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The study of information revivals, witnessing the violation of certain data-processing inequalities, has pro-
vided an important paradigm in the study of non-Markovian processes. Although often used interchangeably,
we argue here that the notions of “revivals” and “backflows”, i.e., flows of information from the environment
back into the system, are distinct: an information revival can occur without any backflow ever taking place. In
this paper, we examine in detail the phenomenon of non-causal revivals and relate them to the theory of short
Markov chains and squashed non-Markovianity. As a byproduct, we demonstrate that focusing on processes
with actual backflows, while excluding those with only non-causal revivals, resolves the issue of non-convexity
of Markovianity, thus enabling the construction of a convex resource theory of genuine non-Markovianity.

Introduction.—The evolution of a system in interaction
with its surrounding environment, also known as open quan-
tum system dynamics [1], can be divided into two classes:
Markovian and non-Markovian. In essence, Markovian dy-
namics can be described as a process where the subsequent
evolution of the system can be inferred entirely from its
present state. Conversely, if the inference about the sys-
tem’s future evolution necessitates not only its present state
but also its past history, then the dynamics become non-
Markovian. In other words, the properties of Markovianity
and non-Markovianity (respectively) signify the absence and
presence (respectively) of memory effects in the dynamics.

While for Markovian dynamics, there exist beautiful rep-
resentation theorems in terms of master equations and semi-
groups [2–5], the mathematical structure of non-Markovian
dynamics is generally richer and thus harder to character-
ize, due to its generality. Nevertheless, in recent years enor-
mous efforts have been made to study non-Markovian quan-
tum dynamics [6–19] and their potential technological impli-
cations [20–28].

Broadly speaking, there are two approaches to the study
of quantum non-Markovianity, proposed separately by Rivas–
Huelga–Plenio (RHP) [29] and Breuer–Laine–Piilo (BLP)
[30]. According to RHP, the evolution of an open quantum
system is Markovian if it is divisible, i.e., if it can be repre-
sented as a composition of steps, from one moment in time to
the next. This approach is conceptually very close to the idea
of semigroups [4]. The other approach, proposed by BLP, is
based on the distinguishability of quantum states. It assumes
that just as Markovian dynamics never increase the distin-
guishability of quantum states in time, so the essential feature

of non-Markovian dynamics is the possibility of experiencing
revivals of this distinguishability [30]. This feature is used to
explore a wide range of non-Markovian dynamics [31–37].

Thus, by interpreting a decrease in distinguishability as a
loss of information, the emergence of non-Markovian effects,
according to BLP, seems to imply a backflow of informa-
tion from the environment back into the system. This idea
later motivated proposals to study non-Markovianity not only
in terms of backflows of distinguishability, but more gener-
ally in terms of backflows of correlations between the sys-
tem, the environment, and a reference, where correlations
can be measured using mutual information [38], conditional
mutual information [39], entanglement [40], interferometric
power [41, 42], and other variants [43]. While some correla-
tion measures remarkably lead to the equivalence of the con-
cepts of divisibility and absence of revivals [7, 44–46], in gen-
eral, any information revival implies non-divisibility, but not
vice versa.

The idea of information revival has motivated studies to
understand and further characterize its nature [47–50]. For
example, for classical environments it has been shown that
there can be revival of information without the environment
being affected by the system’s dynamics [51, 52]. Further-
more, attempts have been made to distinguish the classical
and quantum contributions to information revival and non-
Markovianity [53–56]. Nevertheless, the terms “revival” and
“backflow” are still used interchangeably in the literature.

In this paper, we argue instead that the concepts of in-
formation revival and information backflow can and should
be distinguished. It is possible for revivals to occur with-
out any actual backflow of information from the environment
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into the system. Upon closer examination from a causal per-
spective, we find that these revivals are non-causal. We then
derive a condition, formulated in terms of quantum condi-
tional mutual information, which is equivalent to an arbitrary
system-environment interaction giving rise only to non-causal
revivals. This condition is related to the concept of squashed
non-Markovianity, a notion recently introduced in [57]. Fur-
thermore, we show that the condition we identify is robust
to small errors and respects convexity. In particular, the lat-
ter property allows us to solve the well-known problem re-
lated to the non-convex character of Markovianity [58]: while
convex mixtures of Markovian processes can lead to non-
Markovianity, convex mixtures of non-causal revivals are nec-
essarily non-causal. This observation provides the basis for
developing a convex resource theory for dynamical quan-
tum non-Markovianity, where non-Markovianity is defined in
terms of genuine information backflows, while non-causal re-
vivals are excluded.

Background and notation.—The setting is the usual one in
open systems dynamics [1]: a quantum system Q with d-
dimensional (d < ∞) Hilbert space HQ, which can be initial-
ized in any density operator (i.e., state) ρQ ∈ S(HQ), interacts
with an environment (also assumed to be finite-dimensional),
which is instead initialized in an arbitrary but fixed state
γE ∈ S(HE). The interaction is modeled as a bipartite uni-
tary operator UQE : HQ ⊗ HE → HQ′ ⊗ HE′ , which can be
parameterized by time, so to describe a joint evolution. In gen-
eral, since the system is open and particles can be exchanged,
we only assume that HQ ⊗ HE � HQ′ ⊗ HE′ , while the lo-
cal dimensions are allowed to change. As routinely done in
quantum information theory [59, 60], when the system can be
initialized in an arbitrary state, instead of following each and
every state of Q, it is convenient to introduce an additional ref-
erence system R, withHR � HQ, and assume that system and
reference are initially prepared in a maximally entangled state
Φ+RQ, i.e., a pure bipartite state such that TrR

{
Φ+RQ

}
= d−111Q.

The reference should not be regarded as an actual system, but
rather as a mathematical device used to simplify the discus-
sion; as such, it never participates in the system-environment
interaction and remains inert throughout the process [61].

After introducing the reference system, we consider
three “snapshots” of the joint tripartite reference-system-
environment configuration, taken at three different times t0 <
t1 < t2. Without loss of generality, we can write

ρRQE = Φ
+
RQ ⊗ γE t = t0 , (1)

t1
−→ σRQ′E′ = UQE ρRQE U†QE t = t1 , (2)
t2
−→ τRQ′′E′′ = VQ′E′ σRQ′E′ V†Q′E′ t = t2 . (3)

The unitaries UQE and VQ′E′ govern the time evolutions in the
first (t0 → t1) and the second (t1 → t2) steps, respectively.
In what follows, we will call the above sequence of tripar-
tite states a three-time snapshot for the dynamics at hand: it
provides the minimal framework for discussing information
revivals in both discrete and continuous time. Generalizations

to more than three points in time are straightforward, but for
the purposes of the present discussion, three-point snapshots
will suffice.

By tracing over the environment, we obtain the reduced
reference-system dynamics

Φ+RQ
t1
−→ σRQ′

t2
−→ τRQ′′ . (4)

Since the initial state of the environment is fixed, it is pos-
sible to represent the above sequence using the formalism of
quantum channels, i.e., completely positive trace-preserving
(CPTP) linear maps: the theory guarantees the existence of
two quantum channels EQ→Q′ and FQ→Q′′ such that σRQ′ =

(idR ⊗ EQ→Q′ )(Φ+RQ) and τRQ′′ = (idR ⊗ FQ→Q′′ )(Φ+RQ). How-
ever, the existence of an intermediate channel DQ′→Q′′ such
that τRQ′′ = (idR ⊗ DQ′→Q′′ )(σRQ′ ) is not guaranteed, since
at time t = t1 system and environment are in general corre-
lated [61, 62]. But if such a channel exists, then the three-time
open system dynamics in (4) is called divisible.

Our discussion will focus on three entropic measures of
information: von Neumann entropy, quantum mutual infor-
mation (QMI), and quantum conditional mutual information
(QCMI), which are defined as follows. Given a system A in
state ρA, its von Neumann entropy is H(A) = −Tr

{
ρA log ρA

}
.

Given a bipartite system AB in state ρAB, its QMI is I(A; B) =
H(A) + H(B) − H(AB). The QMI I(A; B) is known [63] to
provide an operationally well-defined measure of the total
amount of correlations existing between systems A and B. Fi-
nally, given a tripartite system ABC in state ρABC , its QCMI is
I(A; C|B) = H(AB) + H(BC) − H(B) − H(ABC).

Information revivals.—Crucially, QMI satisfies the data-
processing inequality: for any bipartite state ρAB and any
channel EB→B′ , the QMI I(A; B′) computed for (idA ⊗

EB→B′ )(ρAB) obeys the inequality I(A; B′) ≤ I(A; B). The idea
is that the correlations between two systems cannot increase
as a consequence of (deterministic) local actions: a very nat-
ural requirement to be satisfied by any reasonable measure of
correlations, lest the notion of locality itself be violated.

Therefore, in any three-time sequence such as (4), it will al-
ways hold that I(R; Q′)1 ≤ I(R; Q)0 and I(R; Q′′)2 ≤ I(R; Q)0.
However, since, as we already noticed, at time t = t1 system
and environment are generally correlated, a channel from Q′

to Q′′ may not exist, and we may observe a revival of QMI,
i.e.,

I(R; Q′′)2 > I(R; Q′)1 . (5)

Whenever a revival occurs, we can take this as a conclusive
signature for the fact that the evolution between t1 and t2 is
non-Markovian [38]. For this reason, in what follows, the
main object of our investigation will be to understand what
kind of behaviors the QMI between reference and system can
exhibit between t1 and t2, and how such behaviors are related
to the algebraic and information-theoretic properties of the in-
termediate tripartite configuration σRQ′E′ .

Explaining revivals.—Whenever a revival of correlations as
in (5) occurs as a consequence of a local operation performed
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on the system, instead of jumping to the conclusion that some
fundamental law of nature has been violated, it is more natu-
ral to explain the observed revival by assuming the existence
of other degrees of freedom which, although interacting with
the system, were not included in the balance, thus leading
to an apparent revival. Accordingly, an explanation for a re-
vival consists in incorporating into the balance other degrees
of freedom, compatible with the overall three-time snapshot,
until the revival disappears.

An obvious way to explain any revival is to include the en-
vironment itself in the balance. More precisely, instead of
comparing only the correlation content of Q′ versus that of
Q′′, we compare Q′E′ versus Q′′E′′ as a whole. When we
do this, since the joint system-environment dynamics is uni-
tary, we have I(R; Q′E′)1 = I(R; Q′′E′′)2 and the anomalous
revival is naturalized.

This way of explaining revivals (i.e., by incorporating the
environment) lies behind the interpretation of revivals as back-
flows of information from the environment into the system.
The idea is that some of the initial correlations between the
system and the reference were moved to the environment
as a consequence of the interaction between t0 and t1, and
later restored at time t2. Therefore, the violation of the data-
processing inequality can be explained by tracking such dis-
placed correlations, as they move back and forth between the
system and the environment.

While all revivals can be explained as backflows, not all
revivals require backflows to be explained. In order to illus-
trate this point, let us consider a concrete example, similar
to those discussed in Ref. [51], in which HQ � HR � C

2,
HE � C

4, and γE = 11E/4. The interaction between the sys-
tem and environment is modeled as the repeated application
of the same control-unitary operator UQE =

∑3
i=0 π

i
Q ⊗ |i⟩⟨i|E ,

where π0
Q = 11Q, π1

Q = XQ, π2
Q = YQ, and π3

Q = ZQ, i.e., the
four Pauli matrices. The resulting three-time snapshot, after
tracing over the environment, can be easily computed as fol-
lows:

Φ+RQ
t1
−→

11R

2
⊗

11Q′

2
t2
−→ Φ+RQ′′ .

Correspondingly, the correlation between the reference and
the system is maximal at initial time t0, vanishes at inter-
mediate time t1, and is maximal again at final time t2, i.e.,
I(R; Q)0 = 2

t1
−→ I(R; Q′)1 = 0

t2
−→ I(R; Q′′)2 = 2 bits. This

model thus exhibits a complete revival of information. Such a
revival, however, can be explained without the need of a back-
flow.

Such an explanation can be given, for example, by includ-
ing in the picture an ancillary system Ẽ purifying the envi-
ronment. The corresponding extended three-time snapshot, in

this case, becomes

Φ+RQ ⊗ Φ
(4)
EẼ

(6)
t1
−→ UQE (Φ+RQ ⊗ Φ

(4)
EẼ

) U†QE

=
1
4

∑
i, j

πi
QΦ
+
RQπ

j
Q ⊗ |i⟩⟨ j|E ⊗ |i⟩⟨ j|Ẽ

t2
−→ UQE

14∑
i, j

πi
QΦ
+
RQπ

j
Q ⊗ |i⟩⟨ j|E ⊗ |i⟩⟨ j|Ẽ

U†QE

= Φ+RQ ⊗ Φ
(4)
EẼ
,

where Φ(4)
EẼ

denotes the four-dimensional maximally entan-
gled state purifying 11E/4.

The crucial point to emphasize here is that the ancilla Ẽ, al-
though correlated with E, never directly interacts with Q. For
this reason, there cannot be any direct backflow of informa-
tion from Ẽ to Q, which would require that some information
flowed from Q into Ẽ in the first place. In this case, nonethe-
less, the ancilla Ẽ alone is able explain the revival, because
I(R; QẼ)0 = I(R; Q′Ẽ)1 = I(R; Q′′Ẽ)2 = 2 bits. This can
be easily proven since I(R; Q′Ẽ)1 = I(R; Ẽ)1 + I(R; Q′|Ẽ)1 =

0 + 2 = 2 bits.
As a consequence, it is clear that in this case the violation of

the data-processing inequality, i.e., I(R; Q′′)2 > I(R; Q′)1, is
nothing but an artifact due to the ignorance of the information
residing in Ẽ: information that was already there before Q
and E interacted, and is thus completely independent of both
Q and R. Hence, we conclude that in this case no backflow
of information can be inferred, despite the fact that a revival
is observed. In what follows, we will make this idea more
rigorous and characterize other situations, beyond the highly
idealized example above, in which revivals can occur without
any backflow.

Non-causal revivals.—In order to generalize the above ex-
ample, let us consider a three-time snapshot (1)–(3) and ex-
tend its initial configuration as ρRQEF = Φ

+
RQ ⊗ γEF , where

TrF[γEF] = γE . Notice that γEF may be mixed. The ex-
tension F does not participate in the process, i.e., it is only
acted upon by the identity operator, similar to the reference
R, and like the latter it is more of a mathematical device than
an actual physical system. In this case, we say that the exten-
sion F is inert from t0 to t2. As a consequence, the (unitarily)
evolved states after the first and second steps, i.e., σRQ′E′F and
τRQ′′E′′F , respectively, are automatically extensions of σRQ′E′

and τRQ′′E′′ , respectively; in formula, TrF[σRQ′E′F] = σRQ′E′

and TrF[τRQ′′E′′F] = τRQ′′E′′ .
As mentioned earlier, without loss of generality, we shall

focus on the change of quantum mutual information occurring
in the second step (t1 → t2).

Definition 1 (Non-causal revivals). We say that an open sys-
tem dynamics, as the one obtained by tracing over the envi-
ronment in Eqs. (1)–(3), exhibits a non-causal revival of infor-
mation, whenever a revival occurs, i.e., I(R; Q′′)2 > I(R; Q′)1,
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but there exists an inert extension F such that

I(R; Q′′F)2 ≤ I(R; Q′F)1 . (7)

The use of the term “non-causal” in Definition 1 is justified
because revivals that can be explained in terms of an inert ex-
tension do not, by construction, require any direct backflow of
information in order to be explained. Equivalently, non-causal
revivals are precisely those that can be naturalized by resort-
ing to a system that is space-like separated, and thus causally
separated, from both the system and the environment.

Since the joint system-environment evolution is unitary, the
quantum mutual information between the reference and the
rest never changes, i.e.,

I(R; QEF)0 = I(R; Q′E′F)1 = I(R; Q′′E′′F)2 .

Therefore, the inequality (7) can also be cast in terms of quan-
tum conditional mutual information (QCMI), so that a revival
is non-causal if and only if there exists an inert extension F
such that

I(R; E′′|Q′′F)2 ≥ I(R; E′|Q′F)1 . (8)

Note that the inequality is reversed as a result of the QMI be-
ing replaced by the QCMI. It is instructive to look back at the
example (6) from the point of view of the above condition (8).
Since, in the example, the extension is taken as a purifica-
tion of the environment, the four-partite configuration remains
pure at all times, and since for pure states the QCMI coincides
with the unconditioned QMI, in this case the inequality (8) is
equivalent to I(R; E′′)2 ≥ I(R; E′)1, which in our example is
clearly satisfied, since both sides are zero. Moreover, we now
understand that the same result could have been obtained by
considering, instead of a purification Φ(4)

EẼ
, a mixed but per-

fectly correlated extension such as γEF =
1
4
∑

i |i⟩⟨i|E ⊗ |i⟩⟨i|F .
Conversely, if the environment starts in a pure state, i.e.,

the density operator γE in (1) is rank-one, then any inert ex-
tension must be trivial, i.e., in tensor product with all the
rest. In this case, I(R; Q′′F)2 ≤ I(R; Q′F)1 if and only if
I(R; Q′′)2 ≤ I(R; Q′)1, i.e., if and only if there was no re-
vival to begin with. In other words, any revival that occurs in
the presence of a pure environment, cannot be non-causal, but
requires a genuine backflow from the environment in order to
be explained. However, in most cases of theoretical and ex-
perimental interest, the environment is usually assumed to be
at some finite temperature, thus leaving open the possibility of
non-causal revivals.

Non-causal configurations.—The above discussion raises
the question: if an initially pure environment does not al-
low for non-causal revivals, are there situations in which, on
the contrary, all revivals are non-causal? The answer to this
question comes as a consequence of the fact that the QCMI is
non-negative. Therefore, given an arbitrary three-time snap-
shot (1)–(3), if there exists an inert extension F such that
I(R; E′|Q′F)1 = 0, then Eq. (8) is always satisfied, and any
revival is non-causal.

Thanks to Uhlmann’s theorem for purifications and Stine-
spring’s dilation theorem for CPTP maps [64, 65], we can say
that given a mixed state ρA, any extension ρAX of it can be ob-
tained by starting from some purification |φ⟩AB and then act-
ing on B with some channel NB→X . Furthermore, it can be
observed that since the joint reference-system state is initially
pure and the overall evolution is unitary in Eqs. (1)–(3), the
only mixed component arises from the initial state of the envi-
ronment, γE . These two facts together show that any extension
done at any point in time, if kept invariant through the process,
provides an inert extension of the three-point snapshot. This
implies that, without loss of generality, it is possible to con-
struct an extension for the intermediate configuration σRQ′E′F

on its own, regardless of the initial and the final configura-
tions, and such an extension will automatically provide an
inert extension for the entire three-point snapshot. We thus
reach the following conclusion, that we state as a theorem:

Theorem 1. Suppose that, starting from an initial configu-
ration as in Eq. (1), the joint reference-system-environment
reaches the configuration σRQ′E′ at time t = t1. Then, re-
gardless of the next interaction step VQ′E′ in (3), all revivals
possibly occurring are non-causal, if and only if there exists
an inert extension F such that

I(R; E′|Q′F)1 = 0 . (9)

One direction comes from the non-negativity of the QCMI,
so that if (9) holds, then (8) also holds. Vice versa, taking
VQ′E′ to be the interaction merging the entire system E′ with
Q′ into Q′′, i.e., HQ′′ � HQ′ ⊗ HE′ and HE′′ � C, we have
I(R; E′′|Q′′F) = 0, and again from the positivity of the QCMI,
condition (8) implies (9). Notice that condition (9) implies
that the intermediate configuration σRQ′E′ has zero squashed
non-Markovianity [57], which in turn implies, as a conse-
quence of the faithfulness of squashed entanglement, that the
bipartite state σRE′ is separable [66–68].

Theorem 1 provides another motivation for using the term
“non-causal explanation”. As a consequence of Petz’s theory
of statistical sufficiency [69–71], condition (9) is equivalent to
the existence of a channel RQ′F→Q′E′F which can reconstruct
the state σRQ′E′F from its marginal σRQ′F = TrE′ [σRQ′E′F].
Subsequently, there exists a channel NQ′F→Q′′E′′F , where

NQ′F→Q′′E′′F := VQ′E′→Q′′E′′ ◦ RQ′F→Q′E′F , (10)

withV(·) := V(·)V†, such that

(idR ⊗ NQ′F→Q′′E′′F)(σRQ′F) = τRQ′′E′′F . (11)

In other words, the transformation σRQ′ → τRQ′′ that leads
to the observed revival can be exactly reproduced by using
the inert extension F, which, as mentioned above, never inter-
acted with the system in the past and thus cannot give anything
back to it: the revival is reproduced without any backflow
ever occurring. The schematic construction of this scenario
is shown in Fig. 1.
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FIG. 1. A non-causal information revival in a three-time snapshot.
At time t = t0, we have the state ρRQEF = Φ

+
RQ⊗γEF . Here, we

assume the system (Q) and reference (R) are maximally entangled.
Moreover, an inert system F, not participating in the subsequent dy-
namics, can be correlated to the environment (E) in a joint state
γEF . Under the action of the unitary UQE(·) := UQE(·)U†QE , the
evolved state at time t = t1 is σRQ′E′F = UQE (ρRQEF). When
σRQ′E′F satisfies I(R; E′|Q′F)σ = 0, then for any unitary channel
VQ′E′ := VQ′E′ (·)V

†

Q′E′ at time t = t2 there exists a quantum channel
NQ′F→Q′′E′′F acting on both the active (Q′) and the inert (F) systems.
The channel N is composed of the recovery map RQ′F→Q′E′F , which
reconstructs the state σRQ′E′F from its marginal σRQ′F , followed by
the unitaryVQ′E′ , see Eq. (10). Consequently, an apparent informa-
tion backflow from the environment (E′) to the system (Q′′) can be
explained solely from the perspective of Q′F independent of the en-
vironment E′. In this scenario, any information revival at time t = t2

is always non-causal, as shown in Theorem 1.

The general case.—Besides the two extreme situations, i.e.,
one in which the environment is initially pure and all revivals
require a corresponding backflow, and the other in which the
intermediate configuration satisfies (9) and all revivals are
non-causal, what can be said about the general case?

In general, this is a very difficult question to answer since
the search for the inert extension satisfying Eq. (9) must go
through systems F with no prior upper bound on their di-
mensions. In fact, given an intermediate configuration, find-
ing an extension that satisfies (9) would also show that the
state σRE′ is separable, and in general, the separability prob-
lem is known to be hard. It is therefore crucial, both practi-
cally and conceptually, to be able to address the case where
one only knows that there exists an inert extension such that
I(R : E′|Q′F)1 ≤ ε, for some given threshold value ε ≥ 0. We
address this in the following theorem.

Theorem 2. Given a three-time snapshot as in Eqs. (1)–(3),
suppose that the intermediate configurationσRQ′E′ is such that
there exists an inert extension F with

I(R; E′|Q′F)1 ≤ ε , (12)

for small value ε ≥ 0. Then, for any subsequent interaction
VQ′E′ , there exists a corresponding channel NQ′F→Q′′E′′F able
to provide an approximate non-causal explanation of the re-
duced dynamics from t1 to t2, in formula,

F
(
τRQ′′E′′F ,NQ′F→Q′′E′′F

(
σRQ′F

) )
≥ 2−ε ,

where F(α, β) :=
(
Tr
√
√
αβ
√
α
)2

is the (squared) fidelity be-
tween states α and β.

The proof of the above theorem is the consequence of The-
orem 7 in [72], and the converse is also known to hold, as
in Theorem 8 in [72]. Thus, we conclude that the squashed
non-Markovianity of the intermediate configuration σRQ′E′ is
a good indicator of how non-causal any subsequent revival can
be, in the sense that small squashed non-Markovianity guaran-
tees that any revival can be “almost” explained by an inert ex-
tension. Notice that, in particular, condition (12) implies that
I(R; Q′′F)2−I(R; Q′F)1 = I(R; E′|Q′F)2−I(R; E′′|Q′′F)1 ≤ ε,
regardless of the magnitude of the actual revival I(R; Q′′) −
I(R; Q′).

Towards a convex resource theory of dynamical non-
Markovianity.—Let us now consider two processes, each with
its own three-time snapshot, i.e.,

Φ+RQ ⊗ γ
(a)
E

t1
−→ σ(a)

RQ′E′
t2
−→ τ(a)

RQ′′E′′

and

Φ+RQ ⊗ γ
(b)
E

t1
−→ σ(b)

RQ′E′
t2
−→ τ(b)

RQ′′E′′ ,

and let us assume both to be without revival, i.e., I(R; Q′′)(a)
2 ≤

I(R; Q′)(a)
1 and I(R; Q′′)(b)

2 ≤ I(R; Q′)(b)
1 . And yet, if we con-

sider the process obtained by convexly mixing the two, i.e.,

Φ+RQ ⊗
∑

x

pxγ
(x)
E

t1
−→
∑

x

pxσ
(x)
RQ′E′

t2
−→
∑

x

pxτ
(x)
RQ′′E′′ , (13)

a revival may occur. This is a well-known problem with any
attempt to formulate a resource theory of non-Markovianity:
Markovian processes do not form a convex set [58].

However, if we focus on three-point snapshots with non-
causal revival, instead of just snapshots without revival1, then
convexity is satisfied. This fact is easily shown by choosing,
as the inert extension F, a classical system perfectly corre-
lated with the index x ∈ {a, b}, as shown in Appendix A. By
doing so, it is straightforward to verify that F is inert, and that
the intermediate configuration satisfies I(R; E′|Q′F)1 = 0. In
other words, when mixing Markovian processes, even if a re-
vival may occur between t1 and t2 as a consequence of mix-
ing, it will necessarily be non-causal. For the same reason,
mixtures of processes with non-causal revivals will again be
non-causal.

This observation opens up the possibility of constructing a
convex resource theory of dynamical non-Markovianity, de-
fined in terms of genuine backflows of information from the
environment to the system, while excluding non-causal infor-
mation revivals. Another possibility is to consider the situ-
ation where the system and the reference do not start in the

1 Note that processes without revival are special cases of processes with non-
causal revivals: if no revival is present, a trivial extensionHF � C explains
everything, simply because there is nothing to explain.
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maximally entangled state, but in an arbitrary bipartite mixed
state, as done in [62]. These and other lines of research will
be explored elsewhere.

In this article, we introduced the concept of explanations
of information revivals arising in non-Markovian open quan-
tum processes and, consequently, the notion of non-causal
revivals, i.e., revivals that can be explained by an auxiliary
system that remains causally separate from the process at all
times. We also showed that our notion of non-causality is
robust under small deviations and that, by contrasting non-
causal revivals with genuine backflows, it is possible to ob-
tain a convex resource theory of dynamical non-Markovianity,
thus solving a long-standing open problem in the literature.
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[26] Krzysztof Ptaszyński, “Non-Markovian thermal operations
boosting the performance of quantum heat engines,” Physical
Review E 106, 014114 (2022).

mailto:buscemi@nagoya-u.jp
mailto:goswami.kaumudibikash@gmail.com
mailto:das.seed@iiit.ac.in
mailto:mnbera@gmail.com
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/3-540-70861-8
http://dx.doi.org/10.1007/3-540-70861-8
http://arxiv.org/abs/1902.00967
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1103/PhysRevA.93.012101
http://dx.doi.org/10.1103/PhysRevA.93.012101
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/PhysRevLett.120.040405
http://dx.doi.org/10.1103/PhysRevLett.120.040405
http://dx.doi.org/10.1088/1367-2630/aaafee
http://dx.doi.org/10.1063/1.4997044
http://dx.doi.org/10.1063/1.4997044
http://dx.doi.org/10.1088/1367-2630/ab1ed6
http://dx.doi.org/10.1088/1367-2630/ab1ed6
http://dx.doi.org/10.1103/PhysRevA.100.012120
http://dx.doi.org/10.1103/PhysRevA.100.012120
http://dx.doi.org/10.1103/PhysRevLett.123.040401
http://dx.doi.org/10.22331/q-2021-04-20-435
http://dx.doi.org/10.22331/q-2021-04-20-435
http://dx.doi.org/10.1103/PhysRevA.104.L050404
http://dx.doi.org/10.22331/q-2021-08-09-522
http://dx.doi.org/10.22331/q-2021-08-09-522
http://dx.doi.org/10.22331/q-2022-10-25-847
http://dx.doi.org/10.22331/q-2022-10-25-847
https://www.frontiersin.org/articles/10.3389/frqst.2023.1134583
https://www.frontiersin.org/articles/10.3389/frqst.2023.1134583
http://dx.doi.org/10.1103/PhysRevA.92.012315
http://arxiv.org/abs/1709.07248
http://dx.doi.org/10.1103/PhysRevLett.124.210502
http://dx.doi.org/10.1103/PhysRevLett.124.210502
http://dx.doi.org/10.1103/PhysRevA.101.012123
http://dx.doi.org/10.1103/PhysRevA.101.012123
https://ieeexplore.ieee.org/document/9214470
https://ieeexplore.ieee.org/document/9214470
http://dx.doi.org/10.1103/PhysRevA.106.052410
http://dx.doi.org/10.1103/PhysRevA.106.052410
http://dx.doi.org/10.1103/PhysRevE.106.014114
http://dx.doi.org/10.1103/PhysRevE.106.014114


7

[27] Yan Wang, Ze-Yan Hao, Jia-Kun Li, Zheng-Hao Liu, Kai Sun,
Jin-Shi Xu, Chuan-Feng Li, and Guang-Can Guo, “Observa-
tion of non-Markovian evolution of Einstein-Podolsky-Rosen
steering,” Physical Review Letters 130, 200202 (2023).

[28] Junjing Xing, Tianfeng Feng, Zhaobing Fan, Haitao Ma, Kishor
Bharti, Dax Enshan Koh, and Yunlong Xiao, “Fundamen-
tal limitations on communication over a quantum network,”
(2023), arXiv:2306.04983 [quant-ph].

[29] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio, “Entan-
glement and non-Markovianity of quantum evolutions,” Physi-
cal Review Letters 105, 050403 (2010).

[30] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo, “Mea-
sure for the degree of non-Markovian behavior of quantum pro-
cesses in open systems,” Physical Review Letters 103, 210401
(2009).

[31] Leandro Aolita, Fernando de Melo, and Luiz Davidovich,
“Open-system dynamics of entanglement:a key issues review,”
Reports on Progress in Physics 78, 042001 (2015).

[32] Chris Sutherland, Todd A. Brun, and Daniel A. Lidar, “Non-
Markovianity of the post-Markovian master equation,” Physical
Review A 98, 042119 (2018).

[33] Simon Einsiedler, Andreas Ketterer, and Heinz-Peter Breuer,
“Non-Markovianity of quantum Brownian motion,” Physical
Review A 102, 022228 (2020).

[34] Nina Megier, Andrea Smirne, and Bassano Vacchini, “Entropic
bounds on information backflow,” Physical Review Letters 127,
030401 (2021).

[35] Federico Settimo, Heinz-Peter Breuer, and Bassano Vac-
chini, “Entropic and trace-distance-based measures of non-
Markovianity,” Physical Review A 106, 042212 (2022).

[36] Jonathan Brugger, Christoph Dittel, and Andreas Buchleitner,
“Many-body quantum non-Markovianity,” Physical Review Re-
search 5, 023060 (2023).

[37] Bassano Vacchini, “Comparison of distances and entropic dis-
tinguishability quantifiers for the detection of memory ef-
fects,” International Journal of Quantum Information , 2450007
(2024).

[38] Shunlong Luo, Shuangshuang Fu, and Hongting Song, “Quan-
tifying non-Markovianity via correlations,” Physical Review A
86, 044101 (2012).

[39] Zhiqiang Huang and Xiao-Kan Guo, “Quantifying non-
Markovianity via conditional mutual information,” Physical
Review A 104, 032212 (2021).
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Appendix A: Convexity of non-causal revivals

Let’s consider two processes, (a) and (b), in the three-time snapshot.

Φ+RQ ⊗ γ
(a)
E

UQE
−−−→

t1
σ(a)

RQ′E′
VQ′E′

−−−−→
t2
τ(a)

RQ′′E′′ and Φ+RQ ⊗ γ
(b)
E

UQE
−−−→

t1
σ(b)

RQ′E′
VQ′E′

−−−−→
t2
τ(b)

RQ′′E′′ . (S.1)

At the time t0, the initial states have QCMI equal to zero for both processes. Therefore, for arbitrary unitary operations UQE ,
there is no information revival. Further, it is assumed that in the second step, i.e., evolution t1 → t2 governed by VQ′E′ , there is
no information revival, i.e., I(R; Q′′)(a)

2 ≤ I(R; Q′)(a)
1 and I(R; Q′′)(b)

2 ≤ I(R; Q′)(b)
1 .

Now consider a probabilistic (convex) mixture of these two processes,

Φ+RQ ⊗

b∑
x=a

px γ
(a)
E

UQE
−−−→

t1
σRQ′E′ =

b∑
x=a

px σ
(x)
RQ′E′

VQ′E′

−−−−→
t2
τRQ′′E′′ =

b∑
x=a

px τ
(x)
RQ′′E′′ , (S.2)

where 1 ≥ px ≥ 0 are the probabilities and
∑b

x=a px = 1. Clearly, the first step, due to UQE , does not result in any information
revival. However, there may be an information revival in the second step (t1 → t2), and this is because the QCMI of the state
σRQ′E′ may not be zero, i.e., I(R; E′|Q′)1 , 0, in general. Let us consider an inert extension σRQ′E′F of the state σRQ′E′ =

TrF[σRQ′E′F], given by

σRQ′E′F =

b∑
x=a

px |x⟩⟨x|F ⊗ σ
(x)
RQ′E′ , (S.3)

where the extension system F acts solely as a classical register. The evolution (t1 → t2) with the unitary VQ′E′ leads to σRQ′E′F →

τRQ′′E′′F . Now it can be easily seen that

I(R; Q′′F)2 − I(R; Q′F)1 =

b∑
x=a

px

(
I(R; Q′′)(x)

2 − I(R; Q′′)(x)
1

)
≤ 0. (S.4)

Thus, there can only be non-causal revival (no genuine revival) in the step (t1 → t2) due to the unitary VQ′E′ .
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