroke Interval) for convenience (see Fig. 6; see
also Fig. 3 in Mlinar et al., 2016).



3. A Deep Learning Model

Recognizing serotonergic cells is a binary classification problem, i.e., sero-
tonergic vs. non-serotonergic cells, for which deep learning (DL) algorithms
and, more specifically, the use of convolutional neural networks (CNN) have
yielded excellent results. Notably, CNN are inspired by the organization of
the animal visual system, particularly the human brain, and excel at tasks
like image feature extraction, which is fundamental for recognition purposes
(Liu, 2018). They employ mechanisms such as feedforward inhibition to
alleviate issues like gradient vanishing, enhancing their effectiveness in com-
plex pattern recognition tasks (Liu et al, 2019). With these considerations
in mind, we have chosen to use a CNN architecture even in the apparently
unconventional context of numerical pattern recognition, i.e., the recorded
signal of a neuronal cell. The inspiring idea behind this choice is to leverage
the ability of CNNs to amplify numerical patterns that occur at different
scales, in this case within time intervals that are orders of magnitude smaller
than the entire examined signal. In fact, this is a characteristic typical of
neuronal spikes, where the maximum peak impulse can occur within a scale
of 1 ms, while the firing period, i.e., the time interval between two consecutive
spikes, can be two orders of magnitude greater.

3.1. Preliminary approaches and definition of appropriate parameters for de-
veloping the model

Starting from the assumption that two factors are typically relevant in
recognizing serotonergic cells, namely the specific shape of the action poten-
tial together with its repetitiveness and firing frequency, we initially decided
to consider time segments of 7 seconds as training data for the neural net-
work. This ensured an adequate number of action potentials to evaluate
their consistency and periodicity. After several attempts in this direction,
however, we realized that the importance of the cell’s action potential shape
was so predominant that the information obtained from analyzing the firing
periodicity alone was not sufficient to compensate for the accuracy gained by
focusing on the individual action potential.

Our first preliminary analysis was done on 108 serotonergic cells and 45
non-serotonergic cells. Every action potential for the training consisted in
the recording of 7 ms taken from 2 ms before the detection threshold to 5
ms after. While the final accuracy of the resulting models was fairly high,
ranging from 94.3% to 99.3%, further analysis on non-homogeneous data, i.e.



data from neurons whose identity was kept unknown to the model and were
collected on experimental days different from those used for the training and
evaluation of the models, showed a much lower accuracy, which was a strong
sign of the overfitting. Further investigation allowed to identify an important
source of overfitting in the background noise of the recordings which, having
a specific signature, the model learned to incorporate in the recognition of
the neuron types. Thus, models trained with action potentials embedded in
7 ms time-segments learned how to classify the spikes on the basis of the
background noise instead of the peculiar shape of the event.

Therefore, we decided to reduce the impact of the background noise
present in the samples by limiting the time-window of action potential anal-
ysis to 4 ms. This solution worked well, since we had a comparable accuracy
of the metrics on non-homogeneous data.

Another very efficient solution for expanding the training data, beside
splitting the samples in different segments, was given by the generation of a
synthetic data set for which we develop a very specific procedure (see section
3.2) that combines smoothed action potentials signals along with real noise
masks. To this purpose, we produced 12M synthetic action potentials from
a pool of 600 different noise backgrounds, thus reducing the impact that
such noise could have in the training. The training on synthetic data led to
an improvement on all accuracy types on non-homogeneous data (e.g. from
binary accuracy 0.9125 to 0.9375, from AUC 0.8976 to 0.9255 and from F1-
Score 0.8679 to 0.9056, see Fig. @] for more details). Besides the specific
improvement in model performance, it is important to note the utility of
the synthetic model in monitoring sources of overfitting arising from noise
signatures in the recordings. More specifically, the difference in accuracy
on non-homogeneous data between the biological model and the synthetic
model provides a rough estimate of the overfitting in the biological model
resulting from noise signatures. This is highly significant when determining
how additional experiments with different noise signatures could improve the
model.

3.2. Data used for originating and validating the final model

Original Training Data. The original data for the training, validation and
testing of the models consisted in 43,327 action potential samples extracted
from 108 serotonergic cells and 45 non-serotonergic cells. Since the two
classes were unbalanced (29,773 serotonergic and 13,554 non-serotonergic) we
undersampled the serotonergic class, to obtain a more balanced dataset for
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Figure 1: Summary of the various steps used to implement the model from recorded
signals: from neuronal cell the signal is samfled at 40 kHz and recorded as .abf file, then
the all events are selected and sent to 10 neural networks with the above architecture for
classification (only difference between the architectures is the value of the 2D convolutional
kernel with ranges between 20 to 30).



training. Therefore, the training set data consisted in 13,554 action potentials
from serotonergic cells, and 13,554 action potentials from non-serotonergic
cells. In all cases, the triggering threshold of the event was -50 pA and the
spike was then sampled 1 ms before the triggering threshold until 3 ms after
(see Figs. 1,2). Since the sampling rate of the original recordings was 40
kHz, every action potential sample consists of 160 values. All the samples
were then randomly subdivided into 18,975 for training, 4,066 for validation
and 4,067 for testing.

Non-homogeneous Data. The non-homogeneous data consisted in 24,616 sam-
ples extracted from a new set of 55 serotonergic cells (18,595 action poten-
tials) and 27 non-serotonergic cells (6,021 action potentials) collected in ex-
perimental days not used to obtain the training data, thus with different
signal noise. These data were never part of the training set, nor valida-
tion, nor testing set during the training. Furthermore, the identity of the
neurons from which these data were obtained was unknown to the model.
Non-homogeneous data were therefore used as an additional, independent,
test for the already trained model to assess its robustness when cells have a
noise signal never encountered by the model.

Synthetic Data. The synthetic data consisted in 12,700,600 action potentials
samples of 160 points (simulating 4 ms at 40 kHz of sampling), 6,675,300 of
which emulated action potentials from serotonergic cells and 6,025,300 from
non-serotonergic action potentials. From the original training data recordings
we extracted 600 noise masks (see e. g. Fig. from a selection of which
were randomly applied to the biological action potentials thus obtaining the
synthetic data (see e. g. Fig. {4]). The purpose of generating the synthetic
data, besides plain data augmentation for higher accuracy, is also to provide
an estimate of the overfitting of the biological model based on the noise
signature of the data.

The generation of the synthetic data was done according the following
procedure. Each original training data sample is smoothed through averag-
ing, i.e. the values of the smoothed sample {y/,} with m € {1,...,160}, are
given as the averages of the values of the original sample {y,,} by

Y, = (Ym—1 + y:;n + merl). (1)

The reason for this 3-point averaging preprocessing of the signal is due to
the need to combine two requirements: the need to smooth the original sig-
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Figure 2: Example on how single events were isolated and selected. The image depicts the

recording of the serotonergic cell A140313#073 and the 4 ms event of triggered at point
1007585, i.e. at 25.189 sec.
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nal from the specific noise of the recording, and the need to maintain the
structure of the signal. The rapid depolarization of the cell is such that the
most relevant data of the action potential recording are often formed in a
few tenths of a millisecond, i.e., most useful informations are supposedly con-
densed in about a dozen of recording points. This means that considering
n-point averaging with n > 3 could undermine the fundamental informa-
tion inside the signal, while n = 2 might not be sufficient to remove the
background noise. After the averaging process, the values of smoothed ac-
tion potential {y/,} are added to the values of randomly chosen noise mask

{nﬁf)} where k € {1, ...,600} is randomly chosen. The final synthetic sample
is thus obtained as the sample {y(k)m} with

y(k)m _ ?J:n +o- nffi)7 (2)

where a € [0.2,0.4] is a randomly generated “dumping coefficient” experi-
mentally found around 0.3 to modulate the noise. The choice of this coef-
ficient requires some clarification. Indeed, the coefficient dumps the noise
intensity to synthesize more physiologically plausible spike waveforms. First,
the background noise was not completely removed when averaging action po-
tentials, just smoothed with a 3-point average. Thus directly adding the full
noise mask would excessively boost the background noise compared to the
original recording. Moreover, the original noise does not influence all points of
the signal equally, but is more pronounced in slower changing current regions.
Applying the raw noise mask tends to produce unrealistic action potential
shapes, e.g. double bottoms. The dumping coefficient between 0.2 and 0.4
was deemed a suitable range by visual inspections by an expert author with
over 30 years of experience on serotonergic action potential recordings.

3.8. Model Description

In accordance with the origin of our dataset, we developed two distinct
models, namely the “biological” model (trained only over original data) and
the “synthetic” model (trained only on synthetic data). The biological model
underwent training, validation, and testing using the original training data,
which comprises 27,108 action potential samples after the balancing of the
classes. Conversely, the synthetic model was trained, validated, and tested
utilizing synthetic data, encompassing 12,700,600 action potential samples.
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Figure 3: Examples of noise masks collected from the recordings of cell A140724#065 (on
the left) and A1601274#015 (on the right).

Fig. 1 summarizes the various steps used to implement the model from
recorded signals. The architecture of the models is a sequence of layers
commonly used in deep learning, specifically in the context of convolutional
neural networks (CNNs) for image or signal processing. We implemented the
architecture using the Keras libraries in TensorFlow 2. The model of the
neural network consists of a normalization layer for stabilizing the learning
process and reducing training time; two repetitions of a 2D convolutional
layer with 32 filters and a max pooling layer with a pool size of (2x1); a
flatten layer to connect to a dropout layer and dense layers with 2 output
units used for binary classification. Activation functions of the convolutional
layers are the ReLLU, while for the dense layer we used the classic sigmoid
(see Table 1 for a summary of the model). For training we chose the ”binary
crossentropy” loss function, which is standard for binary classification prob-
lems, while the optimizer was ”"Adam” (Adaptive Moment Estimation) as
these are common choices. A special treatment was devoted to the kernel of
the 2D convolutional layers. Indeed, since the kernel of these layers express
the ability of the convolutional process in enlarging a specific portion of the
pattern, we explored a range of possible kernels between 1 to 31. All models
were trained on 25 epochs with a batch size of 64 and their test accuracy
ranged from 88.3% (model with kernel 1) to 98.4% (model with kernel 23)
with a test loss of 0.2641 and 0.05524. To enhance the robustness of the
model, instead of selecting a single kernel and using one model for inference,
we selected all models with kernels ranging between 20 and 30 and took the
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Figure 4: Example of 4 synthetic action potentials generated by the event triggered at
1007585, i.e. 25.189 sec, of the serotonergic cell A140313#073. Top trace: the original
recording of the event. The panels report four action potential obtained by processing the
original trace with different noise masks (seg3nethods).



Layer (type) Output Shape Param #

Layer Normalization (None, 160, 2, 1) 320
Conv2D (None, 141, 2, 32) 672
MaxPooling2D (None, 70, 2, 32) 0
Conv2D (None, 51, 2, 64) 41024
MaxPooling2D (None, 25, 1, 64) 0
Flatten (None, 1600) 0
Dropout (None, 1600) 0
Dense (None, 2) 3202
Total Params 45218

Table 1: Summary of the CNN architectural model with kernel 20 used for the neural
network. Other models follow the same architectural structure and change only for the
dimension of the kernel.

consensus between the models. This technique ensures more stability in the
overall architecture and is often considered best practice. Since this article
presents a method rather than offering a specific optimized deep learning
model, we did not systematically search for a specific architecture other than
the one above which is a standard. However, we explored a few different
architectures with varying numbers of layers and neurons per layer. Nev-
ertheless, the improvement in accuracy was not enough to justify adopting
a more complicated architecture. At this stage, to our understanding, ac-
quiring more data represents the most relevant advancement for achieving a
better model. Nevertheless, since this article is just a proof of concept, we
leave open the possibility of future research into the most suitable architec-
ture for this problem.

Finally, it is worth noticing that while the training of the biological model
did not require any specific adjustment, the synthetic model, involving >
12M action potential samples required a continuous learning implementation,
where the model was trained over 200 training sessions of 63,450 synthetic
action potential samples.

3.4. Assessment of Accuracy and Sensitivity

For the assessment of the models we used the following metrics: Accuracy,
Sensitivity at Specificity 0.5, Area Under the Curve (AUC), F1-Score and the
Confusion Matrix.

e Accuracy measures the proportion of total predictions (both serotoner-
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gic and non-serotonergic cells) that the model correctly identifies, i.e.
Accuracy = (True Positives + True Negatives) /Total Samples. (3)

This metric was chosen for identifying if the models are generally ef-
fective in classifying both serotonergic and non-serotonergic cells.

Sensitivity at Specificity measures the sensitivity of the model, i.e.
Sensitivity = True Positives/(True Positives + False Negatives), (4)

at a fixed specificity, i.e. True Negatives/(True Negatives + False Positives),
which we set at 0.5 . The choice of this metric with this setting ensures
that the models are not overly biased towards identifying serotonergic
cells at the expense of misclassifying non-serotonergic ones.

The Area Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC) provides a measure of the model’s ability across classi-
fication thresholds, i.e.,

AUC = /0 1 TPR(t), dt, (5)

where ¢ is the threshold, and TP R(t) is the true positive rate at thresh-
old t. This metric is particularly useful because it is independent of the
classification threshold and provides a single measure of performance
across all possible levels of sensitivity and specificity.

The F1-Score is the harmonic mean of precision and sensitivity (re-
call). The F1-Score takes both false positives and false negatives into
account, providing a balanced view of the model’s performance. We
considered useful this metric for the measuring the robustness of the
model, balancing the trade-off between precision and recall.

Finally, the Confusion Matrix shows the percentages of True Positives,
False Positives, True Negatives, and False Negatives giving a complete
feedback of the models. This is a a detailed view that we considered
essential for understanding the specific areas where the models need
improvements.
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All these metrics were used for all the data, i.e. Original Training Data, Non-
homogeneous Data and Synthetic Data. In the specific case of the Original
Training Data all the metrics were used in the three phases of Training,
Validation and Testing. The training phase was developed on 30,328 action
potentials selected uniquely for training. The Validation phase, which is used
to tune hyperparameters, was on 6,500 action potentials which the model has
not seen during training. Finally, the last 6499 action potentials were used
for the Testing of the models, and are those on which the true performance
of the models is assessed.

3.5. Repository of the Model and Data

We made available in the GitHub respository at GitHub.com/neuraldl/
DLAtypicalSerotoninergicCells.git the following:

1. the .abf recordings of original training data and the non-homogeneous
data,

2. the 43,327 single action potentials samples of the original training data
stored in .csv files of 160 points,

3. the 24,616 single action potentials samples of the non-homogeneous
data stored in .csv files of 160 points,

4. the 12,700,600 million single action potentials samples of the synthetic
data stored as numpy vector,

5. the trained models with different kernels,

6. the results of the models,

7. the Python notebooks for training of the models and for inference.

4. Results

In this study we compared the spiking activity of 300 neurons recorded in
DRN slices obtained from transgenic mouse lines with serotonergic system-
specific fluorescent protein expression.

4.1. Visual discrimination of action potentials

As illustrated in Fig. [5] serotonergic neurons displayed action potentials
of different shape and duration that were often difficult to be discriminated
from those observed in non-serotonergic neurons. Thus, with the exception
of action potentials showing the typical shape and duration of serotonergic
neurons (e.g. Fig. i} traces al, a2) or of non-serotonergic cells (e.g. Fig.
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6: trace bl) both types of neurons may display action potentials similar in
width and/or shape. Therefore, the sole duration of the spike, which could
be determined online by measuring the upstroke/downstroke interval (UDI)
may result not conclusive for immediate serotonergic neuron identification.

From our database of recordings we have selected 150 serotonergic neurons
labelled by fuorescent proteins and 150 non labelled cells, deemed to be non-
serotonergic cells. The distribution of spike width of these two populations is
shown in Fig. [f] These neurons were chosen on the sole technical characteris-
tic of not showing detectable artefactual transients that could be mistaken by
the deep-learning routine as action potentials. From these two populations
of neurons we extracted 108 serotonergic and 45 non-serotonergic neurons to
implement the training of the Biological Model. In addition, 12 serotonergic
neurons from three different experimental days and 10 non-serotonergic neu-
rons from four different experimental days were used for testing the model
with data non homogeneous to the training (see methods).

As shown in Fig. [7 the neurons used from training and testing the
model 1 are representative of the two (serotonergic and non-serotonergic)
populations of neurons.

An additional group of recordings (n = 30) from fluorescence identified
serotonergic and non-serotonergic neurons, not previously used for the model
implementation, were processed by the model 1 to test its ability to recognize
cell type from the spike characteristics distilled by the model itself.

4.2. Discrimination with Deep Learning Models

The metrics of both the biological model and the synthetic model were
collected over the testing data (original and synthetic) during their training
phase, as standard practice in deep learning. Over this data both the biolog-
ical model and the synthetic model scored > 98% accuracy. In addition to
the standard practice we evaluated the models over non-homogeneous data
in order to evaluate possible sources of overfitting arising from noise signa-
tures in the recordings. On this dataset the biological model scored > 91.2%
accuracy showing the existence of some light source of overfitting. As ex-
pected the synthetic model showed better results with > 93.7% accuracy.
Overall, we consider the metrics evaluated on non-homogeneous data more
indicative and more reliable than those arising from the training data. In-
deed, non-homogeneous data not only were unknown to the model, but were
also collected on different days than those of the data used for the training.
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Figure 5: Examples of action potentials recorded from serotonergic and non-serotonergic
neurons in slices of dorsal raphe nucleus. A. Fluorescent protein-labelled (serotonergic)
neurons: al,a2: typical action potentials of serotonergic neurons; note the long interval
between spike upstroke and downstroke (UDI) highlighted by the shaded area in all traces.
a3-ad: recordings from serotonergic neurons displaying spikes of shorter duration. B.
Fluorescent protein-unlabelled (non-serotonergic) neurons: bl: typical biphasic spike of
short duration from a non-serotonergic neuron; b2-b4: spikes of variable shape recorded
from non-serotonergic neurons. Shaded areas indicate the width of the spike measured
by UDI (see methods). Note the overlap in action potential width of some serotonergic
and non-serotonergic neurons. Traces are averages of 15-50 sweeps. Calibrations 25 pA
(polarity inverted); 1 ms.
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Figure 6: Distribution of spike duration of serotonergic and non-serotonergic neurons.
Histograms report the distribution of spike width measured by the interval between spike
upstroke and downstroke (UDI) in serotonergic (blue) and non-serotonergic neurons (red)
recorded in slices of dorsal raphe nucleus. Note the overlap in spike duration between
serotonergic and non-serotonergic neurons. Firing rate (mean + s.e.m) of serotonergic
and non-serotonergic neurons was 2.17 + 0.08 Hz (range 0.51-5.80 Hz; n=150) and 3.6 +
0.32 Hz (range 0.07-16.60 Hz; n=150), respectively.
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Figure 7: Distribution of spike duration recorded from the neurons utilized to develop
the model 1. Histograms report the distribution of spike width measured by the interval
between spike upstroke and downstroke (UDI) in serotonergic (blue) and non-serotonergic
neurons (red) recorded in slices of dorsal raphe nucleus. Firing rate (mean + s.e.m) of
serotonergic and non-serotonergic neurons was 2.29 £+ 0.09 Hz (range 0.38-5.08 Hz; n=120)
and 2.43 + 0.33 Hz (range 0.07-9.32 Hz; n=>55), respectively.
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Kernel Test Loss Accuracy Sens. at Spec. 0.5 ~ AUC  F1-Score

1 0.26417  0.88296 0.99409 0.95765  0.88333

5 0.10187  0.95893 0.99901 0.99314  0.95941

10 0.06001 0.97934 0.99926 0.99729  0.97910

15 0.06673 0.98155 0.99827 0.99663 0.98143

20 0.05831 0.98303 0.99852 0.99706  0.98278

25 0.05343 0.98131 0.99901 0.99789  0.98119

30 0.07726 0.97713 0.99704 0.99544  0.97726
Biological model | 0.05457  0.98401 0.99852 0.99747  0.98340

Table 2: A selection of the metrics on the test data of the models trained with Original
Training Data. Beside Accuracy, Sensitivity At Specificity 0.5, AUC and F1-Score we
reported also Test loss, which represent the error between the predicted values and the
actual values and is a standard metric in evaluating DL models. Values reported in last row
“biological model” refer to the metrics of the full biological model given as the consensus
of the single models with 20 < kernel < 30.

4.2.1. Results on the Training Data

Biological Model. The biological models, when tested on the original training
dataset, showed varying performance metrics. For kernels ranging from 1 to
31, the test loss was observed between 0.26417 (kernel 1) and 0.05006 (ker-
nel 27). Accuracy measurements ranged from 0.88296 (kernel 1) to 0.98401
(kernel 29), as detailed in Fig. |8l The consensus biological model, obtained
from models with kernels 20 to 30, tested on the original data recorded a test
loss of 0.05457, an accuracy of 0.98401, and a sensitivity at specificity 0.5 of
0.99852, an AUC of 0.99747 and an F1-Score of 0.98340 as shown in the last
row of Table [2)).

Synthetic Model. The evaluation of the 32 synthetic models on the synthetic
dataset yielded superior metrics compared to the biological models on the
training dataset. These results on the training dataset are not deemed highly
significant, as overfitting not related to recording noise tends to be amplified
in the augmented dataset. However, we considered significant the results
of the synthetic model on non-homogeneous data. Indeed, as pointed out
in Fig. [9] the synthetic model outperformed the biological model on non-
homogeneous data.
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Figure 8: Each of the 32 models, with kernel sizes varying from 1 to 31, was evaluated
for test loss, accuracy, sensitivity at a specificity of 0.5, AUC and F1-Score. The resulting
graphs depict a monotonic trend correlating with the increasing kernel sizes, which even-
tually stabilizes in the range from kernel size 20 to 31.
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Figure 9: Confusion matrix for the biological and synthetic model over the non-
homogeneous data labels serotonergic cells as 0 and non-serotonergic cells as 1. The
matrix of the biological model (lest panel) shows the True Positive Rate 94.4% at the
Top-Left; the False Negative Rate 5.6% at the Bottom-Left; the False Positive Rate 14.8%
at the Top-Right; and the True Negative Rate 85.1% at the Bottom-Right. On the other
hand, the matrix of the synthetic model (right panel) shows the True Positive Rate 96.2%
at the Top-Left; the False Negative Rate 3.7% at the Bottom-Left; the False Positive Rate
11.1% at the Top-Right; and the True Negative Rate 88.8% at the Bottom-Right. In the
table below all accuracy types of the two models over non-homogeneous data

Model Accuracy Sens. at Spec. 0.5 ~AUC  F1-Score
Biological model | 0.9125 0.8518 0.8976  0.8679
Synthetic model | 0.9375 0.8888 0.9255  0.9056
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4.2.2. Results on Non-homogeneous Data

The most significant outcomes were derived from non-homogeneous data,
i.e., cells that were not utilized in training and that were collected on different
days other than those used for the training data. Using this dataset, the
biological model achieved an accuracy of 0.9125, a sensitivity at specificity of
0.5 of 0.8518, an AUC of 0.8976 and an F1-Score of 0.8679. An even better
result was given by the synthetic model which achieved an accuracy of 0.9375,
a sensitivity at specificity of 0.8888, an AUC of 0.9255 and an F1-Score of
0.9056. A crucial indicator of performance is the confusion matrix (refer to
Fig. @ The best results were obtained by the synthetic model. Indeed, out
of 55 serotonergic cells, 53 (96.2%) were accurately identified as serotonergic
(True Positive), while 2 (3.8%) were incorrectly classified as non-serotonergic
(False Negative). Conversely, of the 27 non-serotonergic cells, 24 (88.8%)
were correctly recognized (True Negative), and 3 (11.1%) were erroneously
labeled as serotonergic (False Positive). The biological model had similar
results but misclassified 3 (5.5%) serotonergic cells as non-serotonergic an 4
(14.8%) non-serotonergic cell as serotonergic. In the non-homogeneous data
the False Positive Rate is higher than the False Negative Rate. We do not
have explanation for this phenomenon other than randomness. Indeed, in
the original data, the False Positive and False Negative Rates are similar,
and this phenomenon is not present when testing either the biological or
synthetic models.

5. Discussion

Deep-learning based models have gained increasing importance in biomedicine
for their high performance in image processing and morphological recogni-
tion of cells that can be applied both in clinical diagnostics (Johansen et al.,
2016; Litjens et al., 2017; Récz et al., 2020) and in preclinical research when
complex patterns of data need to be measured, classified and interpreted (De
Luca et al., 2023). More specifically, convolutional neural networks (CNN)
effectively address complex pattern recognition especially when patterns are
hidden across varying scales and orders of magnitude. This is highly relevant
in neuronal action potentials, where the peak impulse and the rise of the
spike may occur in a fraction of millisecond, whereas the interval between
spikes can be vastly longer. The here proposed model provides an important
proof of concept for usefulness of CNN for identification of neuron types in
the central nervous system on the basis of their spiking activity. To the best
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Figure 10: The above images are Gradient-weighted Class Activation Mapping (Grad-
CAM) visualisations that highlight the regions of the input signal deemed most significant
by the first convolutional layer (Conv2D) of the biological model for the classification of
three serotonergic and three non-serotonergic cells. Although not a definitive pattern, the
model tends to focus more on the initial portion of the signal, particularly the spike. In
each panel, the left scale indicates the time step of the input signal, while the right colour
scale shows the activation intensity within ‘gqée Conv2D layer’s neurons.



of our knowledge, this is the first time that this type of architecture is ap-
plied to recognition of neuronal action potentials by their recorded traces.
Moreover, the recognition of serotonergic neurons has been validated by an
independent identification of the recorded neuron by its serotonin neuron
specific expression of a fluorescent protein.

5.1. Comparison with existing procedures for serotonergic neuron identifica-
tion from their physiological activity

Identification of different neurons active in a restricted brain area on the
basis of their spike shapes may be a valid and sufficient criterion when the
characteristics of spikes can reliably be separated in different classes. For
instance, Tseng and Han (2021) recorded in vivo the activity of behavioural-
task responsive neurons of prefrontal cortex in mice and discriminated ex-
citatory and inhibitory neurons taking advantage of the known, clearcut,
difference in the duration of spikes in the two classes of neurons. In con-
trast, our DL based model finds its application when the characteristics of
spikes from different neurons overlap as for serotonergic and non-serotonergic
neurons of the dorsal raphe nucleus. Indeed, automatic routines for online
measurements of action potentials can be designed, however until now no
valid criteria for discriminating between spikes generated by serotonergic and
non-serotonergic neurons have been established. Recognition of serotonergic
neurons during extracellular recordings relies mostly on visual evaluation
of the shape of the spike, that is often polyphasic, combined with the reg-
ular firing activity at relatively low frequency (up to 3-4 Hz). Thus, the
mean criterion is mainly based on the asymmetric proportion between the
upstroke and the downstroke of the spike (with a ratio usually >2.5) and
duration of the spike itself after the main upstroke (usually accepted in the
range > 1.2 ms). Coexistence of these characteristics is sufficient to enable
an experienced Researcher to identify typical serotonergic neurons with a
high degree of confidence. Nevertheless, in our recordings from genetically
identified serotonergic neurons we noticed relatively frequent deviations from
these criteria. Indeed, the spike duration of several neurons was less than
0.9 ms, down to 0.4-0.5 ms (see Fig. 6 in Mlinar et al., 2016). Similarly, a
not negligible percentage of non-serotonergic neurons displayed spike shape
and firing characteristics different from the expected biphasic, symmetric
spikes of brief duration (<0.5-0.6 ms) and high frequency, often irregular,
firing. Thus, some non-serotonergic neurons show long and asymmetric ac-
tion potentials and sometimes have a regular, low frequency activity (<4 Hz)
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which makes their recognition difficult. Therefore, while “typical” serotoner-
gic and non-serotonergic neurons are relatively easy to be discriminated with
the currently accepted criteria a number of serotonergic neurons that do not
comply with the classically established recognition criteria are discarded and
not studied for their pharmacological and physiological characteristics.

Given these limits of the online visual recognition of serotonergic neurons,
our model provides a valid tool for the intra-experiment identification of neu-
rons recorded in the dorsal raphe nucleus, as the model can be implemented
in the initial routine of in vitro recordings. Notably, our DL biological model
relies only on spike shape for recognition of serotonin neurons and therefore
it enables the identification and investigation of subpopulations of seroton-
ergic neurons displaying irregular firing or low frequency oscillatory patterns
of firing (see e.g. Mlinar et al., 2016).

5.2. Characteristics and limits of the model for its application

For the identification of serotonergic neurons we relied on transgenic mice
lines that express fluorescent marker proteins under the control of seroton-
ergic system-specific Tph2 and Pet-1 promoters. While the Tph2 promoter-
driven expression of fluorescent reporter genes is expected to unmistakably
label serotonergic neurons, there is a possibility that the Pet-1 Cre-based
method does not label few serotonergic neurons in the DRN (see in Mlinar et
al., 2016 for more detailed discussion and references). In the present context
we used both promoters and the probability that these rare neurons partici-
pated in the training of the model is very low. In this unlikely case, as these
non fluorescent cells were not categorized as serotonergic neurons during the
model training, this specific serotonergic neuron subtype would probably be
misclassified by the model.

It should be mentioned that the present model applies to the specific
recording method used in collecting our database of action potentials. Thus,
for immediate application of the model the sampling frequency should be set
at 40 kHz. Our data were acquired using the Clampex program in loose-seal
cell attached patch clamp mode, but since the routine transforms the signals
in *.csv files any acquisition program that produces files in a format that
can be transformed in *.csv format would provide adequate input for the
model. The amplitude of the recorded current should be greater than the
detection threshold that we have imposed in the model to minimize acqui-
sition of small transients (>50 pA). Finally, our recordings were performed
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at the temperature of "37 °C. Although small deviations from this tempera-
ture could be tolerated, it should be considered that the width of the action
potential, may be influenced by temperature. Notwithstanding these limita-
tions, if the sampling rate is adequate and the signal reaches the detection
amplitude the model provides an answer on neuron type with an accuracy of
>91.2% within an inference time of a few milliseconds after the submission of
the recorded traces (the inference time is the raw time taken by the model in
classifying the signal without considering the latent time of converting and
transmitting the signal to the model which can vary depending on the user
interface chosen in the deployment of the model).

It is noteworthy that in several experiments ( ~ 30% of those used here)
used for training the model we applied a gentle suction in the patch pipette
during the recording to improve the signal to noise ratio. We have previously
shown (Mlinar et al., 2016) that this procedure does not alter the shape and
duration of the recorded signals. In our context, this intra-experiment change
in the amplitude of events recorded from the same neuron increases the ro-
bustness of the training data because implemented the model with events of
constant shape but different weight of the background noise on the recorded
signal. On the other hand, this was probably one source of the overfitting
found in the initial, preliminary, model where the processed spike traces were
longer (7 ms) than those used in the final models (4 ms). Indeed, in the pres-
ence of small and larger spikes with the same noise the DL processing could
have retained the background noise as a signature of serotonergic neurons
in addition to their shape and therefore this may explain the improvement
of the model obtained by shortening the traces to be processed and limiting
the recognition process to the action potential shape. Notably, our synthetic
model in which various background masks were superimposed to 4 ms spikes
did not significantly improve the metrics compared to those of the biological
model obtained using original 4 ms spikes, confirming that limiting the DL
process to the spike was sufficient to eliminate the overfitting caused by the
background recognition together with the action potential shape for catego-
rizing of neuron type. For this reason we considered sufficient to limit the
model to recognition of short events and we did not include other parameters
such as e.g. those defining the firing rhythm, in spite of the biological im-
portance of this neuronal property. Indeed, our preliminary results (section
3.1) indicated that long segments of recording (e.g. 7 s), needed to allow the
incorporation of periodicity of events in the model, resulted detrimental for
the accuracy of the model itself. On the other hand, if deemed necessary for

28



improving the accuracy and/or the complexity of the neuron classification,
additional models directed to discriminate different, complementary, char-
acteristics of each neuron class could be developed and then merged in a
more refined model. For instance, a subset of putative serotonergic neurons
recorded in vivo displays complex firing in doublets or triplets (Hajos et al.,
1995). Unfortunately, this specific activity is seldom observed in slices and
our dataset of in vitro recordings from genetically identified serotonergic neu-
rons does not include any neuron with firing in doublets or triplets. Thus,
our model may result not adequate to classify these neurons as serotonergic
and should be modified to comply with this need. Nevertheless, it is likely
that such neurons would not be missed even by our model developed to rec-
ognize single spikes because the interval between the two spikes in a doublet
is usually greater than 3 ms (Hajos et al., 1995). Thus, the first spike will be
fully comprised in the 4 ms detection window (of which ~3 ms after upstroke)
and recognized before the beginning of the second spike. In addition, when
solitary spikes flank the doublets the recognition can be confirmed on these
spikes. Thus, with minor fine tuning of parameters during training, the deep-
learning procedure here described would be set to recognize also burst-firing
neurons. Altogether these considerations suggest that robust models based
on CNN deep-learning procedures could be developed for specific application
in conditions of recording where spikes of different amplitudes and possibly
slightly variable shapes could be recorded from the same neuron as typical
for in vivo recordings while the neuron is approached by a micropipette or
in long duration recordings. The favourable characteristic of the model is
that recognition of the neuron type can be performed at the beginning of
the experiment on a limited number of spikes until the neuron is classified.
Similarly, these models may be applied in high-density recordings in which
special probes (e.g. silicon probes) allow simultaneous recording of hundreds
of neurons in brain areas where different neuron types coexist. A model
trained to recognize spikes from specific neurons would enable very rapid
identification of the neurons captured in the different recording channels.

Perspectives. Importantly, a relatively low number of recordings was suffi-
cient to develop our deep-learning based model. In perspective, the proce-
dure we describe can be applied to construct further models for the identifi-
cation of other spontaneously active monoaminergic neurons. For instance,
our approach with genetically fluorescent mice can be extended to the recog-
nition of other neurons for in vitro recordings. Similarly, application of the
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CNN deep-learning procedure to neuronal types recognized with optogenetic
methods (Liu et al., 2014) or with post-hoc immunohistochemistry (Allers
and Sharp, 2003) in vivo may enable to construct a template of models ca-
pable to recognize a variety of neurons during in vivo recordings from mouse
and rats. Once validated, these models would allow rapid identification of the
recorded neuron, making in vivo recording of the activity of selected neurons
more feasible and less demanding than at present. This may also facilitate
studies on the correlation between the firing of different neuron types and be-
havioural responses in laboratory animals and increase our understanding of
the physiological role of these neurons in modulating higher brain functions.

In conclusion, our model provides the first proof of concept that neurons
can be recognized from the sole characteristics of extracellularly recorded
action potentials and independently of their firing rhythm. Our model could
readily be applied for intra-experiment decision making on the experimental
design to apply to record that specific neuron and/or for helping the training
of young Researchers at the beginning of their experience.
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