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Wave Function Collapse, Lorentz Invariance, and the Third Postulate of Relativity
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The changes that quantum states undergo during measurement are both probabilistic and nonlo-
cal. These two characteristics complement one another to insure compatibility with relativity and
maintain conservation laws. Nonlocal entanglement relations provide a means to enforce conserva-
tion laws in a probabilistic theory, while the probabilistic nature of nonlocal effects prevents the
superluminal transmission of information. In order to explain these measurement-induced changes
in terms of fundamental physical processes it is necessary to take these two key characteristics into
account. One way to do this is to modify the Schrödinger equation by adding stochastic, nonlinear
terms. A number of such proposals have been made over the past few decades. A recently proposed
equation based on the assumption that wave function collapse is induced by a sequence of correlating
interactions of the kind that constitute measurements has been shown to maintain strict adherence
to conservation laws in individual instances, and has also eliminated the need to introduce any new,
ad hoc physical constants.

In this work it is shown that this modified Schrödinger equation is naturally Lorentz invariant.
It is further argued that the additional spacetime structures that it requires provide a way to
implement the assumption that spacelike-separated operators (and measurements) commute, and
that this assumption of local commutativity should be regarded as a third postulate of relativity.

I. INTRODUCTION

If quantum theory is regarded as an objective descrip-
tion of the physical world then it should be possible, at
least in principle, to explain how individual measurement
outcomes are generated from fundamental processes. Be-
cause quantum states change in a probabilistic and nonlo-
cal manner during measurements it is reasonable to sup-
pose that these features will play key roles in constructing
such a fundamental explanation. One major approach to
this issue takes these features into account by adding
stochastic, nonlinear terms to the Schrödinger equation.
These additional terms are designed to induce the wave
function to collapse to one of its several branches. The
nonlinearity is necessary in order to generate collapse,
and the stochasticity is required in order to prevent su-
perluminal signaling, as shown in a work by Gisin[1].
Gisin’s work was one of a number of proposed stochas-

tic modifications of the Schrödinger equation aimed at
resolving the measurement problem[2–15]. Most of these
proposals are designed to collapse the state vector to
either an approximate position state or to an energy
eigenstate. These attempted solutions have often been
met with skepticism because they introduce new, ad hoc
physical constants and imply small violations of conser-
vation laws. A recent work has shown how to eliminate
these problematic features[16]. It is based on the idea
that wave function collapse is induced by the elementary
interactions that establish correlations between physical
systems, and was motivated by the fact that these cor-
relating interactions play a central role both in the mea-
surement of physical quantities and in the instantiation
and transmission of physical information. In this work it
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will also be shown that this proposed equation maintains
Lorentz invariance in a natural way.

Since the proposed equation is Lorentz invariant it is
reasonable to ask whether it can be considered “genuinely
relativistic”. In order to answer this question it is nec-
essary to deal with the nonlocal nature of wave function
collapse.

Concerns about nonlocality were first raised almost im-
mediately after the Schrödinger equation was proposed
(by Einstein at the 1927 Solvay conference. See also [17].)
However, they were really sharpened by Bell when he
showed that the correlations between entangled systems
that are separated by spacelike intervals could not be
explained by any account in which all physical processes
are restricted to propagate only within the light cone[18].
Bell’s argument relied on entanglement between two el-
ementary systems. Realistic measurement situations in-
volve entanglement among many more systems, some of
which are macroscopic. This large scale entanglement
magnifies the effect of the nonlocality. This is due to the
fact that measurement collapses the system to an entire
entangled branch of the wave function, and not simply
to an eigenstate of the measured system.

The nonlocal nature of these effects has been, by far,
the biggest challenge to developing a fully satisfactory ac-
count of quantum measurement because of the apparent
conflict with relativity. This challenge has often seemed
insurmountable because of the extreme reluctance to con-
sider the possibility that the nonlocal correlations im-
plied by quantum theory might require that we modify
or supplement the metric structure of relativistic space-
time (which is based on classical physics).

The reason that the nonlocal effects do not generate
any manifest conflicts with relativity is that they are fun-
damentally probabilistic. More specifically they obey the
Born probability rule[19]. The rule was discovered em-
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pirically and was simply tacked on to quantum theory in
an ad hoc manner. There was no serious effort to inte-
grate it into the mathematical structure of the theory;
nor was it immediately associated with relativity.

Relativistic quantum field theory deals with the non-
local correlations in a somewhat more formal manner.
It assumes that spacelike-separated operators commute
(or anticommute), and this assumption implies the Born
rule, thus preserving the Lorentz invariance of the theory.
In his text on quantum field theory Weinberg is quite ex-
plicit about the fact that this is an additional assumption
that is necessary to maintain the relativistic character of
the theory when he states that the assumption of the
commutativity of spacelike-separated operators is made
in order to preserve the Lorentz invariance of the scat-
tering matrix[20]. He specifically states that he is not
linking local commutativity with the notion of causality.
It appears that his motivation for emphasizing this point
is that ‘causality’ is used both as a synonym for the no-
superluminal-signaling principle, and a shorthand for the
idea that no physical processes can propagate faster than
light. He seems to rightly regard the conflation of these
two concepts as a mistake.

The critical point is that the assumption of local com-
mutativity functions effectively as a third postulate for
relativity. Nevertheless, very little consideration has
been given to the possible implications this postulate has
for spacetime structure. The reasons for the extreme re-
luctance are fairly obvious. The conventional picture of
relativistic spacetime is very elegant, and it beautifully
captures our intuitive notion that causal processes propa-
gate through space in a continuous manner. Historically,
both special and general relativity preceded the full de-
velopment of quantum theory, and ideas about spacetime
had become pretty firmly fixed by the time the Heisen-
berg and Schrödinger equations were published[21, 22].

The problem is that this reluctance has left the logi-
cal structure of contemporary physics in a very muddled
state. The rules governing individual measurement out-
comes imply a type of change at odds with the unitary
evolution described by the Schrödinger equation, and
there is no clear definition of the range of applicability of
the two distinct types of change.

The stochastic nonlinear modifications of the
Schrödinger equation mentioned above do explain
how individual measurement outcomes are selected
in accord with the Born rule, and thereby provide a
more complete and unified mathematical framework for
contemporary physics. Since these modifications require
adding structure to relativistic spacetime, let us consider
the reasons for such a move.

In the conventional view relativistic spacetime is a
four-dimensional manifold with a Lorentzian metric that
defines a light cone structure. This framework imple-
ments Einstein’s two postulates for relativity by pro-
hibiting the assignment of an absolute temporal order to
events that are separated by a spacelike interval. Why,
then, did the advent of quantum theory necessitate the

introduction of a third postulate to maintain this prohi-
bition? Prior to the development of quantum theory the
relativistic prohibition on temporal order was strongly as-
sociated with the presumption that no physical processes
could propagate outside the light cone. But the nonlo-
cal correlations implied by quantum theory strongly sug-
gest that there are physical effects that propagate across
spacelike intervals. To “explain” why these effects do not
result in any manifest inconsistencies with relativity the
new theory simply ruled by fiat that they had to respect
the prohibition on temporal ordering. As noted, this
was done by requiring that spacelike-separated operators
commute. For the reasons mentioned a few paragraphs
back there was no inclination to consider the possibility
that spacetime possessed additional structure. In fact,
the assumption of local commutativity was often con-
flated with the limitation on the speed of light. The fol-
lowing quote from Gell-Mann, Goldberger, and Thirring
illustrates this point[23]:

“The quantum mechanical formulation of the
demand that waves do not propagate faster
than the speed of light is, as is well known,
the condition that the measurement of two
observable physical quantities should not in-
terfere if the points of measurement are space-
like to each other...the commutators of two
Heisenberg operators... shall vanish if the op-
erators are taken at space-like points.” (italics
added)

(This quotation was cited by Bell in his discussion of local
commutativity[24]).
As suggested by Weinberg’s very careful characteriza-

tion of local commutativity described above, the kind
of conflation demonstrated in the quotation is simply
misguided. The assumption of the commutativity of
spacelike-separated operators entails substantially more
than a limitation on the speed of light. It implies that
any physical effects across spacelike intervals must not
transmit physical information.1 This is the reason that

the assumption is made. It involves an implicit recogni-
tion that there are nonlocal effects, and that there is the
need to regulate them. But, this kind of regulation ought
to be explained, and not simply imposed by fiat.
As mentioned above Einstein’s postulate about the in-

variance of the speed of light is implemented by attribut-
ing a light cone structure to spacetime. In other words,
this postulate is explained as a consequence of the fun-
damental nature of spacetime. Should we not then also
consider adding structure to spacetime to explain how
nonlocal effects propagate and how they are regulated?
This is exactly what stochastic collapse equations do. By

1 The use of the notion of “physical information” in formulating
the no-superluminal signaling principle is based on the character-
ization of information as a reproducible and referential property
of physical systems given in [25].
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assuming a foliation of spacetime into spacelike surfaces,
and invoking a stochastic process (or processes) they pro-
vide the desired explanation. By making wave function
collapse and the Born rule follow from the fundamental
equation of the theory, they provide a coherent logical
structure for contemporary physics.

To assess the extent to which these proposals can be
judged to be genuinely relativistic we can start by stipu-
lating that the primary criterion for a relativistic theory
is that the laws of physics have the same form in all in-
ertial frames. In particular, this means that they must
be Lorentz invariant. Assertions that a proposed account
can be judged as “genuinely relativistic” only if it does
not add structure beyond the standard relativistic met-
ric cannot be accepted as a priori truths. They face a
burden of proof that must take into account the nonlocal
aspects of quantum theory. In order to reconcile relativ-
ity and quantum theory one must consider the possibility
that both these pillars of contemporary physics will have
to be modified. The evaluation of any particular pro-
posal will then turn on whether it is Lorentz invariant
and whether the Lorentz invariance follows from funda-
mental physical principles in a natural manner. It will be
argued here that the proposal in [16] meets these criteria.

The next section describes the basic assumptions em-
ployed by nonlinear, norm-preserving stochastic collapse
equations and illustrates how they work. Section III re-
views the proposal of [16], which eliminates the need
to introduce new ad hoc physical constants and insures
that conservation laws are respected in individual exper-

iments. It then goes on to demonstrate that it meets a
critical test of Lorentz invariance in a very natural way.
Section IV addresses the question of what constitutes “se-
rious” or natural Lorentz invariance.

II. STOCHASTIC COLLAPSE EQUATIONS

This section first provides an explanation of why
stochastic collapse equations need to add structures to
spacetime, specifically a preferred foliation associated
with a stochastic process (or processes). This is followed
by an illustration of how these dynamic equations gener-
ate collapse in accord with the Born rule. The literature
cited earlier contains more general and formal demon-
strations of how these equations work; the purpose here
is just to provide an intuitive understanding based on a
simplified case that captures the essential features. The
idea is to show that it is not necessary to paste the mea-
surement postulates onto quantum theory in an ad hoc
manner, but rather that they follow in a very natural way
from a relatively simple modification of the Schrödinger
equation that takes into account the fundamentally prob-
abilistic nature of quantum theory as we currently under-
stand it.

A. The Need for Additional Spacetime Structure

Interactions play a critical role in stochastic collapse
equations. In the proposal of [16] that will be described
in detail in Section III they play the central role because
it is assumed that it is interactions that actually induce
the collapse. In other proposals they are crucial to estab-
lishing the large scale entanglement that allows nonlinear
collapse to occur on macroscopic scales while leaving the
(almost) linear quantum behavior of microscopic systems
essentially undisturbed. Entanglement is a generic result
of interaction, as shown by Gemmer and Mahler and by
Durt[26, 27]. The fact that the changes that occur in
measurements involve entire entangled branches of the
wave function implies that any proposal that treats wave
function collapse as a real physical process and seeks to
explain it by relating it to other fundamental processes
must add structure to relativistic spacetime.
To see this we need to contrast the idea of wave func-

tion collapse as a process with the conventional view that
it is an instantaneous event that just happens at some
point during (or immediately after) a measurement. If
there are two or more spacelike-separated measurements
involving some of the same systems the final outcome
is independent of the order in which the instantaneous
collapse is assumed to occur. This has to be the case
in order to insure compatibility with relativity. On the
other hand, stochastic collapse equations assume that
the collapse process is mediated by entanglement rela-
tions, and, therefore, it is essential that the entangled
branches be well defined at each stage of the process.
Thus, it is necessary that there be some means to de-
termine whether other spacelike-separated systems that
have interacted with other branches of the measured wave
function are involved in the collapse. A foliation of space-
time into spacelike surfaces provides the sequencing that
determines the structure of a wave function when collapse
occurs.
The need for a method to sequence spacelike-separated

interactions also arises in derivations of the Born proba-
bility rule in collapse processes. Again, we can contrast
the conventional view of collapse as an instantaneous oc-
currence with attempts to describe it as a process. In the
conventional view one simply assumes the Born rule (or
some principle such as local commutativity that implies
it). As will be described below, when collapse is assumed
to result from small nonlocal changes that occur in the
various branches of the wave function it is essential to the
derivation of the rule that the changes are proportional
to the relative amplitudes of the branches. Each such
change results in a redistribution of amplitudes among
the branches. Therefore, the sequence of changes, which
can occur at spacelike separation, makes a difference in
the result.
For these reasons proposals to describe wave function

collapse as a process typically assume that additional
spacetime structure such as a foliation is required.
In addition to a foliation (or some similar structure)
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the other critical feature that must be introduced is a
stochastic process (or processes). As mentioned earlier
any nonlinear modification of the Schrödinger equation
must be stochastic in order to prevent superluminal sig-
naling. The stochastic process to be described here is
based on the Wiener integral of a white noise Gaussian
process. This can be thought of as the continuous time
limit of an unbiased random walk with zero mean. As
such, it scales with time as

√
t. It is designated as ξ(t),

and its differential, which plays a key role in the equa-
tions, is designated as dξ(t). In general, ξ(t) can be com-
plex. The process is governed by the rules of the Itô
stochastic calculus[28]: dξ∗dξ = dt, dtdξ = 0.
More general stochastic processes can be considered,

and a number of proposals employ a stochastic field which
is a function of both space and time, ξ(x, t), rather than
just time. There is also another form of the stochastic cal-
culus due to Stratonovich. See the references for details.
A good general reference is the text by Gardiner.[29]

B. Nonlinear, Norm-Preserving Stochastic

Collapse Equations

The overall aim of this work is to show how relativity
and the nonlocal aspects of quantum theory can be en-
compassed in a unified mathematical structure describing
the dynamics of physical systems without the need to in-
troduce ad hoc rules that limit the applicability of the
mathematics. However, the general form of the stochas-
tic collapse equations outlined here (which includes the
proposal described in Section III) is formulated in a non-
relativistic framework. The main reason for this is to
avoid mathematical complexity. The assumption of a
preferred reference frame that will be used here should
be seen as just the simplest special case of a randomly
evolving spacelike surface. The restriction to nonrela-
tivistic quantum mechanics makes it possible to illustrate
the essential ideas of the proposal in [16] while avoiding
many of the complications involved in quantum field the-
ory. It also makes it possible to build on the substantial
body of work developed in [1–15].
Measurements of quantum systems can have a very

large number of possible outcomes, but at the most basic
level they come down to either a detection or a failure to
detect. The essentially binary character of measurement
processes means that at each stage the Hilbert space (of
any number of dimensions) can be decomposed into two
orthogonal subspaces, and the state vector of the total
system can be represented as the sum of two components,
one in each subspace. Although the particular decompo-
sition can vary during the process (thus, allowing any
number of possible outcomes) the fundamentally binary
nature makes it possible to model measurement processes
as a random walk between two alternatives.2 This is es-

2 The claim that measurement processes are essentially binary

sentially what stochastic collapse equations do.3

To see how these equations work we can begin with
a simple theorem about the relative probabilities of a
random walk ending at either of the two end points. If the
walk continues for enough steps it will eventually finish at
one or the other of the end points. Label the end points
as 0 and 1, and suppose that the walk begins at a point,
p, between them. It will be shown that the probability
of ending at 1 is p and that the probability of ending at
0 is 1−p. The step size is labeled δ. It is allowed to vary
anywhere between 0 and the distance to the nearest end
point: 0 ≤ δ ≤ p, 0 ≤ δ ≤ 1−p. Label the probability
of reaching 1 as Pr(p). Because the walk is assumed to be
unbiased we get: Pr(p) = 1/2Pr(p− δ) + 1/2Pr(p+ δ).
Because this relationship holds for all values of p and δ
it is linear. Therefore, the probability of reaching 1 is p,
and the probability of reaching 0 is 1− p. What follows
is an attempt to present an intuitive explanation of how
nonlinear, norm-preserving stochastic collapse equations
map onto this simple, binary picture.4

The binary character of measurement processes noted
above allows us to illustrate the essential operation of
stochastic collapse equations using a simple two state
system. Consider a system with a wave function ψ and
Hamiltonian, H. The system evolves under the action
of the Hamiltonian and of a stochastic collapse operator
that is constructed from a self-adjoint operator, O, with
two eigenstates, |x〉 and |y〉, associated with eigenvalues
a and b. The eigenstates of the operator, O, define the
collapse basis. The nonlinear stochastic operator is de-
fined as: O ≡ k[O− 〈ψ|O|ψ 〉] , where 〈ψ|O|ψ 〉 is the
expectation value of the operator, O, in the state, ψ, and
k is a constant that helps to determine the scale of the
collapse effects and also insures that O is dimensionless.
For example, if O is based on the position operator k
could determine the range of the collapse effect.
The modified stochastic Schrödinger equation is de-

fined as:

dψ =
−i
~
Hψ dt + O ψ

√
γ dξ(t) − 1

2
O2 ψ γ dt. (1)

The first term on the right represents the standard
Schrödinger evolution. The primary stochastic action is
described by the middle term. The parameter, γ, deter-
mines the rate at which the stochastic operator acts. The

might seem implausible when one considers many common-place
measurements that we make such as length, height, weight, etc.
However, that is because we typically describe these kinds of
measurements by reference to extremely complex human actions.
Imagine eliminating any reference to humans and try to design
a robot to carry out the measurement. Eventually one must get
back to describing the fundamental physical processes involved.

3 Wave function collapse can occur either inside or outside a labo-
ratory, but for ease of explanation the discussion here will focus
primarily on typical measurement situations.

4 A good general discussion of these equations can be found in the
paper by Adler and Brun[12].
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square root operator is applied to the rate parameter, γ,
because it works in conjunction with the stochastic dif-
ferential, dξ, which scales as

√
dt (as described above). In

the definition of the stochastic operator, O, the subtrac-
tion of the expectation value, 〈ψ|O|ψ 〉, acts, as in the
Gram-Schmidt procedure, to insure that the stochastic
modification of ψ is orthogonal to the existing wave func-
tion. The small orthogonal addition to the wave function
slightly alters the norm. This alteration is compensated
for by the third term on the right which involves O2.
The action of the stochastic term is quite small in com-

parison to that of the Hamiltonian. So, in order for it
to be effective in generating collapse it needs to act in
a manner that is essentially independent of the Hamil-
tonian. This can be achieved in several ways, through
appropriate choices for the rate parameter, the operator,
O, and possibly other parameters.
The stochastic term is designed to drive the system to

one of the eigenstates of the operator, O. In this simple
example the wave function is represented as:
ψ = α|x〉 + β|y〉, with α2 + β2 = 1. To sim-
plify the example these amplitudes can be taken as real
and positive with no loss of generality. The action
of the self-adjoint operator, O, on the wave function
is: Oψ = aα|x〉 + bβ|y〉, and its expectation value is
〈ψ|O|ψ 〉 = aα2 + bβ2. The action of the stochastic
operator on the wave function can be expanded as:

O ψ = k{aα|x〉 + bβ|y〉 − (aα2 + bβ2)
[

α|x〉+ β|y〉
]

}
= k{ α [a(1 − α2) − bβ2]|x〉 + β [b(1− β2) − aα2]|y〉}
= k{αβ (a− b)

[

β|x〉 − α|y〉
]

}.
(2)

So the middle term of 1 can be written as:

k{αβ
[

β|x〉 − α|y〉
]

(a − b)
√
γ dξ(t)}. (3)

The expression in square brackets can be recognized
as a normalized vector that is orthogonal to ψ. As long
as the rate parameter, γ, is independent of α and β the
only dependence on the amplitudes (aside from the or-
thonormal state vector) is the term, αβ.
In this form and with the simplifying assumptions de-

scribed above it is possible to trace the evolution of the
wave function through Hilbert space under the influence
of the stochastic operator. Since α and β are assumed
to be real and positive the evolution can be modeled as
a random walk along the arc joining x and y axes (cor-
responding to the eigenstates |x〉 and |y〉).5 The state,
ψ = α|x〉 + β|y〉, lies on the arc; the orthogonal state,
β|x〉 − α|y〉, is tangent to the arc and it drives the state
to one or the other of the eigenstates in infinitesimal
steps. The magnitude and direction of the steps are de-
termined by the coefficient of the tangent state vector,
αβ k(a− b)

√
γ dξ(t).

5 In this simplified picture with α and β real and positive the
process can be pictured on a standard Cartesian graph with x
and y axes. It is very straightforward to transfer the analysis to
the Bloch sphere afterward.

The dependence on α and β means that the step size
varies as the wave function, ψ, traverses the arc under
the influence of the stochastic operator. Therefore, the
calculation of the distance to the end points, |x〉 and
|y〉, must take this variation into account. This can be
done by introducing a parameter, θ, with α = cos θ and
β = sin θ, and integrating the coefficient of the tangent
state vector along the arc:

k(a− b)
√
γ dξ(t)

∫

cos θ sin θ dθ = A sin2 = Aβ2.

(4)
where A is some term independent of α, β and θ. If we
associate the two eigenstates with the end points of a
random walk as described earlier, with |x〉 corresponding
to 0 and |y〉 corresponding to 1, then the position of ψ
along the arc can be parameterized as β2. As shown ear-
lier, this is the probability that the random walk ends at
|y〉, and α2 = 1−β2 is the probability that it ends at |x〉.
So the Born rule follows from the basic structure of the
collapse equation in a straightforward manner. It is also
worth noting that the random walk terminates because
the term, αβ = cos θ sin θ goes to 0 as ψ approaches one
of the end points.6

As stated at the beginning of this section what has
been shown here is that, if we are willing to countenance
some additional fundamental structure for relativistic
spacetime and incorporate the probabilistic character of
quantum theory at the fundamental level it is possible to
modify the Schrödinger equation in a fairly simple way
so that it yields the measurement postulates as dynamic
consequences. In this way contemporary physical theory
is rendered much more coherent.
With this background we can now review the pro-

posed equation described in [16], and see how it main-
tains Lorentz invariance.

III. INTERACTION-INDUCED WAVE

FUNCTION COLLAPSE

Measurements consist of interactions that establish
correlations between physical systems. Correlations are
established through the exchange of conserved quanti-
ties. Given the probabilistic nature of quantum theory,
the generation of stable information and its transmission
depend on these correlating interactions. These consid-
erations are what motivated and guided the construction
of the equation described below. Roughly speaking, the
idea is that the magnitude of the collapse effect associ-
ated with an interaction is proportional to the amount of
correlation that is generated.

6 The fact that αβ approaches 0 at the end points also creates a
problem (the “tails problem”) in that the walk does not end in
a finite number of steps. This problem will not be dealt with in
detail here, but I will offer a speculative solution later.



6

The degree of correlation between two systems that is
generated during an interaction depends on the extent
to which the interaction changes the individual state of
each system. This, in turn, depends on the strength of
the interaction and the resistance of each of the systems
to a change of state. The strength is measured by the in-
teraction potential energy. This is assumed to depend on
the separation between the two systems and to decrease
as the separation increases. For systems j and k it will
be indicated as Vjk. The resistance to change depends
on the mass of the systems, mj and mk. The effective
mass of elementary systems such as electrons in bound
states is altered by the binding interactions. So atoms,
molecules, and larger complex structures are treated as
single systems with a total mass and a net charge (or
electric multipole moment).
So the collapse operator is based on the interaction

potential energies, Vjk, and is proportional to the ratio,
Vjk/(mj+mk). As mentioned in Section II the stochastic
operator must be dimensionless. To convert the denom-
inator to an energy it is multiplied by the square of the
speed of light, c2. This is the only nonarbitrary speed,
it eases the way to a relativistic generalization, and it
eliminates the need to introduce an arbitrary constant,
k. It is also necessary, as in Section II, to subtract the
expectation value, 〈ψ|Vjk|ψ 〉. So the collapse operator
associated with the interaction between systems j and k
is:

Vjk ≡ Vjk − 〈ψ|Vjk|ψ 〉
(mj +mk)c2

. (5)

In most proposed collapse equations the rate or fre-
quency parameter, γ, is chosen in an ad hoc fashion to
insure that collapse occurs on an appropriate scale. How-
ever, since it is assumed here that collapse effects are
induced by the physical processes that establish corre-
lations between systems it is possible to define the fre-
quency parameter in terms of the rate at which the corre-
lations are generated. Since correlations are established
through the exchange of conserved quantities, and since
these exchanges are associated with variations in the in-
teraction potentials, Vjk we can define a rate parameter
associated with each interaction in terms of the rate at
which these potentials vary:

γjk ≡ ‖ d
dt
〈ψ|Vjk|ψ 〉 ‖

‖ 〈ψ|Vjk|ψ 〉 ‖max
. (6)

The numerator in this expression is obviously well de-
fined at every stage of the interaction. The fact that the
denominator is also well defined is based on a couple of
observations. First, since the Born probability rule fol-
lows from the basic structure of collapse equations the
expectation value for the full collapse equation is the
same as for the Schrödinger equation associated with it.
Second, the maximum of the expectation value over the
course of the interaction can be projected by integrat-
ing the Schrödinger equation. This can be done because

the interaction potentials are functions of position, and
hence, time-independent. It is true that both numerator
and denominator can vary over the course of the interac-
tion, but the crucial point is that they are well defined
at every stage. The fact that both numerator and de-
nominator pick out only the interacting components of
the the wave function insures that the rate parameter is
independent of the amplitude of these components, and
that is crucial for guaranteeing compliance with the Born
probability rule. The norm of both numerator and de-
nominator is taken in order to insure the positivity of the
expression for γjk.

7

A critical implication of this formulation for γjk is that
when multiplied by dt it integrates to a value of order
1 over the course of the interaction. This is also true
for the expression

√
γjkdξ. This fact allows one to treat

each interaction as a discrete event, and makes it possible
to estimate the scale on which collapse occurs and the
duration of the collapse process. This kind of analysis
shows how the scale and duration depend on the average
strength of the interactions involved. For this purpose it
is useful to have an estimate of the average interaction
rate and duration. This can be done by examining the
interaction term in the Schrödinger equation,

dψ

dt
= − iVjk

~
ψ. (7)

This shows that the average rate is proportional to the
interaction strength

γjk ≈ ∆Vjk−max

~
. (8)

where ∆Vjk−max is the maximum difference in potential
energy over the course of the interaction. The character-
istic interaction time is the inverse of this quantity:

dtint ≡ ~

∆Vjk−max

, (9)

For two electrons separated by the Bohr radius the du-
ration would be about 2.5 ∗ 10−17 seconds. Rates and
durations for other interactions can be scaled from this
estimate, taking into account the mass and charge of the
systems involved.
Finally, the full collapse operator is obtained by sum-

ming over the operators for every pair, j, k:

V ≡
∑

j<k

Vjk. (10)

The proposed collapse equation takes the form:

dψ = (−i/~)Hψ dt +
∑

j<k Vjk ψ
√
γjkdξ(t)

− 1
2 (
∑

j<k Vjk)2 ψ γjkdt.
(11)

7 This formulation of the rate parameter is simpler and more gen-
eral than the expression that was used in [16]. Note also that
the expression for the denominator can be integrated in both
directions in time.
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A detailed proof that 11 results in collapse with the
correct probabilities is given in [16], along with estimates
of the scale and duration of collapse processes. As indi-
cated these depend on the average strength of the inter-
actions involved. Such processes can involve anywhere
from about 108 to 1016 elementary interactions. Since
many of the interactions can be occurring in parallel the
durations are typically very small fractions of a second
as can be seen from the estimates of the durations asso-
ciated with individual interactions given above.
The claim that conservation laws hold exactly in indi-

vidual instances of collapse obviously runs counter to the
prevailing presumption that conservation laws hold only
on average in quantum theory. However, this presump-
tion is based on an artificial division of the world into
classical and quantum systems, and also on an overly
idealized concept of elementary physical systems being
in strictly factorizable states. In order to properly as-
sess the status of conservation laws in quantum theory it
is necessary to treat all systems, both macroscopic and
microscopic, as quantum systems, and also to recognize
that all these systems have a history of interaction with
other systems (which include preparation apparatuses).
As emphasized in [26, 27] interaction generates entangle-
ment. Therefore, the idealization of elementary systems
as being in purely factorizable states is never fully real-
ized in practice. This is pointed out by the authors of
[26] where they say:

“Thus it is, strictly speaking, unjustified to
describe a particle in a box, which is part of
an interacting quantum system, by a wave-
function”.

In other words, the common textbook example of a par-
ticle in a box ignores the small amount of entanglement
that results from the interaction between the particle, the
box and whatever apparatus was used to prepare the sys-
tem. The interactions involved in both the preparation
and measurement of quantum systems are conservative
interactions. When these interactions induce branching
of the wave function they lead to a different distribution
of conserved quantities among the interacting systems
in the various branches, but they do not alter the total
amount (up to normalization of the branches.) Based on
these kinds of observations a number of articles in recent
years have demonstrated that conservation laws hold ex-
actly in individual instances, and not just when applied
to ensembles of identical measurement situations. In ad-
dition to [16] these include [25, 30–35].
In discussing the status of conservation laws with refer-

ence to stochastic collapse equations there are two issues
that must be addressed. First, some of the collapse pro-
posals imply small violations of conservation laws even
with regard to statistical averages. For example, consider
the most widely known collapse proposal, the continuous
spontaneous localization (CSL) model[36, 37]. It implies
small violations of energy conservation as described in
[38]. One of the main reasons for these violations is that

this proposal uses a stochastic field, ξ(x, t), which is a
function of both position and time, as opposed to a sin-
gle, global stochastic process, ξ(t), which is a function
only of time. The stochastic field induces spatial vari-
ations in the wave function - in effect, pumping energy
into it. Other proposals, such as one of the variants dis-
cussed in [1] use a single, global stochastic process, and
base the stochastic operator on the Hamiltonian. In this
way it maintains energy conservation on average, but still
violates it in individual instances.

Because the proposed equation in [16] uses a single
global stochastic process it avoids the kinds of statistical
violations of conservation laws just described. The rea-
son that it is able to maintain strict conservation in indi-
vidual measurement situations is that it is based on the
assumption that the amplitude shifts between branches
that bring about collapse are generated by conservative
interactions. So these interactions are responsible both
for the splitting of the wave function into branches and
for the redistribution of amplitude among the branches.
As stated above subsequent to the splitting under ordi-
nary Schrödinger evolution conserved quantities are iden-
tical in each branch (up to normalization of the branch).
Thus, the amplitude shifts between branches do not al-
ter any of these quantities, and the eventual selection (or
elimination) of a particular branch leaves the surviving
wave function with the same values that it had prior to
the chain of interactions (including preparation) that led
to the collapse.

It is shown in [16] that the proposed equation conserves
momentum and angular momentum exactly. Because the
proposal is formulated in a nonrelativistic framework it is
only able to conserve energy within the accuracy allowed
by the limited forms of energy describable in nonrela-
tivistic theory.

Experimental consequences of the proposal are also
discussed in the earlier work. These deal with very small
discrepancies in the correlations between entangled sys-
tems predicted by conventional quantum theory and the
equation described above. They are a result of the non-
linearity of the equation.

This review of the proposal in [16] is intended as back-
ground for the demonstration that 11 is Lorentz invari-
ant. The general question of Lorentz invariance hangs
over any proposal that deals with the measurement prob-
lem. But there is a particular concern that arises in
connection with the type of collapse equation discussed
here because they are formulated in a preferred reference
frame. There is essentially zero probability that any ref-
erence frame in which one chooses to analyze a collapse
process will coincide with the preferred frame. The crit-
ical question is whether the magnitude of the collapse
effects is independent of the frame in which they are con-
sidered.

The sort of discrepancies in predictions of correlations
mentioned two paragraphs back occur in any nonlinear
collapse equation. (Other experimental deviations from
conventional theory may also occur.) If the predicted
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magnitude of the collapse effects differs from one frame
to the next there will be, in principle, observable differ-
ences from the preferred frame and the proposal will be
in explicit conflict with relativity. So the task here is to
show that the magnitude of the collapse effects predicted
by equation 11 is independent of the reference frame in
which they are viewed.
According to equation 11 during the brief time in which

an interaction generates a correlation between two sys-
tems it also transfers amplitude between the interacting
and noninteracting branches of the wave function. The
magnitude of the transfer is:

Vjk
√
γjkdξ(t)ψ ≡ Vjk − 〈ψ|Vjk|ψ 〉

(mj +mk)c2
√
γjkdξ(t)ψ.

(12)
We want to show that this magnitude is the same whether
it is calculated in the rest frame of the laboratory in
which the interaction takes place or in the preferred frame
in which the collapse equation is formulated.
Consider, first, the term,

√
γjkdξ(t), that governs the

rate at which the transfer takes place. As argued above,
this term integrates to a value of order, 1, over the course
of the interaction. As viewed from the preferred frame
the duration of the interaction is increased by the rela-
tivistic time dilation factor, and the rate parameter, γjk,
is reduced by the same proportion. But, from the way in
which the rate parameter is constructed it is clear that it
will still integrate to the same value over the course of the
interaction. So we need only show that the expression,
Vjk−〈ψ|Vjk|ψ 〉

(mj+mk)c2
is invariant.

To demonstrate this it is necessary to show that the
relativistic transformation of the numerator is the same
as that of the denominator. The numerator is based on
the interaction potential energy. The elementary inter-
actions that occur in nonrelativistic quantum theory are
electromagnetic. Therefore, the potential energy is an
electromagnetic potential. From a relativistic point of
view this potential is the timelike component of an elec-
tromagnetic four-potential, and transforms accordingly.
The denominator consists of the sum of the relativistic
energies of the interacting systems. The relativistic en-
ergy is the timelike component of the energy-momentum
four vector. So the denominator transforms in the same
way as the numerator, and, hence, the expression for the
collapse term is Lorentz invariant.
In Section II it was shown that stochastic collapse

equations provide a very natural extension of the math-
ematical formalism of quantum theory and that they en-
tail the measurement postulates as straightforward con-
sequences of the fundamental equation. This approach
eliminates the need to insert them into the logical struc-
ture of the theory at some very vaguely defined point.
In this section it was shown that it is possible to for-
mulate such an equation that respects conservation laws
in individual measurement processes without introducing
any new, ad hoc physical constants, and is also Lorentz
invariant. The next section will consider whether this

general approach can be considered to respect “serious”
Lorentz invariance.

IV. “SERIOUS” LORENTZ INVARIANCE

What is meant by “serious” Lorentz invariance? One
common attitude is that no proposal that requires adding
structure to spacetime beyond a Lorentzian metric can
be considered to be genuinely relativistic. It implies that
any new physics must work within the limited framework
that was erected in a classical context prior to the devel-
opment of quantum theory.
To evaluate this viewpoint it is necessary to take into

account the fundamentally probabilistic and nonlocal na-
ture of quantum theory as we currently understand it.
As argued in Section I these characteristics necessitated
the introduction of an additional postulate for theoretical
physics - local commutativity. Because the new theory
was such a large break from the past, and because many
of its consequences only became apparent over time the
central role that this additional postulate plays in con-
temporary physics has not been fully appreciated.
The Lorentzian metric and light cone structure that we

use to characterize relativistic spacetime were adopted in
order to provide a fundamental physical explanation for
Einstein’s two original postulates for relativity. The as-
sumption of local commutativity deals with the novel as-
pects of quantum theory by forbidding the transmission
of stable physical information across spacelike intervals.
It is intended to prevent any manifest violations of rela-
tivity and should be regarded as a third postulate. But,
just as the earlier structures were designed to explain how
the original postulates are enforced we should be willing
to entertain the possibility of adding structure to explain
how this third postulate is enforced. That is exactly what
a spacetime foliation associated with a stochastic process
does.
The adoption of this sort of additional stochastic struc-

ture transfers the probabilistic nature of quantum the-
ory from the macroscopic to the elementary level. This
turns what were ad hoc postulates at the macro level
into straightforward consequences of the mathematical
description of elementary processes. The probabilistic
nature of elementary correlating interactions also ex-
plains why a preferred reference frame (or spacetime foli-
ation) remains hidden, and explains why the description
of spacetime at the macroscopic level is limited to the
standard relativistic account involving just a Lorentzian
metric. This is why accounts involving these sorts of
additional stochastic structures ought to be regarded as
respecting serious Lorentz invariance.
Because the proposal described here is formulated in

a nonrelativistic framework it must be considered as in-
complete. But since it can, arguably, be regarded as
Lorentz invariant there do not appear to be any serious
conceptual obstacles to a full relativistic account. Such
an account would encompass quantum field theory, and
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might well offer solutions to some of the key problems
with this more limited proposal. As argued in [16] there
is reason to believe that such an extension could resolve
the small discrepancies with energy conservation that are
implied by equation 11. One might also hope that a rel-
ativistic account might provide a solution to the tails

problem (mentioned in a footnote in section II). With
the transition from distinguishable to indistinguishable
particles the suppression of the very small amplitudes in
the wave function tail below the level of vacuum fluctua-
tions might point the way to a resolution. But these are
just speculations that must be addressed in future work.
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