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We propose a systematic wave function based approach to construct topological invariants for
families of lattice systems that are short-range entangled using local parameter spaces. This
construction is particularly suitable when given a family of tensor networks that can be viewed as
the ground states of d dimensional lattice systems, for which we construct the closed (d+ 2)-form
higher Berry curvature, which is a generalization of the well known 2-form Berry curvature. Such
(d+ 2)-form higher Berry curvature characterizes a flow of (d+ 1)-form higher Berry curvature in
the system. Our construction is equally suitable for constructing other higher pumps, such as the
(higher) Thouless pump in the presence of a global on-site U(1) symmetry, which corresponds to a
closed d-form. The cohomology classes of such higher differential forms are topological invariants
and are expected to be quantized for short-range entangled states. We illustrate our construction
with exactly solvable lattice models that are in nontrivial higher Berry classes in d = 2.
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I. INTRODUCTION AND RESULTS

A. Introduction

The Berry phase, which arises as a generic feature of the
evolution of a quantum state, has permeated all branches
of physics ever since its discovery. As Berry showed1,
the Berry phase along a loop in the parameter space can
be evaluated by integrating the 2-form Berry curvature
over a surface enclosed this loop. The integral of Berry
curvature over a closed manifold is known to give rise to a
quantized topological invariant, the Chern number, which
plays an essential role in many topological phenomena
such as the integer quantum Hall effect2.

Recently, initiated by Kitaev’s proposal3, the many-
body generalization of Berry curvature of parameterized
quantum systems has seen rapid developments.4–25. In
3, Kitaev outlined a construction of this higher Berry
curvatures for families of Euclidean lattice systems in
general dimensions. The main motivation is to use these
higher Berry curvatures and the corresponding topologi-
cal invariants to probe the topology of space of gapped
systems26–28. Later in 4, based on a parameterized fam-
ily of gapped Hamiltonians, Kapustin and Spodyneiko
gave an explicit construction of higher Berry curvatures
in general dimensions – the Berry curvature 2-form was
generalized to higher Berry curvature (d + 2)-form for
gapped systems in d spatial dimensions.

Physically, such (d+ 2) form higher Berry curvatures
characterize a pump of (d + 1) form higher Berry
curvatures12. For gapped systems, the integral of the
higher Berry curvature over a (d + 2) dimensional
parameter space X gives an invariant, the so-called
higher Berry invariant, that is believed to be quantized
for short range entangled systems and take values in
Hd+2(X,Z), generalizing the Chern number to gapped
systems in d ≥ 1 dimensions. When there is a global
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continuous symmetry G, a similar construction based on
the parameterized Hamiltonians gives rise to invariants
of gapped symmetric systems in d ≥ 1 dimensions5. For
example, in the case of G = U(1), one can generalize the
well-known Thouless pump in d = 129 to higher Thouless
pumps in d > 15.

The higher Berry curvatures and higher Thouless
pumps were studied systematically in the framework of
operator algebras14. Although one needs a parent Hamil-
tonian to define the higher Berry curvature it was shown
that the higher Berry invariants depend only on the fam-
ily of ground states, but not the choice of local parent
Hamiltonians.

A natural question can be asked: Can one define the
higher Berry curvature directly from the wave function
without using invoking a parent Hamiltonian? In 30
we answer this question using Matrix product states in
d = 1 and in this work we, we answer the question by
providing a systematic way of constructing the higher
Berry curvatures for locally parameterized states, such
as tensor network states where each tensor can be locally
parameterized31, in general dimensions. It is known that
tensor network states can represent the ground states
of a large class of quantum many-body systems. For
example, in d = 1, any ground state of a gapped quantum
spin chain can be represented efficiently using the matrix
product states (MPS) – this has led to the classification
of all possible symmetry protected topological phases for
d = 1 quantum spin systems32–34. In this work, based
on the family of locally parameterized states, we give an
explicit construction of the (d + 2) form higher Berry
curvature in a d dimensional system. When there is a
global U(1) symmetry, we also construct the closed d-form
in a d dimensional system, which characterizes the higher
Thouless pump5.

By considering jointly the space of differential forms
and simplex chains on a lattice, the expanded continuity
equation for higher Berry curvature becomes a collection
of descent equations relating a p chain q form to a p+ 1
chain q+1 form, which also appear in 3 and 4. Our novel
technical insight is that these can be solved explicitly
for arbitrary local parameter spaces, which means that
we can define the higher Berry curvature and higher
Thouless pumps in arbitrary dimensions simply in terms
of the wavefunction and these local parameter spaces.
The explicit solution using Hamiltonian densities found
in 4 is a special case of this construction.

We also want to highlight recent efforts in extracting
the higher Berry invariant from d = 1 translationally-
invariant or uniform matrix product states (uMPS). In 21
and 22, the authors study the higher Berry invariant by
analyzing the gerbe structure of the parameterized family
of d = 1 uMPS, which was used in 23, to numerically
calculate the associated invariant. The relation between
these structures and our construction is explored in30.
It would be interesting to see how such structures can
be generalized to the non-translationally invariant and

higher dimensional wave function ansätze considered here.

B. Main results

In this paper, we find a novel wavefunction based con-
struction for the (d+2)-form higher Berry curvatures in d
dimensional systems, as well as the d-form for higher Thou-
less pumps in d dimensional systems with a global U(1)
symmetry, using local parameter spaces. See Eqs.(24),
(25), and Eqs.(26), (27), respectively. Our results can be
straightfowardly applied to tensor network states includ-
ing the d = 1 MPS results in Ref.30.

Our approach to construct higher Berry curvatures and
higher Thouless pumps requires the following data:

1. A coarse graining of a spatial manifold M called
the lattice Λ ⊂M .

2. A collection of parameter spaces Xp associated to
each point p ∈ Λ, such that the total parameter
space is a subset of their product X ⊆ ∏

pXp. We
only care about the germ of the parameter space
inside this product space.

3. A local fluctuation in a parameter space has an
exponentially decaying impact on the observables
of interest.

If q(n) corresponds to the n-form (higher) charge of a con-
served quantity, we can construct the associated (higher)
flow, and hence for non-compact M , we find topological
invariants associated with the transport of the (higher)
charge to boundaries at infinity. In particular, a many-
body Hilbert space with a local factorisation H = ⊗pHp

and an associated family of gapped ground states can
furnish such data in different ways. By taking the local
observables to be the 2-form local Berry curvature F (2),
we construct the higher Berry curvature, while if the local
observable is a 0-form U(1) charge, we obtain the (higher)
Thouless pump.

The rest of this paper is organized as follows: In Sec.II,
we give a brief review of the construction of higher Berry
curvature from d = 1 MPS, and introduce the bulk-
boundary correspondence that will be useful in study-
ing higher dimensional systems. In Sec.III, we generalize
our construction to higher Berry curvatures and higher
Thouless pumps in arbitrary dimensions. In Sec.IV, we
illustrate our construction with d = 2 examples. Then we
conclude and discuss several future directions in Sec.V.
There are also several appendices. In appendix A we illus-
trate that our approach is not intrinsic to tensor network
states, or Hamiltonians. In particular we describe how the
exactly solvable model considered in Sec.II gives the same
higher Berry curvature when parameterised by a family of
local unitaries. In appendix B, we discuss the connection
between the present approach and that in Kapustin and
Spodeneiko4, which can be viewed as choosing the local
parameter space to be the space of coupling constants.
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We also give details on higher Thouless pumps in exactly
solvable lattice models in appendix C.

II. HIGHER BERRY CURVATURES FROM
MATRIX PRODUCT STATES

Before we introduce our construction of higher Berry
curvatures in general dimensions, it is helpful to give a
brief review of the construction in one dimension30 to
be self contained, and since the physical picture is more
transparent. More details can be found in Ref.30.

A. Brief review of bulk formula for higher Berry
curvatures from MPS

Higher Berry curvature is associated with the flow of
Berry curvature between boundaries at infinity in a lattice
system12. In Ref.30, we make this connection clearly at
the level of the wave function in one dimensional systems,
by utilizing local parameter spaces, which is to say, that
a family of wave functions will often have a notion of a
local variation. We briefly review the main results of Ref.
30 here.

To build up to the d = 1 system of an infinite length,
consider a finite subset of the one-dimensional lattice,
consisting of N sites, such that the total Hilbert space
H = ⊗N

p=1Hp, where Hp is the local Hilbert space at site
p with a basis |sp⟩. We consider a parameterized family
of canonical matrix product states which can be viewed
as the ground states of gapped systems:

|ψ⟩ =
∑

{ sp }

As1
1 · · ·AsN

N |s1 · · · sN ⟩ (1)

= A1 A2 AN

s1 s2 sN

· · ·

· · ·

(2)

where we have used the conventional tensor network con-
traction diagrams (The reader is directed towards the
reviews 31 and 35 for details on MPS). We consider this
family of MPS to be functions X → H, with associated
exterior derivatives d =

∑
p dp. Here the local derivative

dp is just to vary the parameters in the tensor at site p.
The total Berry curvature for |ψ⟩ is the well known

differential two-form Ω(2) = − Im ⟨dψ|dψ⟩ = dA, where
A = − Im ⟨ψ|dψ⟩ is the one-form Berry connection, and
we always take the state |ψ⟩ to be normalized. As dis-

cussed in Ref.30, we proposed to take F
(2)
p = dpA as

the definition of the Berry curvature at site p, and it is

obvious that Ω(2) =
∑

p F
(2)
p . In general, because there

is entanglement between site p and the rest of the sys-

tem, F
(2)
p is not a closed two-form. It needs not have a

quantized integral over a closed 2-manifold of parameters

X, i.e.,
∫
X
F

(2)
p /∈ 2πZ, and further consider deforming X

into some other two manifold Y , then
∫
X
F

(2)
p ̸=

∫
Y
F

(2)
p .

In particular if Z is a 3-manifold with X and Y as bound-

aries, then
∫
X−Y

F
(2)
p =

∫
Z
dF

(2)
p ̸= 0 by Stokes theorem.

Thus the Berry curvature of a point can change, but since

the total Berry curvature
∑

p F
(2)
p is closed, the way for

the Berry curvature to change at a point is if it flows
from another. Thus we define the flow p → q of Berry

curvature as F
(3)
pq , which satisfies the continuity equation

∑

p

F (3)
pq = dF (2)

q . (3)

Using the local variation, a solution to this continuity
equation is

F (3)
pq = dpF

(2)
q = dpdqA. (4)

Any other solution is related to this one by the addition

of a flow that is a pure circulation - that is if F̃
(3)
pq is

a solution, then F̃
(3)
pq − F

(3)
pq =

∑
r Cpqr, for some three-

form Cpqr which is completely anti symmetric in p, q, r.
This ambiguity does not modify the invariants we are
interested in.

Next, to define the flow of Berry curvature from the left
boundary to the right boundary, we should pick a middle
of the system say some point a, then the higher Berry
curvature which characterizes this flow can be written as

Ω(3) =
∑

p<a<q

F (3)
pq . (5)

For a gapped state, it is expected that F
(3)
pq decays ex-

ponentially as a function of the distance |p − q|. From
this point of view, Ω(3) can be viewed as a local quantity
near x = a that captures the flow of Berry curvature,
and the definition in (5) works well for an infinite 1d sys-
tem. Because of this local property, Ω(3) may be different
depending on the choice of a. However, the integral of
Ω(3) over a closed 3-manifold X is a quantized topological
invariant, i.e.,

∫

X

Ω(3) ∈ 2πZ. (6)

This quantization property has been proved for d = 1
uMPS in Ref.30. The underlying physics of this topologi-
cal invariant corresponds to the Chern number pump12,
which is an analogy of the well known Thouless charge
pump in 1d. As illustrated in Ref.30, the formula in (5) in
terms of MPS is suitable for both analytic and numerical
calculations in a general lattice system.
It is emphasized that the above construction is not

limited to a tensor network state, where one can vary
the parameters in a local tensor. One can consider more
general states that are locally parameterized. See, e.g.,
a concrete example in appendix A, where the family of
states are related by local unitary transformations.

Furthermore, the Higher Berry curvature Ω(3) in (5) is
related to the Schmidt decomposition across a cut between
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regions A and B, |ψ⟩ =
∑

α cα |α⟩[A] |α⟩[B]. Using left

canonical MPS it takes the simple form30

Ω(3) = Im
∑

α

dc2α ⟨dα|dα⟩[A] , (7)

where the tensor network provides a regularisation scheme
to make sense of this formula that naively consists of
infrared divergent terms30.

B. Bulk boundary correspondence

We can also study the higher Berry invariant via the
bulk boundary correspondence, as in Ref.12. This discus-
sion will be useful for our later study of higher dimensional
systems. Here in d = 1, by introducing a fictitious bound-
ary, the higher Berry invariant will equal the accumulated
Chern number of this boundary.

To illustrate this bulk-boundary correspondence, we
consider the exactly solvable model as studied recently
in Refs.12, 22, and 30. Let Λ = Z be a d = 1 lattice
of spin 1/2 systems, with local Hilbert spaces Hp = C2.
We associate to each site Pauli matrices, and let |n⟩ be
a coherent state along the direction of n ∈ R3. Consider
the parameter space X = S3 embedded into R4 as (w, w4)
satisfying w2 + w2

4 = 1, where w = (w1, w2, w3). While
we do not require a Hamiltonian to compute the higher
Berry curvature, to explain how we arrive at our particular
choice of wave function, we consider the ground state of
a nearest neighbour Hamiltonian

H1d(w) =
∑

p

Honsite
p (w) +H int

p,p+1(w), (8)

where the onsite term is a single-spin term that takes the
form of a Zeeman coupling with alternating sign

Honsite
p (w) = (−1)pw · σp, (9)

and the interaction term is a two-spin term whose coeffi-
cient depends on w4:

H int
p,p+1 = gp(w4)σp · σp+1. (10)

The coupling constant takes the form

gp(w4) =





w4, p ∈ 2Z+ 1 and w4 > 0

−w4, p ∈ 2Z and w4 < 0

0, otherwise

. (11)

Note that w2 = 1− w2
4, so the onsite coupling vanishes

at the poles w4 = ±1. Here the ground state forms
one of the two spin singlet coverings of Z (depending
on which pole), and for all parameters the Hamiltonian
completely dimerizes and is gapped. The Hamiltonian

can be visualized for different values of w4 ∈ [−1, 1] as:

0 < w4 < 1: + − + − + − + − +

w4 = 0: + − + − + − + − +

−1 < w4 < 0: + − + − + − + − +

•••••••••w4 = −1:

•••••••••w4 = 1:

(12)

We use ± to represent the sign of the Zeeman coupling
at this site, while • represents the case of vanishing Zee-
man coupling. Interaction terms are represented by solid
lines joining pairs of lattice sites. It is convenient to
parameterise X with hyperspherical coordinates:

w1 = sin(α) sin(θ) cos(ϕ), w2 = sin(α) sin(θ) sin(ϕ),

w3 = sin(α) cos(θ), w4 = cos(α),

where 0 ≤ α, θ ≤ π, 0 ≤ ϕ ≤ 2π. By applying the MPS
formula of our higher Berry curvature in (5) and choosing
x = a along the dashed line in (12), it was found that30

Ω(3) =
1

2
cosα sin θ dα ∧ dθ ∧ dϕ, (13)

for 0 ≤ α ≤ π/2, and Ω(3) = 0 otherwise. One can check
explicitly that

∫
X=S3 Ω

(3) = 2π.

Now we introduce a physical boundary at a point N ∈
2Z, so that the system is defined on the lattice Z≤N ,
and consider the same Hamiltonian (8). The flow of

Berry curvature F
(3)
pq decays exponentially in the distance

|p − q|. As such, taking a cut a deep in the bulk, the
higher Berry invariant defined on the whole lattice Z will
differ exponentially little from the one defined on this
truncated system. From equation (3), and noting that
the edge defined as a < p ≤ N is finite, we can define

Ω(3) = d
∑

p>a

F (2)
p = dω(2) (14)

where ω(2) =
∑

p>a F
(2)
p is the boundary berry curvature.

In the exactly solvable model, if a ∈ 2Z+ 1/2, then the
boundary is decoupled when −1 ≤ w4 ≤ 0. Thus we find

ω(2) =

{
1
2 sinα sin θ dθ ∧ dϕ, 0 ≤ w4 ≤ 1,
1
2 sin θ dθ ∧ dϕ, −1 ≤ w4 ≤ 0,

(15)

which is of course just the Schmidt weighted Berry curva-
ture of the boundary. Because the higher Berry curvature
of the model is nontrivial, ω(2) cannot be well defined
over the whole of X = S3, which manifests as a gapless
Weyl point at w4 = −1. If we deform the model by taking
the boundary parameter space to exclude this Weyl point
Xbdy = D(3) = S3 \ {w4 = −1 }, the Berry invariant will
be ∫

S3
bulk

Ω
(3)
bulk =

∫

D3

Ω(3) =

∫

S2

ω(2) = 2π (16)
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where S2 = S3 ∩ {w4 = 1 + 0+ }. An interesting way of
computing the Higher Berry curvature in general is by
the clutching construction12. It is not possible to have
a fully gapped boundary for any particular truncation.
However, considering X as a union of contractible pa-
rameter spaces Uα, we can truncate differently for each
contractible space Uα, and reconstruct the Berry invariant
from the Berry curvature of the intersections Uα ∩Uβ . In
particular, for the model we can consider the two hemi-
spheres S3 = D3

N ∪D3
S where D3

N = {w ∈ S3 | w4 ≥ 0 }
and DS = {w ∈ S3 | w4 ≤ 0 }. Then the higher Berry
invariant will correspond to the difference in the edge

curvature ω
(2)
N/S on the equator D3

N ∩D3
S = S2. As before,

on the northern hemisphere we can truncate at site N ,
while for the southern hemisphere we truncate at site
N − 1. Pictorially the two MPS are

D3
N : · · · A A A A

sp sp+1 sN−1 sN

· · ·

· · ·

D3
S : · · · A A A

sp sp+1 sN−1

· · ·

· · ·

(17)

Each MPS is a fully gapped state, and there is no ob-

struction to defining ω
(2)
N/S globally on each chart. In

particular it is clear that ω
(2)
N =

∑
a<p≤N F

(2)
p while

ω
(2)
S =

∑
a<p≤N−1 F

(2)
p so on the equator their differ-

ence is just ω
(2)
N − ω

(2)
S = F

(2)
N = 1

2 sin θdθ ∧ dϕ. Then
the higher Berry invariant can be calculated using Stokes
theorem

∫

S3

Ω(3) =

∫

D3
N∪D3

S

Ω(3) =

∫

S2

ω
(2)
N − ω

(2)
S = 2π (18)

The 2-form ω(2) can be considered a 2-connection for the
higher Berry curvature over the charts of the parameter
space.
This bulk-boundary correspondence will be useful in

studying the higher dimensional systems, as we will see
later in Sec.IV.

III. HIGHER BERRY CURVATURE AND
THOULESS PUMP FOR LOCALLY

PARAMETERISED STATES

In this section, we introduce a systematic way of con-
structing higher Berry curvatures and higher Thouless
pumps from local parameter spaces in general dimensions
with any notion of local parameter spaces.

A. General formalism

We consider a gapped system living on a spatial d-
dimensional lattice Λ, which is a discrete subset of a

spatial manifold M with a metric g, such that Λ has
no accumulation points, and there is a distance r such
that any point in M is at most a distance r from some
point in Λ. For simplicity, one may take M = Rd and
Λ = Zd, although we are not limited to this choice. We
associate a finite dimensional local Hilbert space to each
point p ∈ Λ which we denote Hp, along with a manifold
of local parameters Xp. The total Hilbert space is the
tensor product H = ⊗p∈ΛHp, and the total parameter
space is a submanifold of the Cartesian product of local
parameter spaces X ⊆ ∏

p∈ΛXp. The gapped condition
is intwined with the notion of local parameter space. In
particular there is a correlation length ξ such that for
any local observable of interest Op0···pn on sites p0 · · · pn
obeys some cluster decomposition with vanishing vacuum
value, so that Op0···pn

= O(exp(−maxijg(pi, pj)/ξ)) (note
if Op0···pn

is a differential form, we imagine that this holds
after integrating over the parameter manifold). Then the
local variations in parameters at any site q, which we
denote with the exterior derivative dq, will cause a change
dqOp0···pn

which we require to again have this finite cor-
relation length. We could think of these local parameter
spaces as considering a quantum as parameterized over
not just over some global external variable, but rather a
classical background field, whose response is gapped.

We seek to keep track of two types of information,
the spatial geometry of the lattice Λ, and the geome-
try on the parameter space X. For the latter, the no-
tion of differential forms is well suited, as the parameter
space can be taken to be smooth. We assume differen-
tial forms are familiar to the audience. For the spatial
geometry, we need to reckon with the discrete nature
of the lattice, and instead follow Refs. 4, 5, and 14
and resort to the notion of oriented simplexes, see fig-
ure 1 for an illustration of the data we require. Briefly,
a coarse n-simplex chain is the linear space which is
spanned by all of the oriented convex hulls of n + 1
points p0 · · · pn, denoted [p0 · · · pn]. To any simplex we
assign a distance from the diagonal to be dist[p0 · · · pn] =
maxijg(pi, pj). We are interested in chains with finite cor-
relation length, where the coefficients of the chain cp0···pn

decay as cp0···pn = O (exp(−dist[p0 · · · pn]/ξ)), which are
also called controlled36. There is a boundary map ∂
mapping an n chain to an n − 1 chain, ∂[p0 · · · pn] =∑

l(−)l[p0 · · · p̂l · · · pn], such that ∂2 = 0, so the chains
give rise to a chain complex C•(Λ). The dual vector space
is spanned by the dual or cosimplexes (p0 · · · pn) and have
coboundary δ. A cocontrolled cosimplex chain must have
only a finite number of non-zero terms within any radius
of the diagonal, and so the corresponding cochain complex
C•(Λ) for any Λ ⊆ Rd is concentrated in the d’th degree,
and is generated e.g. by the conical partition b of Λ into
d + 1 regions Λi, in particular b =

∑
pi∈Λi

[p0 · · · pn]14.
We combine the differential forms on X corresponding

to a “conserved” observable q
(n)
p0···pl , into finitely corre-

lated simplex-chain (note that we use Einstein summa-

tion convention) q(n) = 1
(l+1)!q

(n)
p0···pl [p0 · · · pl] that satisfies
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⟳
[pqr]

[ps]

p q

r

s

Lattice Λ ⊆ Rd

Local parameter space Xq

Local Hilbert space Hq

|ψq⟩

FIG. 1. A locally parameterised system on a lattice Λ means we associate to each q ∈ Λ both a Hilbert space and a local space of
parameters. Observables live on simplexes of the lattice, consisting of points [p], flows [ps] between points p and s, circulations
[pqr] p → q → r and so on. Note that we do not only consider simplexes which are nearest neighbours on a lattice.

d∂q(n) = 0. The continuity equation relating the change
in q(n) to the accumulation of a current q(n+1) becomes

∂q(n+1) = dq(n). (19)

This is the descent equation, and by iterating we can find
all higher charges q(>n) related to q(n). By contracting
any higher charge q(m) with a closed, non-exact cochain
b, we find a closed non-exact differential form ⟨q(m), b⟩ on
X and therefore a topological invariant of the family of
d-dimensional system when integrated. The choice of b
will shift the differential form by at most an exact form,
and hence not modify the topological invariant.

B. Higher Berry curvature and higher Thouless
pump

By solving the descent equations (19) we can obtain
the flow of Berry curvature, and hence the higher Berry
curvature, and this task is greatly facilitated by the use
of local parameter spaces. Such a solution is necessarily
non-unique, since if q(n+1) solves it, then we may add
the boundary of any chain and obtain a new solution
q(n+1) + ∂[· · · ]. Varying only the parameters at a single
site p gives us a collection of exterior derivative operators
dp, such that d =

∑
p∈Λ dp. We would like these to act

on the space of simplex chain valued differential forms.
We define the simplex-exterior derivative

d̂ :
1

(n+ 1)!
cp0···pn [p0 · · · pn] 7→

1

(n+ 1)!
dqcp0···pn [qp0 · · · pn].

(20)

A pictorial interpretation of this operation can be seen
in figure 2. To understand this operation, consider the

case of the charge 0-chain q = qp[p]. The simplex-exterior

derivative is a current d̂q = 1
2 (dpqq − dqqp)[pq]. This is

exactly the solution to the question the descent equation
poses, if the total charge Q =

∑
p qp is conserved. Indeed

we can verify that ∂(d̂q) = dq − dp(Q)[p], so if the total
charge cannot be modified by local parameter variations,

then d̂q solves the descent equation of q. The simplex-
exterior can be viewed as a factorisation of the total
exterior derivative d = ∂d̂ + d̂∂. It is straightforward to
check that

∂
(
d̂nq

)
= ndd̂n−1q + (−1)nd̂n∂q. (21)

Recall the descent equation (19), it seems as if, ignoring
this second term, it would be possible to solve the descent

equation for q(n) simply by applying d̂. A full solution
requires us to think about this second term however, but

it is most often the case that d̂∂q ∝ dq. In particular,

if q(k) obeys d̂∂q(k) = −αdq(k), then a solution to the
descent equations is simply

q(n+k) =
α!

(n+ α)!
d̂nq(k) (22)

for any n. The gapped condition on the family of states
can be succinctly phrased as the statement that if q(k)

is a local operator with finite correlation length, so too

is d̂q(k+1). It is possible to spoil this property with a
bad choice of parameter space, but for many physically
reasonable choices, we expect this property to hold, and it
can in any case be checked a posteriori as we did for MPS
in30. Such reasonable choices likely include some suitably
restricted tensor networks, a finite depth unitary prepar-
ing our state from a resource state, sequential quantum
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Total parameter space X ⊆
∏

p

Xp

Many Body
Hilbert Space

H =
⊗

p

Hp

|ψ⟩

p3

p2

p1

p0

p4

(Flow of) Observables

on simplexes q 7→ d̂q
p0

p1

p2

p3

p4

p5
dp4

dp4
|ψ⟩

FIG. 2. Graphical illustration of the action of d̂ defined in equation (20). For each site in the lattice Λ we have a parameter
space Xp, and by specifying the parameter value at each point, which is itself a point in X ⊆

∏
p Xp, we find a short-range

entangled wave function. From the wave function we can calculate observables, whether they be local to a point in the lattice,
measuring the flow between two such points, a circulation etc., such observables take values that are naturally associated with
(linear combinations of) simplexes. The action of d̂ is to consider the variation of this observable with respect to local parameters
at all points. In particular, in this illustration we consider variations with respect to some point p4. This changes the wave
function, and hence changes the value of the observable dp4q. We associate the rate of change with an observable living on a
new simplex, which we obtain by appending the point p4.

circuits37, or letting the local parameter space Xp be the
coupling constants on the terms in a Hamiltonian which
are finitely supported around p, in which case we recover
the results of Ref. 4, see appendix B.

Focusing on the higher Berry curvature, if we start with
the 1-form Berry connection

F (1) = A = − Im ⟨ψ|dψ⟩ , (23)

the higher Berry flow is

F (n+2) = − 1

(n+ 1)!
d̂n+1 Im ⟨ψ|dψ⟩ (24)

and by specifying a nontrivial n-cochain b, the higher
Berry curvature in a d dimensional system becomes

Ω(d+2) = ⟨F (d+2), b⟩ . (25)

In d dimensions, the higher Berry curvature is a flow of
(d− 1)-dimensional higher Berry curvature. See, e.g., a
detailed discussion on this physical picture in Ref.12. We
remark in passing the curious fact that the formal sum

of all higher Berry flows is the formal exponential of d̂

acting on the connection
∑∞

n=1 F
(n) = ed̂A.

We could equally well descend from an Abelian symme-
try charge, with the requirement that the local variations
should also preserve the symmetry. For a U(1) symmetry
this leads to the Thouless pump and higher dimensional
generalisations5. In particular, let Q̂p be the local U(1)
charge operator at site p, from which the total charge
operator is Q̂ =

∑
p Q̂p. For any state |ψ⟩ we define the

charge at site p as the expectation value Qp = ⟨ψ|Q̂p|ψ⟩.
The chain representing this charge distribution is the
0-form Q(0) =

∑
pQp[p]. By solving the descent equa-

tion we define the n-flow of charge Q(n), and for states
with local parameter spaces, where the local parameter
variations preserve the total charge, we have

Q(n) =
1

n!
d̂nQ(0) . (26)

On M = Rd, by choosing a closed and non-exact co-chain
b, we can define the closed d-form in a d dimensional
system as

Q̃(d) = ⟨Q(d), b⟩ (27)

which characterizes the flow of charge between boundaries
at infinity for d = 1, and the flow of the d − 1 higher
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charge between boundaries at infinity for d > 1. This
is a topological invariant when integrated over a closed
d-manifold of parameters.
A complementary perspective to these descent equa-

tions is to consider extending a quantum theory on a space-
time Mspacetime by a parameter space X, and figure out
what higher and lower form symmetry currents7,8,38–43

mean in this context. A conserved quantity q̃ of the
original theory is a differential d− k-form satisfying the
conservation law dM q̃ = 0, and so by an extension we
seek to find a differential d− k form q on Mspacetime ×X
satisfying (dM + dX)q = 0, such that when q is con-
centrated on Mspacetime it equals q̃ for that particular
value of parameters. By considering the part of q con-
centrated on the parameter space X, the corresponding
co-homology class [q] corresponds to a (higher) pump
invariant of the system. In the case where there is a
k = 0-form U(1) symmetry, q̃ is just the ordinary d-form
charge density. In d = 1, the corresponding class [q] on
parameter space counts the amount of charge transported
across a fixed point in space, as a parameter is cycled
this is the Thouless pump invariant. Likewise for higher
Thouless pumps. From this perspective, the higher Berry
curvature is like a k = −2-form U(1) symmetry current,
which when concentrated to X results in an invariant in
degree d+ 2 of the co-homology of X that is a (higher)
pump of Berry curvature. Working on the spatial lattice
Λ, and considering static configurations, the differential
forms on M are replaced by chains, and dM is replaced
by −∂. A k-chain corresponds to a d − k-form on M ,
which explains the degree counting in the previous sec-
tion. Furthermore, the connections with pumps become
clear, since a d-chain, corresponds to a differential 0-form
on space, i.e. something that assigns values to points.
For example with U(1) charge in d = 1, q(1) is a 1-chain
on Λ and a 1-form on X. This corresponds to the usual
current part of charge density, except we have replaced
time with parameter space. Thus contracting it against

a 1-cochain corresponds to picking a spatial point a and
measuring just the current at this point. Analogously we
obtain circulations etc. about a point for the d > 1 case.

C. Higher Berry curvatures for tensor networks

Clearly applying the above construction to d = 1 Ma-
trix Product states results in exactly the higher Berry
curvature explored in section II (see also Ref.30 for de-
tails), but we can generalize. It is straightforward to
apply our formulas in (24) and (25) to higher dimensional
tensor network states with d ≥ 2. The contraction of
tensors which is necessary to compute the higher Berry
curvature is hard to perform due to the lack of canonical
forms in higher dimensional tensor networks. Therefore,
we do not have a compact version of diagram like those for
d = 1 MPS30. Nevertheless, let us give an illustration for
d = 2. For a family of d = 2 PEPSs, where the parmeter
space at a point p is just the space of tensors on this site
Ap. The 4-form higher Berry curvature is

Ω(4) = ⟨F (4), b⟩ =
∑

p∈A,q∈B,r∈C

F (4)
pqr, (28)

where the cochain b is chosen such that we have a conical
partition of the d = 2 lattice into three regions A, B,

and C (See (30) below). The 4-form F
(4)
pqr in (28) has the

explicit expression

F (4)
pqr = −dp dq dr Im⟨ψ|dψ⟩. (29)

Here |ψ⟩ is a d = 2 PEPS, and dp acts on the local tensor
at site p in the PEPS.
We can write down the sum of networks of transfer

tensors that give the higher Berry curvature in Eqs. (28)
and (29) graphically as follows:

Ω(4) = −
∑

p0∈Λ
pa∈A
pb∈B
pc∈C

Im

A

C

B

pa pb

pc

⋆
p0

, where •
p

=

Ap

Āp

(30)

Here the unmarked gray points • stand for the d = 2
transfer tensor EA

A (to compare with the 1d version in
Ref.30), the point marked ⋆ be the transfer tensor EdA

A ,
and the points marked • be the exterior derivative of

whatever transfer tensor would the there before (with the
ordering of exterior derivatives always being say the one on
p0 first, then pa, pb, and pc). Due to the lack of canonical
forms in d > 1 there is not generically an efficient way of
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contracting the network in (30). It will be interesting to
apply the recently developed isometric tensor network44,
which allows for highly efficient contraction of the tensor
network, to parameterized systems in higher dimensions.
Finally, we give several remarks on the higher Berry

curvatures constructed from tensor network states:
(i) It is obvious that the higher Berry curvature vanishes

for a constant family of tensor network states, i.e., states
that are independent of parameters in the parameter
space.
(ii) The higher Berry curvature is additive under the

stacking of families of states, or more precisely the tensor
product of two states, with the same underlying parameter
space.
(iii) As long as the tensor network states are short-

range entangled, one can argue that our higher Berry
curvatures give a quantized higher Berry invariant, by
following the argument in Ref.4 (see their Appendix A)
and using the descent equation in (19). The key property
is that the short-range entangled states (after stacking
with a suitable constant family of SRE states) can be
continuously deformed to a trivial product state. Then
one can relate the higher Berry invariant to the quantized
Chern number of a finite system.

(iv) While the gauge independence of our higher Berry
curvature for 1d canonical MPS has been studied in Ref.30,
we have not studied in detail the gauge structure of the
tensor network states in higher dimensions, and it is pos-
sible that for generic tensor network states this may spoil
the locality property we require of local parameter spaces,
but for (semi45) injective tensor networks we expect this
construction to be equivalent to the construction in Ref.4,
by a parent Hamiltonian construction.

IV. HIGHER BERRY CURVATURE
CALCULATION IN d = 2

In d ≥ 2 dimensions a direct calculation of the HBC
becomes more involved. In our PEPS formulation this
can be attributed to the more complicated contraction
structure of the network. Nevertheless, in this section, we
will construct a family of d = 2 lattice models using the
suspension construction12, which we will show belongs in
the higher Berry class using first the bulk-boundary corre-
spondence, before computing the higher Berry curvature
explicitly.

A. Suspension construction and bulk-boundary
correspondence

The suspension construction yields a system in the
nontrivial higher Berry class in d = 2 over S4, using
d = 1 systems in the nontrivial higher Berry class over
S3, in exactly the same way the Berry curvature pump in
d = 1 over S3 was obtained from nontrivial d = 0 systems
over S2. In particular embed S4 into R5 with coordinates
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R1

R4R3

R2

a

⇑ ⇓ ⇑⇑ ⇓ ⇑ ⇑ ⇓ ⇑

w5

w4

w4 < 0

w4 = 0

w4 > 0

w5 < 0 w5 = 0 w5 > 0

x1

x2

|ϕ⟩

FIG. 3. Illustration of d = 2 exactly solvable model over S4

with nontrivial higher Berry invariant. The ± signs indicate
the sign of the local Zeeman coupling of a spin at a given site,
while the lines connecting spins indicate entanglement. The
regions R1,2,3,4 are the four quadrants, and the higher Berry
curvature measures the circulation around the point a. The
state |ϕ⟩ corresponds to the 4-spin wave function that can be
tiled to obtain the full wave function when w4, w5 > 0.

w = (w, w4, w5) with w ∈ R3, such that w2+w2
4+w

2
5 = 1.

The lattice has sites x = (x1, x2) ∈ Λ = Z2, spin 1/2
Hilbert spaces at every x as before, with coherent states
along the direction n denoted |n⟩. At the equator w5 = 0
the system consists of Chern number pumps along the
x2 direction for each x1. These pumps alternative in
their flow, which in the concrete construction from Sec.II
corresponds to alternating their local magnetic field, see
figure 3 for an illustration of the system. Away from
w5 = 0, we deform the system by coupling each chain
with antiferromagnetic terms, such that for w5 < 0 we
couple the chains at x1 ∈ 2Z to the chains at x1 + 1,
while for w5 > 0 the coupling is between x1 ∈ 2Z and
x1 − 1. In particular when w5 = ±1, the system consists
entirely of spin singlet covering, with each singlet along
the x1 directions. A Hamiltonian for such a system can
be written

H2d(w) =
∑

x1∈Z
H1d,x1((−1)x1w, w4) +H int

x1,x1+1(w) (31)

here H1d,x1 is the Hamiltonian from (8) taking along
the x1 × Z line, and the interaction is H int

x1,x1+1(w) =
hx(w5)

∑
x2∈Z σx · σx+(1,0). We take hx(w5) =

d+(w5)Θ(w5)δx1∈2Z + d−(w5)Θ(−w5)δx1∈2Z+1, where
d+, d− vanish at w5 = 0, and are otherwise positive.
Their exact form is not important, as long as the gap
never closes, which can be achieved by e.g. d± = |w5|.
The d = 2 higher Berry curvature is the pump of a
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pump, and so is equal to the circulation of Berry curva-
ture current F (4) evaluated around plaquettes enclosing
a “core” at a ∈ Λ+ (1/2, 1/2). To properly capture the
circulation around a one can chose many equivalent ex-
pressions for ba, but for computational purposes we find
it most convenient to compose it of the properly anti-
symmetrized d = 1 boundaries, as opposed to the conical
choice mentioned before: let fpi = Θ(xi(p)− ai) be a step
function and define

ba = (fp1

1 − fp0

1 )(fp2

2 − fp1

2 )(p0p1p2) (32)

= δ

[
1

2
(fp0

1 + fp1

1 )(fp1

2 − fp0

2 )(p0p1)

]
= δb̃a (33)

where b̃a is a 1-cochain that is not cocontrolled in a
system without a boundary. Take regions Ri to be the
i’th quadrant centered at a, then bp0p1p2

a vanishes unless
all three point are in different regions. With this cochain,
the higher Berry curvature is

Ω(3) = ⟨F (4), ba⟩ (34)

where F (n) is defined by (24) for arbitrary n. We can
immediately see that our family has to be in the higher
Berry class, by imposing a spatial boundary on the right
side of the d = 2 system. That is, the system is defined
by retaining only those lattice sites with x1 ≤ N . In

our lattice model in (31), one can find that F
(4)
pqr is only

nonzero when p, q, r are near the point a. In a general
gapped ground state, we expect the locality of F (4) is still
true. Due to this locality of F (4) in our lattice model, the
higher Berry curvature Ω(4) is insensitive to the existence
of a boundary if we choose a deep in the bulk. Using the
existence of boundary, one can find

Ω(4) = d ⟨F (3), b̃a⟩ = dω(3). (35)

Noting that b̃p0p1
a is non-zero whenever x2(p0) and x2(p1)

lie on opposite sides of a2, and if x1(p0) > a1 or x1(p1) >
a1, we see that ω(3) is the 3-form boundary higher Berry
curvature, where the boundary consists of all lattice sites
with x1 > a1

12. When the boundary is decoupled from
the bulk, ω(3) is the closed 3-form we evaluated in section
II. However, ω(3) is not globally well defined, because
the boundary will become gapless for certain parameters.
To evaluate Ω(4), we therefore cover S4 with two charts
D4

N/S = {w ∈ S4,±w5 ≥ 0 }, with common boundary of

opposite orientation S3 = ±∂D4. On the two charts D4
N

and D4
S , we impose different boundaries, and consider

the two families of PEPS that correspond to the ground
states of H2d in (31) with a boundary imposed at x1 = N
and x1 = N − 1 (where N ∈ 2Z) respectively, as seen
in Fig.4. With this choice, the ground states are always

gapped, and ω
(3)
N/S in (35) are well defined on both D4

N

and D4
S . So we may evaluate

∫

S4

Ω(4) =

∫

S3

ω
(3)
N − ω

(3)
S . (36)

D4
N :

· · ·

· · ·

· · · A A

A A

A A

A A

A A

A A

x1 = N

D4
S :

· · ·

· · ·

· · · A

A

A

A A

A A

A A

x1

x2

x1 = N − 1

FIG. 4. Families of d = 2 PEPSs corresponding to the ground
states of d = 2 lattice models in (31) with a spatial boundary
terminated at layer x1 = N (top) and x1 = N − 1 (bottom),
where N ∈ 2Z. The blue dashed lines indicate the steps in the
functions f1(p) = Θ(x1(p)− a1) and f2(p) = Θ(x2(p)− a2).

Since the d = 2 system becomes decoupled d = 1
systems at w5 = 0, the PEPS becomes decoupled d = 1

MPS. One can find that ω
(3)
N − ω

(3)
S in (36) equals the

closed 3-form higher Berry curvature Ω(3) for the d = 1
MPS along x1 = N , and so the higher Berry class is as
promised

∫

S4

Ω(4) =

∫

S3

Ω(3) = 2π. (37)

One can repeat this procedure to even higher dimen-
sions. For the lattice models obtained from suspension
construction in Ref. 12, one can show that our higher
Berry curvatures constructed from tensor networks give
the same higher Berry invariants as those from Kapustin
and Spodyneiko’s construction4.

B. Bulk calculation

In addition to the bulk-boundary correspondence, it
is also possible to calculate the higher Berry curvature
directly in terms of the wave function, by using a PEPS
parameterization. In particular the unit cell is 2 × 2
sites, and we use tensors A, which act on a virtual space
with basis |·)), |1)), |2)), |3)), |4)). Since there can only
be higher Berry curvature when there is entanglement
between three of the regions Ri, we may focus on the
parameters w4, w5 > 0. Let i, j denote 1, 2, 3, 4, and we
can write the 2 × 2 unit cell of PEPS tensors in this
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parameter range in terms of MPS tensors

A12

s

i

j

·

· A21

s

·

·

i

j= = B̃s
ij

A22

s

j

·

·

i A11

s

·

i

j

·= = Bs
ij

Entanglement occurs only within this unit cell, and
so the total wave function is a product of plaquette
states |ϕ⟩, which are related to the MPS tensors as

⟨s11, s21, s22, s12|ϕ⟩ = TrBs11B̃s21Bs22B̃s12 . While one
could in principle solve the ground state for an particular
interpolating Hamiltonian, since the coupling between
pumps is arbitrary, we might as well just write down a
wave function over S4 which couples the pumps correctly.
We take the MPS to have the form of the vertical pump
stacked with a horizontal pump, i.e.

Bs =



⟨s|w⟩ ⟨s| −w⟩ 0
0 0 0
0 0 ⟨s|w⟩
0 0 ⟨s| −w⟩


 (38)

B̃s =



α ⟨s| −w⟩ 0 0 0
−β ⟨s|w⟩ 0 0 0

0 0 i1/2δ ⟨s| −w⟩ −i1/2γ ⟨s|w⟩




(39)

where α, β, γ, δ ∈ R≥0, and normalization requires 1 =
(α2 + β2)2 + (δ2 + γ2)2. Let ω(2) be half the solid angle
area element of the S2 corresponding to the directions w.
Using equation (30), and replacing the tripartition with
the cochain ba, the higher Berry curvature is

Ω(4) = Θ(w4)Θ(w5) ImTrEB
BdEB̃

B̃
EdB
dBdEB̃

B̃
(40)

= 2Θ(w4)Θ(w5)
[
dα2dβ2 + dγ2dδ2

]
ω(2). (41)

As mentioned before there are some arbitrariness present
in the choice of α, β, γ, δ, relating to the choice of in-
teraction for which this is the ground state. However,
no matter the choice, the higher Berry invariant is al-
ways 2π quantized, as can be checked by Stokes theo-
rem. In particular by the suspension construction, on the
boundary Γ1 : w4 = 0, w5 ∈ [0, 1] α = β = 0, while on
Γ2 : w5 = 0, w4 ∈ [0, 1] it holds that α2 = 1− β2 and α

goes from 1 to 1/
√
2, and finally on Γ3 : w = 0, we have

α2 = β2 and α goes from 1/
√
2 to 0. Similarly for γ, δ

with Γ1,2 swapped. Thus the integral becomes

∫
Ω(4) = 4π

[∫

w4,5>0

dα2dβ2 + dγ2dδ2

]

= 4π

[∫

Γ1+Γ2+Γ3

α2dβ2 + γ2dδ2
]

= 4π

[
0 +

3

8
− 1

8
+

3

8
+ 0− 1

8

]

= 2π.

To illustrate, we find the simplest choice is obtained by
defining ŵ5 = w5/

√
w2

4 + w2
5, ŵ4 = w4/

√
w2

4 + w2
5, and

letting

α =

√
1

2
ŵ4 (1 + |w|); β =

√
1

2
ŵ4 (1− |w|)

δ =

√
1

2
ŵ5 (1 + |w|); γ =

√
1

2
ŵ5 (1− |w|)

hence

Ω(4) = Θ(w4)Θ(w5) (−ŵ4dŵ4 + ŵ5dŵ5) d|w|ω(2), (42)

which can be easily computed directly, and as promised∫
S4 Ω

(4) =
∫
S2 ω

(2) = 2π.

V. DISCUSSION

In this work, we propose a systematic wavefunction
based approach to construct higher Berry curvatures and
higher Thouless pumps for a parametrized family of sys-
tems with local parameter spaces. We apply this ap-
proach to parametrized families of tensor networks that
correspond to the ground states of short-range entangled
systems. We construct (d+ 2)-form higher Berry curva-
tures for a d dimensional system, as well as d-form that
characterizes the higher Thouless pumps in a d dimen-
sional system with U(1) symmetry. Our formulas are
suitable for both analytical studies of exactly solvable
models and numerical studies of general lattice models,
and we illustrate these applications with several examples.

In the following, we mention several interesting future
problems. One future direction is to apply our approach to
the study of parametrized topologically ordered systems.
In this case, it is expected that the higher Berry invariants
as well as the higher Thouless pump may be fractional.
See, e.g., a recent study on this fractional phenomenon
in parametrized families of systems from the field theory
point of view13.

It is also desirable to give a rigorous proof of the quan-
tization of higher Berry curvatures in our construction.
For d = 1 MPS, the proof has been given for the trans-
lationally invariant MPS in Ref.30, where it was shown
that our higher Berry curvature corresponds to the curva-
ture for the gerbe in translationally invariant MPSs. In
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higher dimensions, one can argue that our higher Berry
curvatures for short-range entangled states also give a
quantized higher Berry invariant by following the same
argument in Ref.4, but a rigorous proof is still needed.
Another future direction is to study how to detect

higher Berry curvatures in experiments. Even for d = 1
parametrized systems, the expressions of higher Berry
curvatures constructed in this work are different from
those obtained from the Hamiltonians4 and from the
numerical approach23. It seems to us there is not a
canonical way of defining higher Berry curvatures, in
contrast to the canonical 2-form Berry curvature, knowing
only the family of states. In particular, they correspond
to different ways of embedding X into some parameter
space with locality

∏
pXp. Physically, different ways of

constructing higher Berry curvatures may correspond to
different protocols to detect them. It is an interesting
future work to study how to detect such higher Berry
curvatures in experiments.

Note added : While completing this manuscript, we
became aware of an upcoming related work Ref.46 to
appear on arXiv on the same day.
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Appendix A: Higher Berry curvatures for locally
parametrized states beyond tensor networks

Our approach of constructing higher Berry curvatures
and higher Thouless pumps not only works for tensor
network states as illustrated in the main text, but also
works for other types of locally parametrized states. In
this appendix, we give an example on the family of states
that are generated by applying parametrized local unitary
operators on a reference state |ψ0⟩:

|ψ({λp})⟩ = U({λp})|ψ0⟩, (A1)

where U({λp}) denotes the unitaries that depend on local
parameters in the local parameter spaces Xp for arbitrary
lattice sites p ∈ Λ. Hereafter, for simplicity of writing we
will write (A1) as |ψ⟩ = U |ψ0⟩. Then the total variation
of the family of states decomposes into a sum over local
variations

d|ψ⟩ =
∑

p

dp|ψ⟩ =
∑

p

(dpU)|ψ0⟩. (A2)

Note that in general one cannot choose unitary operators
U that are smooth everywhere in the whole parameter

space. In this case, we can cover the parameter space by
several charts. Then the unitary operators can be smooth
everywhere on each chart.

Since the unitary operators U in (A1) depend on both
the lattice sites and the external parameters, this allows us
to define the simplex chain and differential forms following
the procedures in Sec.III. More explicitly, to construct the
higher Berry curvatures, one can start from the regular
1-form A as

A = − Im⟨ψ|dψ⟩ = − Im
∑

p

⟨ψ0|(dpU)|ψ0⟩. (A3)

Then the n-chain valued (n + 2)-form F (n+2) can be
obtained from (24), based on which one can construct the
(n+ 2)-form higher Berry curvature according to (25).

In the following, let us illustrate this construction with
the exactly solvable model in Sec.II. We consider the same
configuration in (12). Let us focus on w4 ≥ 0 first. For
each dimer on sites p ∈ 2Z − 1 and (p + 1) ∈ 2Z, the
wavefunction can be expressed as

|ψ⟩p,p+1 =
[
Up(θ, ϕ)⊗ Up+1(θ, ϕ)

]
Up,p+1(α) |ψ0⟩. (A4)

The total wavefunction is a tensor product of wavefunc-
tions on each dimer. Here |ψ0⟩ = | ↑↓⟩ is the ground state
of the dimer at w4 = 0 and w = (w1, w2, w3) = (0, 0, 1).
The unitary operator Up acts on the local Hilbert space
Hp, and the parameters in Up belong to the local param-
eter space Xp. More explicitly, we have

Up = Up+1 = U(θ, ϕ) =

(
cos θ

2 − sin θ
2e

−iϕ

sin θ
2e

iϕ cos θ
2

)
, (A5)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. Here U(θ, ϕ) rotates the
eigenstates of σz to eigenstates of w · σ. The unitary
operator Up,p+1, which acts on the Hilbert space Hp ⊗
Hp+1, has the expression

Up,p+1(α) = | ↑↑⟩⟨↑↑ |+ | ↓↓⟩⟨↓↓ |

+

√
1 + sinα

2
(| ↑↓⟩⟨↑↓ | − | ↓↑⟩⟨↓↑ |)

−
√

1− sinα

2
(| ↑↓⟩⟨↓↑ |+ | ↓↑⟩⟨↑↓ |).

(A6)

where 0 ≤ α ≤ π/2. Now we have the freedom to decide α
in Up,p+1(α) belongs to the parameter spaces Xp or Xp+1.
In fact, the same ‘gauge freedom’ also appears in the
MPS formalism (See Appendix.C). Choosing α ∈ Xp here
corresponds to the right canonical MPS, and choosing
α ∈ Xp+1 corresponds to the left canonical. For either

choice, we can evaluate the higher Berry curvature Ω(3)

by using (4) and (5), where the 1-form A is now given in
(A3). We find that for either α ∈ Xp or α ∈ Xp+1, the

higher Berry curvature Ω(3) has the same expression as
the MPS result in (13).
Next, for w4 < 0, since the spins at sites p ∈ 2Z − 1

and (p + 1) ∈ 2Z are decoupled from each other, there
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is no Berry curvature flow across the cut (dashed line in
(12)). Repeating the above procedure, one can find the
higher Berry curvature vanishes for w4 < 0, which again
agrees with the MPS result.

As a remark, for the purpose of illustrating our construc-
tion, we choose a very simple family of unitary operators
in the above discussion. These unitary operators are not
smooth everywhere over the parameter space S3. One can
find they are not well defined at α = 0 and θ = π. More
rigorously, one should cover S3 with open covers. On each
open cover, the unitary operators can be smooth and well
defined everywhere. For the toy model we consider here,
one should be able to write down the smooth unitary oper-
ators on each open cover by following a similar procedure
in Ref.30.

Appendix B: Relation to KS formulas

In Ref. 4, Kapustin and Spodyneiko first introduced
Kitaev’s idea of the higher Berry curvature to the liter-
ature. They formalise the notion using coarse geometry
as we do here, and consider gapped Hamiltonians whose
ground states are short range entangled. While the choice
of local parent Hamiltonian is immaterial to the invariant,
which is a characteristic only of the short-range entangled
states, their formulation requires picking a parent Hamil-
tonian. In this appendix we show that their formulation
can derived in the language of local parameter spaces.
Consider as before a lattice Λ, and a Hilbert space H

with a tensor product factorisation over Λ, so that H =
⊗p∈ΛHp. For each p ∈ Λ, consider the space of finitely
ranged self-adjoint operators Xp with maximal range r.
That is, if Hp, Hq are such operators, and d(p, q) > 2r,
then they must commute [Hp, Hq] = 0. We can define a
finitely ranged Hamiltonian as a sum of such operators
H =

∑
pHp. Let the total parameter space X be the

subset of
∏

p∈ΛXp such that the ground state is unique
and gapped. Then the Hamiltonian implicitly defines a
map X → H taking any set of parameters to the gapped
ground state. The Berry curvature of such a ground state
is extensive and hence divergent, but by using a complex
contour integral encircling the ground state energy it
formally takes the form

F =
i

2

∫
dz

2πi
Tr[GdHG2dH], (B1)

where dH is the exterior derivative of the Hamiltonian,
and G(z) = (z−H)−1 is the resolvant. Since it is located
over all of space we can view it as a −1-chain, and find a
local Berry curvature 0-chain, which has F as a boundary.
In particular using the simplex-exterior derivative their
choice can be written4

F (2) =
i

2

∫
dz

2πi
Tr

[
GdHG2d̂H

]
. (B2)

We can check that d̂∂F (2) = −2dF (2), so by equation (22)

the higher Berry flow is simply

F (n+2) =
2

(n+ 2)!
d̂nF (2). (B3)

Using d̂G = Gd̂HG, we find

d̂nF (2) = i

n∑

l=0

cnl

∫
dz

2πi
Tr

[
dH(Gd̂H)lG2(d̂HG)n−l+1

]

(B4)
where cnl = (−)nn!(n − l + 1)/2, where by the product
of two simplexes [p0 · · · pn][q0 · · · qm] is meant the simplex
[p0 · · · pnq0 · · · qm]. This is of course not generically a
well defined operation on chains with finite correlation
length, but it is on the free chains without that constraint.
We still use the product since by the assumption on
local parameter spaces, the total expression is controlled.
To prove the formula, we just need the simplex-exterior
derivative of any given term

d̂Tr
[
dH(Gd̂H)aG2(d̂HG)b

]

=− (a+ 1)Tr
[
dH(Gd̂H)a+1G2(d̂HG)b

]

− (b+ 1)Tr
[
dH(Gd̂H)aG2(d̂HG)b+1

]
.

Finally the higher Berry flow becomes

F (n+2) =
(−)ni

(n+ 2)(n+ 1)

n∑

l=0

(n− l + 1)

∫
dz

2πi
Tr

[
dH(Gd̂H)lG2(d̂HG)n−l+1

]
. (B5)

Expanding the simplex indices, this is the higher Berry
curvature result in Ref. 4.

Appendix C: Higher Thouless charge pump in exactly
solvable models

In this appendix, we apply our formulas in Eqs.(26)
and (27) to lattice systems with a global U(1) symmetry.
These parametretrized systems include the well known
Thouless charge pump in 1d systems, and higher dimen-
sional systems with higher Thouless charge pump. The
topological invariants in terms of a family of Hamiltonians
in higher Thouless pumps were recently studied in Ref. 5.

1. Thouless charge pump in d = 1

We consider a d = 1 lattice models with a global U(1)
symmetry, with the parameter space X = S1. This model
has the interesting feature of U(1) charge Thouless pump
as we adiabatically change the parameters along X = S1.
Let w = (w1, w2) ∈ S1 ⊆ R2 be the standard em-

bedding of the unit circle, and α ∈ R/2πZ be the cor-
responding angle, which is a parameterization via the
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map α 7→ (cosα, sinα). The family of Hamiltonians we
consider are very similar to the those in Sec.II. In fact
it may be constructed by restricting the Berry curvature
pump to the θ = 0, π part of the parameter space, after a
slight rearrangement of parameters. As such it has the
form

H1d(w) =
∑

p∈Z
Honsite

p (w) +H int
p,p+1(w), (C1)

where the terms are now given by

Honsite
p (w) = (−1)p w1σ

3
p, H int

p,p+1 = gp(w2)σp · σp+1

(C2)
and gp is defined by equation (11). Pictorially, the Hamil-
tonians for different values of α ∈ [0, 2π] can be visualized
as follows:

α = π/4: + − + − + − + − +

α = 3π/4: − + − + − + − + −

α = 0: + − + − + − + − +

α = 7π/4: + − + − + − + − +

•••••••••α = 3π/2:

•••••••••α = π/2:

α = π: − + − + − + − + −

α = 5π/4: − + − + − + − + −

α = 2π: + − + − + − + − +

(C3)

Similar to (12), we use “+” (resp. “−”) to represent a
lattice site p with non-zero single-spin term, with the
sign representing the corresponding sign of the coefficient
of σz

p, and “•” represents a lattice site with vanishing
single-spin term, as occurs at w1 = cosα = 0. The U(1)

charge operator is defined as Q̂ =
∑

p Q̂p =
∑

p
1
2σ

3
p. It

is straightforward to check that Q̂ commutes with the
Hamiltonians H1d(w) for arbitrary w ∈ S1. As we tune
the parameters α ∈ [0, 2π] in this model, a quantized
U(1) charge will be pumped along the d = 1 chain. This
quantized charge corresponds to the topological invariant,
which is an integral of 1-form Q̃(1):

Qpump =

∫

S1

Q̃(1)(f), (C4)

with

Q̃(1)(f) = ⟨Q(1), δf⟩. (C5)

Here Q(1) is the one-form constructed from the U(1)
invariant MPS, f(p) = Θ(p− a) where a ∈ 2Z+ 1/2 as
indicated by the dashed line in (C3), and δf is defined as

(δf)(p, q) = f(q)− f(p). The explicit expression of Q(1)

is

Q(1)
p0p1

= dp0⟨Q̂p1⟩ − dp1⟨Q̂p0⟩. (C6)

The physical meaning of Q̃(1)(f) in (C5) can be intu-
itively understood as follows. With the simple choice of
f(p) = Θ(p− a), (C5) can be rewritten as

Q̃(1)(f) =
∑

p<a<q

Q(1)
pq = dL⟨Q̂R⟩ − dR⟨Q̂L⟩, (C7)

where we have defined dL :=
∑

p<a dp, dR =
∑

p>a dp,

Q̂L =
∑

p<a Q̂p, and Q̂R =
∑

p>a Q̂p. They satisfy the
following relation:

dL + dR = d =
∑

p∈Λ

dp,

Q̂L + Q̂R = Q̂ =
∑

p∈Λ

Q̂p.
(C8)

Then (C7) can be written as:

Q̃(1) =(d− dR)⟨Q̂R⟩ − dR[⟨Q̂⟩ − ⟨Q̂R⟩]
=d⟨Q̂R⟩ = −d⟨Q̂L⟩,

(C9)

where we have considered the total charge ⟨Q̂⟩ is con-

served. That is, the closed 1-form Q̃(1) measures the
increasing of charge in the right half chain, or equiva-
lently the decreasing of charge in the left half chain, as
expected.
Now we apply the above formulas to the toy model in

(C1). We will consider both the left and right canonical
MPSs. Since our 1d model is composed of decoupled
dimers, one can consider the Schmidt decomposition on
each dimer. For the dimer living on sites p and p+ 1, the
wavefunction can be expressed as

|ψ⟩p,p+1 =
∑

α

Λα|α⟩p ⊗ |α⟩p+1. (C10)

The Schmidt coefficients Λα can always be chosen pos-
itive, the states {|α⟩p} and {|α⟩p+1} form orthonormal
sets in the Hilbert spaces Hp and Hp+1 respectively, i.e.,
⟨α|β⟩p = ⟨α|β⟩p+1 = δαβ . By normalization, we have∑

α Λ2
α = ⟨ψ|ψ⟩p,p+1 = 1. One can rewrite the wavefunc-

tion in (C10) as

|ψ⟩p,p+1 =
∑

sp

∑

sp+1

Γsp ΛΓsp+1 |sp⟩ ⊗ |sp+1⟩, (C11)

where Γ
sp
0α = ⟨sp|α⟩p, Γ

sp+1

α0 = ⟨sp+1|α⟩p+1, and
sp, sp+1 ∈ {↑, ↓}. In the left canonical MPS, one can
choose

Asp = Γsp , Asp+1 = ΛΓsp+1 . (C12)
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They satisfy the left canonical condition:

∑

sp

(Asp)†Asp = I2,
∑

sp

Asp(Λ)2(Asp)† = 1,

∑

sp+1

(Asp+1)†Asp+1 = 1,
∑

sp+1

Asp+1(Asp+1)† = (Λ)2.

(C13)

Similarly, in the right canonical MPS, one can choose the
tensors Asp and Asp+1 as

Asp = ΓspΛ, Asp+1 = Γsp+1 , (C14)

which satisfy the right canonical conditions∑
sp

Asp(Asp)† = 1,
∑
sp

(Asp)†Asp = (Λ)2,

∑
sp+1

Asp+1(Asp+1)† = I2,
∑
sp+1

(Asp+1)†(Λ)2Asp+1 = 1.

(C15)

In our toy model, for the choice of the left canonical
form of MPS in (C12), we have

Γ↑p = (1, 0), Γ↓p = (0,−1),

Γ↑p+1 = (0, 1)T , Γ↓p+1 = (1, 0)T ,
(C16)

and

Λ = diag(
√

(1 + cosα)/2,
√

(1− cosα)/2). (C17)

Here p ∈ 2Z+ 1 and 0 ≤ α ≤ π. Similarly one can obtain
the MPS for π < α ≤ 2π.

Since our lattice model is composed of decoupled dimers,
one can find that for the chosen f(p) in (C3), the closed

1-form Q̃(1) is nonzero only when 0 ≤ α ≤ π and it is
contributed by the tensors at p and p+ 1 as:

Q̃(1)(f) = Q
(1)
p,p+1 = dp⟨Q̂p+1⟩ − dp+1⟨Q̂p⟩. (C18)

More concretely, in the left canonical form, one has

⟨Q̂p⟩ =
cosαp+1

2
, ⟨Q̂p+1⟩ = −cosαp+1

2
. (C19)

Here we use αp+1 to emphasize that it parameterizes the
tensor at site p+1. Then based on (C18), one can obtain

the 1-form Q̃(1)(f) as

Q̃(1)(f) = Q
(1)
p,p+1 = dp⟨Q̂p+1⟩ − dp+1⟨Q̂p⟩ =

sinα

2
dα

(C20)

for 0 ≤ α ≤ π and Q̃(1)(f) = 0 for π ≤ α ≤ 2π. It
is reminded that dp := dαp

∂
∂αp

, and in the last step of

(C18) we have taken αp = α. Therefore, the topological
invariant is

Qpump =

∫

S1

Q̃(1)(f) =

∫ π

0

sinα

2
dα = 1, (C21)

which measures the charge pumped across x = a (See the
dashed line in (C3)) as we tune the parameter adiabati-
cally along S1.

One can also check the choice of the right canonical
form of MPS explicitly. One has

⟨Q̂p⟩ =
cosαp

2
, ⟨Q̂p+1⟩ = −cosαp

2
. (C22)

Here αp arameterizes the tensor at site p. Then based on

(C18), one can obtain the 1-form Q̃(1)(f), which is the
same as the result for the left canonical form of MPS.
One can also consider the ‘symmetric canonical form’,

by choosing Asp = Γsp
√
Λ, Asp+1 =

√
ΛΓsp+1 for 0 ≤ α ≤

π and Asp−1 = Γsp−1
√
Λ, Asp =

√
ΛΓsp for π ≤ α ≤ 2π

where p ∈ 2Z+ 1. Again, it is found the 1-form Q(1)(f)
is the same as that for the left/right canonical form of
MPS.

Note that the 1-form Q̃(1)(f) depends on the choice of f ,
which is similar to the feature of higher Berry curvatures
Ω(3)(f)30. For example, by choosing f ′(p) = Θ(p − a)
with a ∈ 2Z− 1/2 (i.e., shifting the dashed line in (C3)
by an odd number of sites), then for the various canonical
forms introduced above, one can obtain

Q̃(1)(f ′) = − sinα

2
dα, π ≤ α ≤ 2π, (C23)

and Q̃(1)(f ′) = 0 for 0 ≤ α ≤ π. However, the topological

invariant Qpump =
∫
S1 Q̃

(1)(f ′) = 1 is the same as (C21).

Physically, Q̃(1)(f) corresponds to the “current” which
may vary in space for an inhomogeneous system. The in-
tegral of this current, which measures the charge pumped
along the 1d system, is a topological invariant.

2. Higher Thouless charge pump

Higher Thouless charge pump in a general SRE system
with a global U(1) symmetry was firstly discussed in
Ref.5. For a d dimensional lattice system over X = Sd,
one can define d-form Q̃(d). The topological invariant∫
Sd Q̃

(d) ∈ Z characterizes the quantized Thouless charge
pump in SRE systems. Here, we show our construction
of d forms gives the expected topological invariant in
systems with nontrivial higher Thouless pumps. We will
be brief since the discussion follows the same procedure
based on the bulk-boundary correspondence in Sec.IV.

Let us give an explicit example of d = 2 lattice system
over X = S2. As before let (w1, w2, w3) = w ∈ S2 ⊆ R3

be the standard embedding of the two-sphere in R3, and
let (ŵ1, ŵ2) be the unit vector of (w1, w2). The family
of systems can be constructed from the d = 1 system in
(C1) based on the suspension construction as introduced
in Ref.12. The Hamiltonians are

H2d(w) =
∑

x1∈Z
H1d,x1

((−1)x1ŵ1, ŵ2) +H int
x1,x1+1(w)

(C24)
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where H1d,x is the d = 1 Hamiltonian from (C1) along
the d = 1 sublattice of points with first coordinate x. The
coupling is

H int
x1,x1+1(w) = hx(w3)

∑

x2∈Z
σx1,x2

· σx1+1,x2
(C25)

For w3 = 0, the d = 2 system is a collection of decoupled
d = 1 systems with alternating charges. One can check
that H2d in (C24) is gapped everywhere over S2.

The closed 2 forms Q̃(2)(f) characterizing the Thouless
charge pump are

Q̃(2)(f) = ⟨Q(2), δf1 ∪ δf2⟩, (C26)

where Q(2) are (non-closed) 2-forms constructed from
d = 2 PEPSs:

Q(2)
rpq = drdp⟨Q̂q⟩ − drdq⟨Q̂p⟩ − dqdp⟨Q̂r⟩+ dpdq⟨Q̂r⟩

(C27)
up to an exact form. f1,2 = Θ(x1,2(p)− a1,2) are chosen
in the same way as in Sec.IV (See also Fig.4).
Instead of calculating Q(2)(f) in an infinite system di-

rectly, which is involved, we study it in a semi-infinite
system based on bulk-boundary correspondence. We im-
pose a spatial boundary along x1 = N by retaining only

those lattice sites with x1 ≤ N . In our lattice model, Q
(2)
pqr

is a local quantity, and Q̃(2)(f) is contributed by the ten-
sors near (x1, x2) = (a1, a2). As long as we choose (a1, a2)

deep in the bulk, Q̃(2)(f) are the same for the infinite
system and the semi-infinite system. In the semi-infinite
system, we can write Q̃(2)(f) as

Q̃(2)(f) = d⟨Q(1), f1 ∪ δf2⟩ =: dω(1)(f), (C28)

where Q(1) is defined in (C6). For a system with nontrivial
higher Thouless pump, ω(1) is not globally well defined

over X = S2. But if we cover S2 with two charts D2
N and

D2
S , then ω

(2) can be globally well defined over each chart.
More explicitly, we choose D2

N (D2
S) as the subspace of

S2 with w3 ≥ 0 (w3 ≤ 0). Over D2
N (D2

S), the boundary
of the 2d lattice is imposed along x1 = N (x1 = N − 1)
where N ∈ 2Z (See Fig.4). One can find the ground
states of H2d are gapped everywhere over D2

N and D2
S

respectively. The 1-forms ω
(1)
N (ω

(1)
S ) are globally well

defined for the corresponding family of PEPSs. Then one
has

∫

S2

Q̃(2)(f) =

∫

D2
N

Q̃(2) +

∫

D2
S

Q̃(2) =

∫

S1

(ω
(1)
N − ω

(1)
S ),

where S1 = D2
N ∩D2

S . Note that over S1 where w3 = 0,
H2d in (C24) becomes decoupled 1d systems. In this case,

ω
(1)
N −ω(1)

S = Q̃(1), where Q̃(1) is the closed 1-form for the
decoupled 1d system along x1 = N . Therefore, we have

∫

S2

Q̃(2) =

∫

S1

Q̃(1) = 1. (C29)

Therefore, the topological invariant that characterizes the
higher Thouless pump in H2d in (C24) is quantized.

We can further study those lattice models obtained from
the suspension construction in even higher dimensions12

by following the similar procedures above. Two essential
ingredients in this procedure are (i) the descent equations
and (ii) the locality property of Q(n). Here Q(n) is related

to the closed form Q̃(n) through Q̃(n) = ⟨Q(n), b⟩. While

the locality property of Q
(n)
p0···pn is apparent in our dimer-

ized lattice models, it is an interesting future problem
to show this property for general U(1) invariant gapped
ground states.

1 M. V. Berry, “Quantal phase factors accompanying adia-
batic changes,” Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences 392, 45–57
(1984).

2 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, “Quantized hall conductance in a two-dimensional
periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).

3 A. Kitaev, “Differential forms on the space of statistical me-
chanics models,” (2019), talk at the conference in celebra-
tion of Dan Freed’s 60th birthdayhttps://web.ma.utexas.
edu/topqft/talkslides/kitaev.pdf.

4 Anton Kapustin and Lev Spodyneiko, “Higher-dimensional
generalizations of berry curvature,” Physical Review B 101
(2020), 10.1103/physrevb.101.235130.

5 Anton Kapustin and Lev Spodyneiko, “Higher-dimensional
generalizations of the thouless charge pump,” (2020),
arXiv:2003.09519 [cond-mat.str-el].

6 Po-Shen Hsin, Anton Kapustin, and Ryan Thorngren,
“Berry phase in quantum field theory: Diabolical points

and boundary phenomena,” Physical Review B 102 (2020),
10.1103/physrevb.102.245113.

7 Clay Cordova, Daniel Freed, Ho Tat Lam, and Nathan
Seiberg, “Anomalies in the space of coupling constants and
their dynamical applications i,” SciPost Physics 8 (2020),
10.21468/scipostphys.8.1.001.

8 Clay Cordova, Daniel Freed, Ho Tat Lam, and Nathan
Seiberg, “Anomalies in the space of coupling constants and
their dynamical applications II,” SciPost Physics 8 (2020),
10.21468/scipostphys.8.1.002.

9 Dominic V. Else, “Topological goldstone phases of mat-
ter,” Physical Review B 104 (2021), 10.1103/phys-
revb.104.115129.

10 Yichul Choi and Kantaro Ohmori, “Higher berry phase
of fermions and index theorem,” Journal of High Energy
Physics 2022 (2022), 10.1007/jhep09(2022)022.

11 David Aasen, Zhenghan Wang, and Matthew B. Hastings,
“Adiabatic paths of hamiltonians, symmetries of topological
order, and automorphism codes,” Physical Review B 106

http://www.jstor.org/stable/2397741
http://www.jstor.org/stable/2397741
http://www.jstor.org/stable/2397741
http://dx.doi.org/10.1103/PhysRevLett.49.405
https://web.ma.utexas.edu/topqft/talkslides/kitaev.pdf
https://web.ma.utexas.edu/topqft/talkslides/kitaev.pdf
http://dx.doi.org/10.1103/physrevb.101.235130
http://dx.doi.org/10.1103/physrevb.101.235130
http://arxiv.org/abs/2003.09519
http://dx.doi.org/10.1103/physrevb.102.245113
http://dx.doi.org/10.1103/physrevb.102.245113
http://dx.doi.org/10.21468/scipostphys.8.1.001
http://dx.doi.org/10.21468/scipostphys.8.1.001
http://dx.doi.org/10.21468/scipostphys.8.1.002
http://dx.doi.org/10.21468/scipostphys.8.1.002
http://dx.doi.org/10.1103/physrevb.104.115129
http://dx.doi.org/10.1103/physrevb.104.115129
http://dx.doi.org/10.1007/jhep09(2022)022
http://dx.doi.org/10.1007/jhep09(2022)022
http://dx.doi.org/10.1103/physrevb.106.085122


17

(2022), 10.1103/physrevb.106.085122.
12 Xueda Wen, Marvin Qi, Agnès Beaudry, Juan Moreno,

Markus J. Pflaum, Daniel Spiegel, Ashvin Vishwanath, and
Michael Hermele, “Flow of (higher) berry curvature and
bulk-boundary correspondence in parametrized quantum
systems,” (2022), arXiv:2112.07748 [cond-mat.str-el].

13 Po-Shen Hsin and Zhenghan Wang, “On topology of the
moduli space of gapped hamiltonians for topological phases,”
Journal of Mathematical Physics 64, 041901 (2023).

14 Anton Kapustin and Nikita Sopenko, “Local Noether theo-
rem for quantum lattice systems and topological invariants
of gapped states,” Journal of Mathematical Physics 63,
091903 (2022), arXiv:2201.01327 [math-ph].

15 Ken Shiozaki, “Adiabatic cycles of quantum spin sys-
tems,” Physical Review B 106 (2022), 10.1103/phys-
revb.106.125108.

16 Sven Bachmann, Wojciech De Roeck, Martin Fraas, and
Tijl Jappens, “A classification of G-charge Thouless pumps
in 1D invertible states,” arXiv e-prints , arXiv:2204.03763
(2022), arXiv:2204.03763 [math-ph].

17 Shuhei Ohyama, Ken Shiozaki, and Masatoshi Sato, “Gen-
eralized thouless pumps in (1 + 1)-dimensional interacting
fermionic systems,” Phys. Rev. B 106, 165115 (2022).

18 Shuhei Ohyama, Yuji Terashima, and Ken Shiozaki, “Dis-
crete higher berry phases and matrix product states,”
(2023), arXiv:2303.04252 [cond-mat.str-el].

19 Adam Artymowicz, Anton Kapustin, and Nikita Sopenko,
“Quantization of the higher Berry curvature and the higher
Thouless pump,” arXiv e-prints , arXiv:2305.06399 (2023),
arXiv:2305.06399 [math-ph].

20 Agnes Beaudry, Michael Hermele, Juan Moreno, Markus
Pflaum, Marvin Qi, and Daniel Spiegel, “Homotopical foun-
dations of parametrized quantum spin systems,” (2023),
arXiv:2303.07431 [math-ph].

21 Shuhei Ohyama and Shinsei Ryu, “Higher structures in
matrix product states,” arXiv e-prints , arXiv:2304.05356
(2023), arXiv:2304.05356 [cond-mat.str-el].

22 Marvin Qi, David T. Stephen, Xueda Wen, Daniel Spiegel,
Markus J. Pflaum, Agnès Beaudry, and Michael Hermele,
“Charting the space of ground states with tensor networks,”
arXiv e-prints , arXiv:2305.07700 (2023), arXiv:2305.07700
[cond-mat.str-el].

23 Ken Shiozaki, Niclas Heinsdorf, and Shuhei Ohyama,
“Higher Berry curvature from matrix product states,” arXiv
e-prints , arXiv:2305.08109 (2023), arXiv:2305.08109 [quant-
ph].

24 Lev Spodyneiko, “Hall conductivity pump,” arXiv e-prints ,
arXiv:2309.14332 (2023), arXiv:2309.14332 [cond-mat.mes-
hall].

25 Arun Debray, Sanath K. Devalapurkar, Cameron Krulewski,
Yu Leon Liu, Natalia Pacheco-Tallaj, and Ryan Thorngren,
“A Long Exact Sequence in Symmetry Breaking: order pa-
rameter constraints, defect anomaly-matching, and higher
Berry phases,” arXiv e-prints , arXiv:2309.16749 (2023),
arXiv:2309.16749 [hep-th].

26 A. Kitaev, “Toward a topological classification of many-
body quantum states with short-range entanglement,”
(2011), talk at Simons Center for Geometry and Physics
http://scgp.stonybrook.edu/archives/1087.

27 A. Kitaev, “On the classification of short-range entangled
states,” (2013), talk at Simons Center for Geometry and
Physics http://scgp.stonybrook.edu/archives/16180.

28 A. Kitaev, “Homotopy-theoretic approach to spt
phases in action: Z16 classification of three-

dimensional superconductors,” (2015), talk at
Institute for Pure and Applied Mathematics
http://www.ipam.ucla.edu/programs/workshops/

symmetry-and-topology-in-quantum-matter/.
29 D. J. Thouless, “Quantization of particle transport,” Phys.

Rev. B 27, 6083–6087 (1983).
30 Ophelia Evelyn Sommer, Ashvin Vishwanath, and Xueda

Wen, “Higher berry curvature from the wave function i:
Schmidt decomposition and matrix product states,” (2024),
to appear.
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