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As current experiments already realize small
quantum circuits on error corrected qubits, it
is important to fully understand the effect of
physical errors on the logical error channels of
these fault-tolerant circuits. Here, we investi-
gate a lattice-surgery-based CNOT operation
between two surface code patches under phe-
nomenological error models. (i) For two-qubit
logical Pauli measurements – the elementary
building block of the CNOT – we optimize the
number of stabilizer measurement rounds, usu-
ally taken equal to d, the size (code distance)
of each patch. We find that the optimal num-
ber can be greater or smaller than d, depend-
ing on the rate of physical and readout errors,
and the separation between the code patches.
(ii) We fully characterize the two-qubit logi-
cal error channel of the lattice-surgery-based
CNOT. We find a symmetry of the CNOT pro-
tocol, that results in a symmetry of the logical
error channel. We also find that correlations
between X and Z errors on the logical level are
suppressed under minimum weight decoding.

1 Introduction
Fault-tolerant quantum computation will be the ba-
sis of future large-scale quantum computers. To pro-
tect logical quantum information from environmental
noise quantum error correction is essential. Among
the array of promising quantum error-correcting codes
the surface code [1, 2] stands out as a favored choice
due to its high threshold, scalability, and planar con-
nectivity. Recently, surface code memory experiments
have been realized on various platforms [3, 4, 5, 6, 7],
and the experimental investigation of fault-tolerant
quantum gates has started [8].

For fault-tolerant universal quantum computation
with the surface code a universal set of fault-tolerant
gates is required. Single-qubit Clifford gates, such
as the Hadamard H and the phase gate S, can be
implemented by braiding the corners of surface code
patches [9]. Although transversal multi-qubit logical
Clifford operations exist between surface code patches
[10], and have been demonstrated recently with neu-

tral atoms [8], this requires high connectivity which
is unachievable on several platforms. Another pos-
sible way to implement multi-qubit Clifford gates is
via measurements of multi-qubit Pauli observables, an
example for the CNOT gate [11] is shown in Fig. 1.
Multi-qubit Pauli measurements can be done fault tol-
erantly with lattice surgery protocols [12, 13], requir-
ing no more than two-dimensional nearest-neighbour
connectivity.
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Figure 1: The measurement-based realization of the CNOT
operation. This circuit realizes a CNOT gate between the
control (top) and target (bottom) qubits, while an ancilla
qubit is initialized in the |+⟩ state and at the end of the
circuit, measured in the X-basis. Based on the outcomes
of mid-circuit measurements Pauli corrections may be per-
formed on the control and target qubits.

Non-Clifford operations can be achieved with Clif-
ford gates and "magic ancillas". Notably, the fault-
tolerant preparation of magic states in surface codes
involves magic state distillation protocols [14], which
are quite costly. Logical magic states with fidelities
higher than single qubit magic state fidelities have
been distilled with a superconducting architecture
[15]. Beyond distillation, numerous other approaches
exist to realize universal fault-tolerant quantum com-
putation [16], including higher-dimensional codes [17],
encoding information into islands of qudits [18], using
gauge color codes instead of surface codes [19], and
implementing non-Clifford gates through small coher-
ent rotations [20]. The costs of these methods have
to be compared with state distillation protocols [21].

Notably, there exist more complex lattice surgery
protocols, involving twist defects, or the measurement
of more than two logical operators [22, 13], but these
schemes are beyond the scope of our work.
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In this work, we investigate the lattice-surgery-
based fault-tolerant CNOT gate between two surface
code patches under phenomenological noise model.
This model includes Pauli noise on the physical level
and phenomenological readout errors during stabilizer
measurements. (i) We show that for finite error rates
the optimal number of stabilizer measurement rounds
during a ZZ (or XX) measurement can differ slightly
from the code distance if the probability of random
Pauli X (or Z) errors and the probability of readout
errors are the same. We also show that this is not
the case for biased physical and readout error rates
the optimal number can heavily differ from the code
distance. (ii) We fully characterize the logical errors
during a CNOT and show that the symmetries of the
logical CNOT protocol appear in the two-qubit logical
error channel, enforcing the channel to have a special
structure. Our findings contribute to a deeper under-
standing of the noise structure in surface code-based
logical operations, and are of interest for experimental
implementations of lattice surgery protocols.

The rest of this paper is structured as follows: In
Sec. 2 we introduce the surface code. We define check
generators and the check graph to describe multiple
stabilizer measurement rounds. Moreover, we show
how to visualize logical protocols with multiple mea-
surement rounds through spacetime diagrams. In
Sec. 3 we introduce lattice surgery protocols for two-
qubit logical Pauli measurements. We optimize the
parameters of these protocols under random Pauli and
phenomenological readout noise. In Sec. 4 we show
that the symmetries of the lattice-surgery-based logi-
cal CNOT protocol enforce the logical Pauli channel
to have a special structure, characterized by 3 logi-
cal error parameters. This last result is exact for the
independent X and Z errors, and a numerically well-
supported approximation for depolarizing noise under
minimum weight perfect matching decoding.

2 The surface code and spacetime di-
agrams
In this paper we investigate the impact of errors on
quantum operations between surface code patches –
concepts that we briefly introduce in this Section.

2.1 A single patch of the surface code
A (rotated) surface code patch [23] is a square grid
of n = d2 physical qubits, with d an odd integer, as
depicted in Fig. 2. A single logical qubit is encoded in
the collective quantum state of the n physical qubits,
in the +1 eigensubspace of the Z- and X- stabilizers
(more precisely stabilizer generators), Bf and Af ,

Bf =
∏

j∈∂f

Zj ; Af =
∏

j∈∂f

Xj . (1)

acting on the qubits at the corners of the correspond-
ing face, f . The logical states of the code are super-
positions of the logical basis states, |ψ⟩ = α |0⟩+β |1⟩,
with

|0⟩=
∏

f∈light

1 +Af√
2

|0⟩⊗n ; |1⟩=
∏

f∈light

1 +Af√
2

|1⟩⊗n
.

(2)

Thus, Af |ψ⟩ = Bf |ψ⟩ = |ψ⟩ for all logical states |ψ⟩.
On the left and right (vertical) boundaries of

the surface code patch, there are only X-stabilizers,
while on the top and bottom (horizontal) boundaries,
only Z ones. Therefore, we call these X- and Z-
boundaries; these are also known as smooth and rough
boundaries.

Z X

Figure 2: The layout of a distance 5 surface code patch.
Z- (X-) stabilizers are products of Z (X) operators acting
on the qubits at the corners of dark (light) faces. A logical
Z (X) operator is a string of single qubit Z (X) operators,
connecting bottom (left) and top (right) boundaries depicted
as a green (red) line.

Logical Pauli operators X and Z are realized by
strings of X and Z operators connecting different X-
and Z-boundaries – examples are in Fig. 2. They
commute with the stabilizers, moreover, these oper-
ators multiplied by stabilizers are also logical opera-
tors, acting equivalently in the logical subspace. The
code distance d of a patch is the length (weight) of
the shortest logical operator, equal to the linear size
of the patch, i.e., d =

√
n.

2.2 Errors, stabilizer measurements, check
graphs
We consider two types of errors, against which the
surface code protects the encoded qubit: data qubit
errors and phenomenological readout errors. We re-
strict data qubit errors to probabilistic single-qubit
Pauli X and Z (if these occur on the same qubit,
they result in Pauli Y ). Phenomenological readout
errors are perfectly performed measurements with er-
roneously reported results. Both types of errors can
be detected by repeated measurements of the stabi-
lizer operators. We will refer to the errors as

Spacelike error: Pauli error on a data qubit;
Timelike error: Readout error on a stabilizer.
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To handle these errors in the same manner we in-
troduce virtual qubits representing stabilizer measure-
ments. As shown in Fig. 3, virtual qubits (white dots)
are placed between consecutive layers (time steps) of
physical qubits (black dots). Spacelike errors are lo-
cated on physical qubits and timelike errors are on
virtual ones.

Errors are detected by check generators: these are
assigned to the faces f at time t, and are the prod-
ucts of the measurement outcomes of the correspond-
ing stabilizer right before and after t. (The definition
of check generators slightly differ at the boundaries
which we will discuss later.) Thus, an odd number of
data qubit/measurement errors result in a check gen-
erator value of −1, we call this a check violation. The
locations of check violations contain the classical in-
formation that we gain from stabilizer measurements,
this is called the syndrome.

The check graph contains the check generators as
nodes and qubits (both physical and virtual) as edges.
The check graph consists of two disconnected pieces:
the X-check graph contains X-check generators (com-
paring measurement outcomes of X-stabilizers), and
the Z-check graph contains Z-check generators. X-
type errors can violate Z-check generators, while Z-
type errors can violate X ones. Notably, spacelike
errors can be correlated due to Pauli Y noise. How-
ever, timelike errors are not correlated, because read-
out errors on Z-stabilizers (X-type timelike errors)
and readout errors on X-stabilizers (Z-type timelike
errors) are independent.

To infer errors from the measurement data (the syn-
drome) a decoding algorithm has to be run on the
check graph; we took the minimum-weight perfect
matching (MWPM) [24, 25] approach. This produces
a correction string for any given syndrome, which has
both timelike and spacelike corrections. We used the
efficient Blossom algorithm [26] to find the minimum-
weight string, as implemented in the PyMatching soft-
ware package [27, 28]. This solves the decoding on
X- and Z-check graphs independently, with proper
weighting of the edges to account for different data
qubit and readout error rates. Our codes and the nu-
merical data are available at [29]

2.3 Timelike and spacelike boundaries of check
graphs
Boundaries are important features of check graphs.
The X- and Z-boundaries, defined above for a sin-
gle surface code patch, can be generalized for a check
graphs – examples are shown in Fig. 3. Spacelike
boundaries can be defined as surfaces containing the
same boundary types in each stabilizer measurement
round. Differently put, spacelike X- (Z-) boundaries
are vertical surfaces, where only X- (Z-) check gener-
ators are present. Timelike boundaries can be defined
in a similar manner, timelike X- (Z-) boundaries are

horizontal surfaces, where only X- (Z-) check gen-
erators are present. We also define perfect timelike
boundaries, where both X- and Z-check generators
are present.

While timelike X- and Z-boundaries represent
fault-tolerant initialization and measurement proto-
cols, perfect timelike boundaries are just theoretical
constructions. These are needed to describe the fault-
tolerant logical operation itself, excluding errors oc-
curring during initialization and during the final mea-
surements.

a)

d)

b) c)

e) f)

g) h) j)

Figure 3: Spacetime diagram segments and the correspond-
ing check graphs representing the three different timelike
boundaries. Black (white) dots: physical (virtual) qubits,
blue (orange) volumes: Z- (X-) check generators. Top row:
upper timelike Z-boundary, with a) spacetime diagram, b)
Z-check graph, c) X-check graph. Here only Z-check gen-
erators are present at the top boundary. Middle row: upper
timelike X-boundary, with d) spacetime diagram, e) Z-check
graph, f) X-check graph. Here only X-check generators are
present at the top boundary. Bottom row: upper perfect
timelike boundary, with g) spacetime diagram, h) Z-check
graph, j) X-check graph. These both contain check genera-
tors at the top boundary.

Initializing physical quantum bits in |0⟩ (|+⟩) gen-
erates a timelike Z- (X-) boundary: in this case, the
values of Z- (X-) stabilizers are predetermined before
the first round of stabilizer measurements. Therefore,
Z- (X-) check generators at such a boundary con-
tain physical qubits from the "zeroth" time step and
virtual qubits from the first stabilizer measurement
round. In contrast, the measurement outcomes of X-
(Z-) stabilizers are random, therefore there is a miss-
ing row of X- (Z-) check generators at this bound-
ary. Similarly, measurement of physical qubits in the
Z- (X-) basis generates timelike Z- (X-) boundaries.
We illustrate the three different timelike boundaries
in Fig. 3.

Error strings can terminate at boundaries (both
spacelike and timelike) without violating check gen-
erators. X-type strings can terminate at X bound-
aries while Z-type strings at Z boundaries. We define
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logical errors through the boundaries as well: an er-
ror string is a logical error string (can consist of both
spacelike and timelike errors) if it connects two dis-
connected boundaries, from the same type, without
violating any check generators. We also define the
so-called fault distance of a logical protocol, which is
the length of the shortest logical error string. This is
a straightforward generalization of code distance for
logical protocols.

2.4 Spacetime diagrams: visualization of pro-
tocols
Logical protocols can often be visualized by so-called
spacetime diagrams [30]. These do not include all de-
tails of the check graph representation, but contain
the important features such as boundaries and twist
defects, which separate different boundary types; ex-
amples are shown in Fig. 3. Spacetime diagrams are
useful tools to identify different logical error strings
and follow their propagation through the protocol.

We note that spacetime diagrams which represent
general logical protocols can have a richer repertoire
of topological features [31, 30, 32]. If so-called domain
walls are present twists can have other functions than
just separating different boundary types, and logical
error strings are somewhat harder to define. Gen-
erally, spacetime diagrams can represent all surface
code-based logical Clifford operations [30].

3 Lattice-surgery-based ZZ-
measurements: optimization of the
number of measurement rounds
Lattice surgery [12, 33, 34] is one of the leading ap-
proaches to fault-tolerant quantum computation us-
ing surface code patches. The basic two-qubit op-
eration of lattice surgery is the measurement of the
logical Z̄Z̄ or the X̄X̄ operator. In this Section we
review how the measurement of the Z̄Z̄ operator is
performed, and investigate numerically how to op-
timize the number of measurement rounds for this
two-qubit logical operation. The results for the X̄X̄
measurement can be obtained by straightforward gen-
eralization.

We consider two surface code patches of distance d
with X-boundaries facing each other, separated by
a "bridge" of w columns of data qubits (coupling
qubits). In practice, w can vary, depending on the
physical distance of the two patches on the quantum
computer; with some patch definitions w = 0 is also
feasible [22].

The steps of the Z̄Z̄-measurement protocol are: 1)
Initialize all coupling qubits in |+⟩; 2) Merge the
patches, by measuring the stabilizers of the extended
rectangular patch; 3) Measure the coupling qubits in
the X-basis.

Without any errors, the outcome of the Z̄Z̄ mea-
surement is the product of the measurement outcomes
of the newly defined intermediate Z-stabilizers.

Measurement errors on the intermediate stabilizers
might lead to errors in the result of the Z̄Z̄ mea-
surement. Thus, for fault tolerance, multiple stabi-
lizer measurement rounds are needed. The criterion
for ensuring a fault-tolerant measurement with a fault
distance d is to perform at least

h2 = d (3)

rounds of stabilizer measurements between merge and
split operations.

The spacetime diagram of the Z̄Z̄ measurement is
shown in Fig. 4. This diagram has perfect timelike
boundaries at the top and at the bottom, and timelike
X-boundaries in the middle. It consists of 4 discon-
nected X- and 2 disconnected Z-boundaries.

d
d

w
h1

h1

h2

Figure 4: The spacetime diagram of the lattice-surgery-based
Z̄Z̄ measurement. Parameters are the linear size d (in data
qubits) of each patch, and the length w of the "bridge" be-
tween them; and the number of measurement rounds h1 be-
fore/after, and h2 during the phase where the patches are
merged.

3.1 Optimization of the number of measure-
ment rounds in a two-qubit Pauli measurement
What is the optimal number of measurement rounds
of the stabilizers in the phase when the two patches
are merged, h2? Increasing h2 suppresses the contri-
bution of timelike errors to the probability of a logical
error, at the cost of an overhead: longer logical gate
operation, and a slight increase in the probability of
spacelike errors leading to a logical error. If h2 is quite
long, the contribution of timelike errors to the logical
error is already tiny, and thus, no big gains are ex-
pected from increasing h2 (the increased probability
of spacelike errors can make the logical error rate even
slightly worse). Thus, the optimal number of rounds
will be the value of h2 where the logical error rate
saturates (no more practical advantage in increasing
h2). This optimal number of rounds is often taken to
be h2 ≈ d, but this can depend on the geometrical
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Figure 5: Errors of the Z̄Z̄ measurement as a function of h2,
the measurement rounds in the merged phase, with d = 7,
h1 = h3 = 1, w = 1, and data qubit error rate p = 0.6%.
We find that Eq.(6) (encircled values) is a decent, but not
optimal choice, for readout error (a) q = p, (c) q = p/6, and
(d) q = 3p. (b): The fraction of timelike logical errors for
different h2 values for q = p.

parameters and the error rates as well. We aim to
find how this depends on, e.g., the patch size d, the
length of the bridge w, and on the error rates.

We investigated the optimal value of h2, with qubit
noise that is maximally biased in X, with spacelike
error probability p:

ε(ρ) = (1 − p)ρ+ p(XρX), (4)

and timelike error probability q.
We first estimate the optimal value of h2 analyti-

cally, by a series expansion treating the error rates as
small parameters. Taking into account only the low-
est order terms in spacelike and timelike error rates p
and q, the logical error rate is

PL(p, q) = Ap(d+1)/2 +Bq(h2+1)/2 + . . . . (5)

Here A (B) is the multiplicity of the shortest spacelike
(timelike) error strings that can lead to a logical error.
Higher order terms are strongly suppressed in the case
of small error rates. We see that h2 reaches its opti-
mal value when the competing terms in Eq. (5) are
equal. From that on it is not that beneficial to further
increase h2, because the spacelike error mechanisms
are already the dominant sources.

Thus, the optimal value for h2 in the small p, q limit
is

h2 ≈ (d+ 1) ln(p)
ln(q) − 1, (6)

where we omitted the term

2ln(A/B)
ln(q) , (7)

assuming that in the q → 0 limit it is negligible.
We note that this is analogous to arguments show-

ing that elongated rather than square shaped surface
code patches are advantageous for biased noise [35].
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Figure 6: The fraction of timelike logical errors as a function
of the number of measurement rounds during the merged
phase(h2), for different bridge lengths w. Here, d = 7, and
p = q = 0.006. The is shifted from h2=7 to smaller values
for w = 1, higher values for large w, due to the higher mul-
tiplicity of timelike errors.

We sampled logical errors via Monte Carlo simu-
lations, by running minimum weight perfect match-
ing decoder (PyMatching) [27, 28] on the X- and Z-
check graphs of the Z̄Z̄ measurement. Our results
show that the analytical approximation of Eq. (6)
slightly overestimates the optimal value of h2. We
simulated the Z̄Z̄ measurement with geometrical pa-
rameters d = 7, w = 1, h1 = h3 = 1 for three cases:
p = q, p = 6q, 3p = q. As shown in Fig. 5, in all
three cases, we see that the decrease of the logical er-
ror rate slows down significantly for smaller h2 values
than Eq.6 suggests. For a more detailed picture, we
also show the ratio of timelike to logical errors, which
transitions from 1 to 0 as h2 is increased. The critical
value of h2 where the transition happens is smaller
than expected based on the p, q → 0 limit. This sug-
gests that the correction in Eq.(7) remains significant
with these geometrical (w = h1 = 1, d = 7) and error
parameters (p, q ≈ 10−3).

We found that increasing the separation w of the
patches the optimal value of h2 for the Z̄Z̄ measure-
ment increases slightly, as shown in Fig. 6. This is
due to the increasing multiplicity of the shortest time-
like logical error string, while the multiplicity of the
spacelike logical error string does not change. The
optimal value of h2 is where the fraction of timelike
logical errors drops. Note that the increase in the
optimal value of h2 is quite small even for distant
patches (w ≈ 10d): previous estimates predicted a
logarithmic growth [36].

In case Z errors are included in the error model we
expect qualitatively similar results, but the optimum
should come at an even lower h2 than in Fig. 5. Here
the multiplicity of spacelike logical Z error strings
will be much higher than that of other spacelike error
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strings. Moreover, the multiplicity of spacelike and
timelike logical error stings increase together in the
case of an increasing w, hence we expect no shift of
the transition in the fraction of timelike logical errors.

4 Investigation of lattice-surgery-
based CNOT protocol

A

B

D

E
C

F

Figure 7: Spacetime diagram of the lattice-surgery-based
CNOT. Control (left) and target (right) patches have perfect
lower and upper timelike boundaries, ancilla patch (middle)
has lower timelike X- and upper timelike Z-boundaries: ini-
tialized in |+⟩, measured in Z. The X- (Z-) boundaries con-
sist of three disconnected parts labeled A, B, C (D, E, F ).

In this Section we fully characterize the two-qubit
Pauli logical error channel of the standard lattice-
surgery-based CNOT protocol [12], assuming single
qubit Pauli noise on the data qubits and phenomeno-
logical readout errors. This characterization amounts
to analytical and numerical estimates for the proba-
bilities of the 15 possible two-qubit logical Pauli errors
that can occur during a CNOT. Note that this CNOT
gate follows the logical circuit of Fig. 1.

The spacetime diagram of this CNOT, Fig. 7, has
three disconnected X-boundaries, labeled by A, B, C,
and three disconnected Z- boundaries: E, F , G.

Any string operator connecting two disconnected
boundaries of the same kind leads to a Pauli error on
the logical level. Since any of these errors, squared,
gives the identity, there are 16 distinct connection
classes based on the parity of string endings at bound-
aries A, B, C, D, E, F . Note that a string connecting
BC is equivalent to a pair of strings connecting AB
and BC, and likewise for EF , FG, and EG. These
connection classes correspond to the 16 inequivalent
two-qubit logical Paulis (includng the error-free case)
incurred during the CNOT. The correspondence be-
tween string ending parities, connection classes and
logical Paulis is summarized in Table 1.

We examine two error models: independent X and
Z errors and depolarizing noise, in both cases com-
bined with phenomenological readout errors with rate

NA NB NC Connection Logical Pauli
0 0 0 ∅ABC 1
1 1 0 A - B X1
1 0 1 A - C X1X2
0 1 1 B - C X2
ND NE NF Connection Logical Pauli
0 0 0 ∅DEF 1
1 1 0 D - E Z1
1 0 1 D - F Z2
0 1 1 E - F Z1Z2

Table 1: Correspondence between logical Pauli errors and
connection classes of the boundaries. First column: the num-
ber of error string endings modulo 2 at each boundary spec-
ifies the connection class – the sum of every row must be
even, since each string has two ends. Second column: The
minimally required connections between boundaries in each
class, ∅ABC (∅DEF ) signals no connections between X- (Z-)
boundaries. Third column: the corresponding logical Paulis.
The 16 logical Pauli error classes can be obtained by multi-
plying 1 row from the top and 1 from the bottom half of the
table.

q. In the first case, we set the three error rates equal:

ε(ρ) = (1 − p)2ρ+ p(1 − p)(XρX + ZρZ) + p2Y ρY ;
q = p. (8)

In the second case we set q to a value that ensures
equal timelike and spacelike error rates on both the
X and Z check graphs,

ε(ρ) = (1 − p)ρ+ p

3(XρX + ZρZ + Y ρY );

q = 2
3p. (9)

4.1 Symmetry of the CNOT protocol and its
consequences on the logical errors
The CNOT protocol has a symmetry, evident from
the spacetime diagram in Fig. 8, which constrains the
possible logical error rates. The symmetry is com-
posed of: 1) a time reversal, 2) a mirror reflection on
a vertical symmetry plane of the "L" shape, and 3)
flipping the X and Z labels. As a result the original
check graph effectively does not change. The order
of the three steps is interchangeable. If this symme-
try transformation also leaves the spatial distribution
of error probabilities invariant (as in the case of in-
dependent and depolarizing noise), the logical Pauli
error strings which transform into each other under
the symmetry have to have the same probabilities.
As a consequence, symmetry partners among logical
Pauli errors have the same probabilities, resulting in
a two-qubit logical error channel shown in Fig. 9a).

Due to the symmetry of the CNOT protocol, in
case of independent X and Z errors with equal rate,
the probabilities of the different error classes factorize.
Therefore, all error class probabilities can be written

6



a)

c) d)

b)

Figure 8: Symmetry of the spacetime diagram of the CNOT.
For equal X and Z error rates, the syndrome graph has
a symmetry transformation which consists of the following
steps: 1) time reversal, 2) mirror reflection, 3) swapping the
X and Z labels (colors).

using the probabilities of three possible classes of con-
nections of different boundaries of one kind via error
+ correction strings:

p1 = P(A− C) = P(E − F ); (10a)
p2 = P(B − C) = P(D − E); (10b)
p3 = P(A−B) = P(D − F ), (10c)

using the notation of Table 1. The probability that all
Z-boundaries have an even number of Z-string end-
ings (equal to the corresponding probability for all
X-boundaries) can also be written using p1, p2, and
p3, as

p0 = P(∅ABC) = P(∅DEF ) = 1 − p1 − p2 − p3. (11)

The table of probabilities of logical Pauli errors build-
ing on this connection is shown in Fig. 9a).

4.2 Numerical characterization of the logical
error channel
With extensive numerical work, we fully character-
ized the logical error channel of the CNOT for a
wide range of code distances and physical error rates.
We constructed the X- and Z-check graphs of the
logical CNOT gate, and solved the decoding prob-
lem with minimum weight perfect matching decoder
(pymatching) [27, 28] under independent and depo-
larizing noise. To obtain logical error probabilities
pIX , . . . , pXZ , . . ., we ran Monte Carlo simulations,
where in each round we identified a logical Pauli er-
ror based on the parities of error + correction string
endings at boundaries using Table. 1.

We chose h2 = d and h1 = w = 1 to ensure the
fault distance to be d with minimal resources. This
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d = 5,  p = 0. 024

Figure 9: The structure of the two-qubit logical error channel
of the lattice-surgery-based CNOT for independent noise. a)
Theoretical expectation for the two-qubit logical Pauli error
probabilities based on the connection parameters p1, p2, p3;
non-white colors indicate symmetry partners. b) A numeri-
cally obtained two-qubit Pauli error channel that shows the
expected symmetry pattern; colors indicate error rate as also
written in the boxes.
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Figure 10: Logical Pauli error rates in CNOT as a function
of the physical noise parameter for patch size d = 7, with (a)
independent Pauli X and Z errors with equal error rates, and
(b) depolarizing errors on the physical qubits. Numerically
obtained error rates are shown with symbols with errorbars.
Rates of symmetry partners have the same color; they are in
most cases equal to good precision. Semi-theoretical expec-
tations for these rates, calculated from pXY , pZX , and pY Z ,
as described in the main text, are shown with dashed lines,
with shading indicating expected standard deviation.

choice might not the optimal for finite physical error
rates as we showed in the previous section.
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We found in all cases with independent noise that
the logical error channel has the symmetry property
expected based on the spacetime diagram, as per
Fig. 9, to a good precision. A numerical example
for patch size d = 5 is also shown in Fig. 9. For a
more systematic exploration, we 1) first extracted the
string connection probability parameters p1, p2, p3 by
p1 = √

pXY , p2 = √
pZX , p3 = √

pY Z , then 2) con-
structed the theoretical expectation for all Pauli error
probabilities as per Fig. 9, then 3) compared the nu-
merically obtained values with these predictions. We
show this comparison for patch size d = 7 in Fig. 10,
and for other parameter sets in Appendix A.

We found that also with depolarizing errors, the
logical error channel of the CNOT can be described
with p1, p2, p3 in the same way as per Fig.9. We
did not expect this, since the connection of Sec. 4.1
between the error string probabilities and Pauli er-
rors holds for independent X and Z errors with equal
rates, while for depolarizing noise these error are not
independent. One possible reason for this factorized
structure could be that the independent decoding of
X and Z check graphs makes the logical error channel
effectively more and more independent as the bulk size
grows. We discuss this in more detail in Appendix B.

4.3 Threshold behaviour
The surface code, when used as a quantum memory,
has a threshold behaviour. There is a critical physical
error rate, e.g., pth ≈ 3% for independent noise [37],
below which the logical error rates can be suppressed
exponentially by increasing the code distance.

Any lattice-surgery-based logical quantum circuit
should also have an error threshold, with the same
value as the threshold defined above. Thus, when scal-
ing up the size (fault distance) of a logical circuit, the
logical error rates should decrease whenever the phys-
ical error rates are below threshold: in the d −→ ∞
limit the classical statistical mechanical model de-
scribing the decoding procedure [37] is independent
of the details of the boundaries as is dominated by
the bulk.

We calculated numerically the threshold of the
lattice-surgery-based CNOT gate, and found good
agreement with the known threshold of the surface
code, as shown in Fig. 11.

Although the threshold value is promising for fault-
tolerant quantum computation, the error rates here
are much higher than in a simple memory experiment.
This is due to the higher number of possible error
classes, as has been observed for several other logical
operations in [30].

The threshold value we obtain for depolarizing noise
is around 4.5%, which is 1.5 times the threshold for
independent noise. We believe that this is a conse-
quence of the independent decoding of X and Z syn-
drome graphs. We discuss this in more detail in Ap-
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Figure 11: The logical error rates as the function of physical
error rates for different fault distances. (a) Independent noise
described in Eq. (8). (b) Depolarizing noise described in
Eq, (9). In both cases we see that the lattice-surgery-based
CNOT protocol shows threshold behaviour. The parameters
of the simulation are d = h2, h1 = 1, w = 1.

pendix.B.

5 Conclusion
In this work, we investigated the performance of
the lattice-surgery-based logical CNOT protocol be-
tween two surface code patches under phenomenologi-
cal noise. We optimized the number of stabilizer mea-
surement rounds during a lattice surgery protocol re-
alizing the measurement of a two-qubit logical Pauli
operator. We found that for equally strong timelike
and spacelike errors the optimal number can slightly
differ from the naively expected d (code distance)
rounds. This is because for small but finite error rates
the 1/log correction - coming from the entropy dif-
ference of logical error classes - cannot be neglected.
We also found that for biased timelike and spacelike
errors, the optimal number of stabilizer measurement
rounds can heavily differ from d. Our findings suggest
that it is beneficial to tailor the number of stabilizer
measurement rounds during a lattice surgery protocol
to the noise model.

We fully characterized the two-qubit Pauli noise
channel of the lattice-surgery-based CNOT protocol
and found that the symmetry of this protocol appears
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in the noise channel. We identified symmetry part-
ners among two-qubit logical Pauli errors, which have
to have the same probability in the case of equally
strong X and Z errors on the physical level. More-
over, the logical error channel can be described with
just three logical error parameters. This last result
is exact for independent (X and Z errors are uncor-
related) noise, and a pretty good approximation for
depolarizing noise.

A natural next step of our work would be circuit-
level simulation of the lattice-surgery-based CNOT
protocol with a specific syndrome extraction circuit.
With error models close to experimental reality the
symmetry of the spacetime diagram will be broken,
but only at the boundaries, thus we expect that the
logical error channel will be approximately symmet-
ric. Bias in the physical noise (e.g., larger Z than X
error rates) will definitely break the symmetry; it is an
open question whether symmetrized (e.g., XZZX [35])
surface code restores the symmetry structure. The
more general relations between symmetries of logical
protocols and the structure of the logical noise also
remained unexplored.

Our study can help to understand the structure of
the logical noise in surface code-based fault-tolerant
quantum computation. Thus, it may have important
implications, which have to be considered during the
designing of fault-tolerant quantum algorithms.
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A Numerical results for the logical
CNOT gate
To investigate the Z̄Z̄-measurement and the logical
CNOT operation, we have performed Pauli frame
simulations. We have constructed check graphs as-
sociated with the spacetime diagrams of the experi-
ments testing the Z̄Z̄-measurement and the CNOT
gate which we could put into Pymatching [27, 28].
With the correction operator and the randomly gen-
erated error history in hand, we could identify the
specific logical error mechanism that occurred dur-
ing the logical operation by checking the parities of
error + correction string endings at boundaries. To
obtain a statistically significant data on these logical
error mechanisms multiple Monte Carlo rounds are
needed. For the CNOT gate, we collected data from
104 Monte Carlo rounds. In case of the Z̄Z̄ measure-
ment, we investigated lower error rates, therefore 104

rounds would not have been enough. So we simu-
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for which depending on the size of the check graph
105 − 107 rounds were enough.

We collected Monte Carlo data for CNOT with
geometrical parameters d = 5, 7, 9, 11, 13, w = 1,
h1 = h3 = 1, h2 = d under independent noise or
depolarizing noise with various error rates. For each
simulation setting we determined the 4×4 table repre-
senting the two qubit logical Pauli channel. We depict
the numerically obtained values in Fig. 12 in the same
way as we did for d = 7 in Fig. 10 for all other patch
sizes. The data is available at [29]. Our findings for
d = 7 also hold for other patch sizes.

In Fig. 12 one may notice that the IX and ZI out-
comes have much higher probabilities than the others.
This is because the corresponding logical error strings
connect the two largest X or Z boundaries (while
there is no connection between separated boundaries
on the other check graph). Therefore these classes
of connections have high multiplicities, which leads
to them dominating the logical errors for small error
rates.

B Correlations in the logical error
channel under minimum weight perfect
matching decoding
In Sec. 4 we saw that the two-qubit logical Pauli chan-
nel for independent noise with equal X and Z error
rates can be fully described by the three string connec-
tion probability parameters p1, p2, p3. The numerics
reported in Sec.4 has also shown that this decompo-
sition also works for the depolarizing noise channel –
surprising, since here the X and Z errors are corre-
lated. We think that this is due to the use of the
minimum weight perfect matching decoding, under
which the correlations between X and Z errors are
suppressed on the logical level.

The minimum weight perfect matching decoder
finds the most probable X-type and Z-type error
histories independently, that are consistent with the
given syndrome. This error history will not be the
most probable error history necessarily if correlations
between X and Z errors are present. Therefore, we
assume that for low enough error rates these correla-
tion will not affect the final logical error channel.

We find that the correlations in the logical noise
channel are disappearing as we are scaling up the sys-
tem size. To characterize the strength of correlations
in the logical error channel of single logical qubit we
introduce the following measure:

M = |PIPY − PXPZ |
PX + PY + PZ

, (12)

where the logical error channel is defined as:

ε(ρ) = PIρ+ PZZ̄ρZ̄ + PY Ȳ ρȲ + PXX̄ρX̄. (13)

Eq.12 gives exactly zero for independent physical
noise. Our numerical results for only spacelike errors
(d×d case, with a single measurement round) and for
spacelike and timelike errors (d × d × d case, with d
measurement rounds) are presented in Fig. 13. Where
it is visible that as the system increases, the correla-
tion measure M decreases. This effect is stronger for
the d×d×d case, because timelike X and Z errors are
inherently independent, and the bulk is larger in this
case. Therefore, we assume this effect only depends
on the bulk size of the check graph rather than the
actual shape. This effect explain our findings for the
logical CNOT operation in the case of depolarizing
noise.
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Figure 12: Logical Pauli error rates in CNOT as a function of the physical noise parameter for various patch sizes d, with
independent Pauli X and Z errors with equal error rates, or depolarizing errors on the physical qubits, as indicated on the plots.
Numerically obtained error rates are shown with symbols with errorbars. Rates of symmetry partners have the same color; they
are in most cases equal to good precision. Semi-theoretical expectations for these rates, calculated from pXY , pZX , and pY Z ,
as described in the main text, are shown with dashed lines, with shading indicating expected standard deviation. The other
geometrical parameters of the procedure for all patch sizes are: w = 1, h1 = h3 = 1, h2 = d.
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Figure 13: Correlations between the possible Pauli outcomes of a memory experiment under depolarizing noise with minimum
weight decoder. a) Surface code with error correction after one round of stabilizer measurements (d × d × 1). b) Surface code
with error correction after d round of stabilizer measurements (d × d × d). As the bulk size grows the logical error channel is
becoming more and more similar to independent noise due to the independence in the decoding protocol.
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