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In quantum materials, basic observables such as spectral functions and susceptibilities are deter-
mined by Green’s functions and their complex quasiparticle spectrum rather than by bare electrons.
Even in closed many-body systems, this makes a description in terms of effective non-Hermitian
(NH) Bloch Hamiltonians natural and intuitive. Here, we discuss how the abundance and stability
of nodal phases is drastically affected by NH topology. While previous work has mostly consid-
ered complex degeneracies known as exceptional points as the NH counterpart of nodal points,
we propose to relax this assumption by only requiring a crossing of the real part of the complex
quasiparticle spectra, which entails a band crossing in the spectral function, i.e. a nodal spectral
function. Interestingly, such real crossings are topologically protected by the braiding properties of
the complex Bloch bands, and thus generically occur already in one-dimensional systems without
symmetry or fine-tuning. We propose and study a microscopic lattice model in which a sublattice-
dependent interaction stabilizes nodal spectral functions. Besides the gapless spectrum, we identify
non-reciprocal charge transport properties after a local potential quench as a key signature of non-
trivial band braiding. Finally, in the limit of zero interaction on one of the sublattices, we find a
perfectly ballistic unidirectional mode in a non-integrable environment, reminiscent of a chiral edge
state known from quantum Hall phases. Our analysis is corroborated by numerical simulations both
in the framework of exact diagonalization and within the conserving second Born approximation.

I. INTRODUCTION

Level (anti-)crossings are of key importance in quan-
tum physics, and have been subject to intense study
for many decades, e.g. in the context of level statistics
[1, 2]. In condensed matter physics, topological semimet-
als characterized by stable nodal points in their Bloch
band structure represent a frontier of current research
[3–6]. The advent of non-Hermitian (NH) topological
phases [7–17] accounting for dissipative effects such as
finite lifetime of quasiparticles has recently provided a
new perspective on nodal band structures and their topo-
logical stability [18–25]. In particular, degeneracies in
the complex spectra of effective NH Hamiltonians gener-
ically occur in the non-diagonalizable form of exceptional
points (EPs) [11, 26] which, quite remarkably, are more
abundant than diagonalizable nodes in the Hermitian
realm. As a consequence stable EPs are found in two
spatial dimensions (2D) whereas their Hermitian coun-
terpart known as Weyl points are robust only in 3D sys-
tems [4]. Hence, the onset of dissipation may stabilize
fine-tuned or symmetry protected nodal points to topo-
logically protected EPs.

In recent studies [27–31], EPs have been considered as
the NH analog of band (or level) crossings in a wide range
of physical settings, including condensed matter systems
[18–20, 22–25]. In the latter case, complex energies be-
come relevant as complex poles of the single-particle
Green’s function (GF) ĜR(k, ω) ∝ 1

ω−e(k) , describing ex-

citations in terms of a quasiparticle dispersion [18, 32–36]
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e(k). However, we note that in basic physical observables

such as spectral functions A(k, ω) = − 1
π ImTr(ĜR(k, ω)),

the most decisive quantity is the real part of the quasi-
particle dispersion Re(e(k)), whereas the imaginary part
mostly determines how sharp or blurred the quasiparticle
band appears in a measurement. We thus find it natural
to define nodal spectral functions through the occurrence
of crossings in the real part of the quasiparticle spectra,
rather than requiring full complex degeneracies tanta-
mount to EPs.
Below, we investigate the stability of nodal spectral

functions, and identify both equilibrium and dynamical
phenomena characterizing the corresponding NH topo-
logical phases. Importantly, EPs here appear as the tran-
sition points between phases exhibiting protected cross-
ings in the spectral functions, and gapped phases. The
predicted nodal phases themselves are thus even more
abundant than EPs and occur in 1D systems without re-
quiring symmetry or fine-tuning. Their topological sta-
bility may be intuitively understood in terms of non-
trivial braids [13–17, 37, 38] formed by the quasiparticle
bands in the complex energy plane as a function of lattice
momentum k: any non-trivial braid necessitates a cross-
ing in the projection of the real part of the quasiparticle
spectra, i.e. entails a nodal spectral function (see Fig. 1
(b-c)).
We exemplify the occurrence of various topologically

inequivalent spectral functions by solving a microscopic
model of correlated electrons on a 1D lattice at finite tem-
perature, both with exact diagonalization (ED) methods
and within the conserving second Born approximation
(SBA). Interestingly, if the imaginary part of the spec-
trum exhibits a large gap at the real crossing, such that
one band is quite sharp while the other one is entirely
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FIG. 1. (a) Spectral function A(k, ω) of the model defined
in Eq. (3) in a non-trivial braiding phase c = 1, γ = σ1 for
periodic boundary conditions. (b) Corresponding complex
quasiparticle dispersion exhibiting non-trivial braiding, and
(c) schematic link diagram. (d) Non-reciprocal propagation
of a density excitation after switching on an onsite poten-
tial in the middle of the system at site j. Parameters in all
plots: N = 200 unit cells, J = 1.0, τ0 = 1.0, τ1 = 0.0, v0 =
−1.0, v1 = 0.0, Ua = 1.5, Ub = 0.1.

blurred, the 1D nodal spectral function may arbitrar-
ily closely mimic a chiral mode (cf. Fig. 1 (a)), other-
wise known only from edge states of 2D chiral topolog-
ical phases [39]. By studying the quench dynamics af-
ter a local perturbation in the particle density in such a
pseudo-chiral scenario, we identify non-reciprocal trans-
port signatures reminiscent of the uni-directional motion
of a chiral edge state (see Fig. 1 (d)). Our results un-
derline that interacting many-body systems serve as a
natural platform to observe interesting NH topological
physics in basic measurable quantities such as spectral
functions.

The remainder of this article is structured as fol-
lows: The numerical methods and the microscopic lat-
tice model are introduced in Section II, and the non-
integrability of the model is studied in Section II B. In
Section III, the notion of quasiparticle dispersions is de-
fined and their classification using braid groups is dis-
cussed. In Section IV, we detail the stabilizing effect
on crossings (IVA), the non-reciprocity following from
the non-Hermitian character of the quasiparticle disper-
sion (IVB), the non-reciprocal effects within the charge-
dynamics after a local quench (IVC), and offer an intu-
itive explanation of the pseudo-chiral mode in terms of

long-lived excitations on the weakly interacting sublattice
(IVD). A concluding discussion is presented in Section
V.

II. METHODS AND MODEL

Our main quantity of interest is the retarded GF de-
scribing the propagation of single-particle type excita-
tions:

GR
m,n(t) = −iθ(t)

〈
{cm(0), c†n(t)}

〉
, (1)

at finite temperature T = 1
β . Here cm(t)

(
c†m(t)

)
denotes the annihilation(creation)-operator in the
Heisenberg-picture acting on lattice-site m and ⟨...⟩ =
Tr( 1

Z exp(−βH)...) the expectation value with respect to
the thermal Gibbs state, both involving the full Hermi-
tian many-body Hamiltonian H. The GF is naturally
non-Hermitian, due to interaction effects including inter-
particle scattering. For stationary states such as thermal
states, after Fourier-transformation in space and time,
the GF can be rewritten by using the Dyson-equation
[32] as

ĜR(k, ω) =
(
ω1− ĥ(k)− Σ̂(k, ω)

)−1

. (2)

The GF is fully determined by the NH effective Hamil-

tonian (eH) ĥe(k, ω) = ĥ(k) − Σ̂(k, ω), which consists

of the Hermitian non-interacting Bloch-Hamiltonian ĥ(k)

and the NH self-energy Σ̂(k, ω). The latter captures the
scattering effects induced by interactions. Since the Her-
mitian many-body HamiltonianH is interacting (see Sec-
tion IIA) and non-integrable (see Section II B), extensive
numerics is required in order to actually compute the GF
and verify our analytical insights. Our numerical results
are based on two complementary methods: exact diago-
nalization (ED) and Non-Equilibrium Green’s Functions
(NEGFs) [32, 40–42].
Exact Diagonalization(ED) Within the ED frame-

work we obtain exact results for small system
sizes. Based on Eq. (1), the full unitary time-
evolution of the thermal state after the action of an
annihilation(creation)-operator is computed, leading to
the GF. Our implementations are based on the python
libraries NumPy and SciPy.
Non-Equilibrium Green’s Functions (NEGFs) The

NEGF approach [32, 40–42], as a (self-consistent) pertur-
bative method in the interaction strength, reduces com-
plexity to quadratic in system size and cubic in time. It
allows, at moderate interaction strengths and not too low
temperatures, reliable results (inline with ED) on large
systems and enables to reach long time scales. Here,
the Kadanoff-Baym[32, 42] equations are solved numeri-
cally in conserving second Born approximation (SBA).
The implementation is based on the software package
NESSi[42].
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A. Microscopic Lattice Model

Inspired by previous works revealing non-trivial NH
physics in related systems [7, 18–21, 23–25, 43], a 1D
interacting two-band model will be investigated, consist-
ing of N unit cells with two sublattices A and B. The
Hamiltonian H and the interaction V can be written as:

H =
∑
k

c†kĥ(k)ck + V

V =
∑
α

∑
j

Uα

(
nj,α − 1

2

)(
nj+1,α − 1

2

)
. (3)

Here ck = (ck,A, ck,B)
T and c†k = (c†k,A, c

†
k,B) are

respectively the annihilation and creation operators in
momentum-space acting on the two sublattice degrees

of freedom. The matrix ĥ(k) denotes the 2 × 2 Bloch-
Hamiltonian of the non-interacting system. Through-

out this work we will use ĥ(k) = (J − τ0 cos(k) −
τ1 cos(2k))σ̂x+(v0 sin(k)+v1 sin(2k))σ̂z written in terms
of Pauli-matrices {σ̂β}, describing nearest and next-
nearest neighbour hoppings. Further, the interaction
V is given in real-space using the number operator

nj,α = c†j,αcj,α on site j and sublattice α ∈ {A,B},
where cj,α = 1√

N

∑
k e

−ikjck,α defines the annihila-

tion(creation) operator in real-space. We choose moder-
ate interaction strengths, comparable but smaller than
the non-interacting bandwidths, which also act domi-
nantly on the A-sublattice UA > UB . All simulations are
done in thermal equilibrium at fixed temperature T = 5.

B. Non-Integrability Despite Free Sublattice

In the limit UB = 0, in our model system an ex-
act single-particle excitation emerges which obeys coher-
ent dynamics, i.e. exhibits infinite quasiparticle lifetime.
We thus find it interesting to investigate for our non-
standard 1D Hubbard model to investigate whether the
full many-body Hamiltonian is non-integrable in the pa-
rameter regime of our present work. Interestingly, even
in the regime of a non-interacting sublattice, we found
a clear signature of chaotic behaviour in the level statis-
tics, implying non-integrability. To study the integrabil-
ity of quantum systems, it is helpful to use spectral sig-
natures, in particular fluctuations of energy level spac-
ings [44–46]. Via exact diagonalization of a finite-size
system, it is possible to extract the full spectrum {Ei}
of the interacting many-body Hamiltonian. Then, via
the unfolding procedure [45], the energies Ei are mapped
to dimensionless energies ei, and the mean value of the
renormalised energy spacings si = ei+1 − ei is ⟨si⟩ = 1.
If the classical limit of the system under consideration
is fully integrable, the level spacings si show a Pois-
son statistics P (s) = e−s [47]. If, instead, the clas-
sical limit of the quantum system is fully chaotic, the

BGS conjecture states that Random Matrix Theory de-
scribes the spectral-spacing statistics [48]. In particu-
lar, with symmetric models such as the one under study
here (particle-hole symmetric), the system is expected
to show the level spacing statistics associated to the
Gaussian orthogonal ensemble (GOE) of random ma-

trices, namely P (s) = π s
2 e−πs2/4. In order to unfold

the spectrum, all the symmetry sectors must be han-
dled independently [46]. Since the Hamiltonian (3) is
both particle-hole symmetric and particle-number con-
serving, the symmetry sectors corresponding to different
filling fractions must be separated, and the block corre-
sponding to half filling must be considered either in its
symmetrised or anti-symmetrized sub-block with respect
to particles and holes. The results of this analysis are
summarized in Fig. 2, showing a clear GOE distribution
for the level spacings, both for a weakly-interacting and a
non-interacting B sublattice, confirming that a strong in-
teraction on one sublattice is enough to drive the system
into a fully chaotic behaviour. Fig. 2 shows data on sys-
tems with open boundary conditions (OBC) rather than
periodic boundary conditions (PBC) because the absence
of translational symmetry allows for a bigger number of
states per symmetry sectors, leading to a higher statisti-
cal significance.

III. ANALYTICAL BRAIDING-TOPOLOGY OF
ELECTRONIC BAND STRUCTURES

The rGF is typically understood in terms of quasipar-
ticles [32–34], where as proposed by [18, 35, 36] the set
of quasiparticle excitations {ej(k)} is formally defined

by the set of poles of the rGF ĜR(k, z) ∝ 1
z−ej(k)

, al-

lowing complex frequencies z. Since the rGF is here
matrix-valued, we use the poles of the trace Tr(ĜR(k, z)).
Note that the imaginary-part of this quantity on the real-
frequency-axis corresponds to the well known spectral
function. We stress that quasiparticles by definition are
described by a generically complex dispersion, which rep-
resents a key property for our present work [49]. In prac-
tice, when analyzing numerical data given only on the
real-frequency-axis ω, the (crude) assumption of a selfen-
ergy that is constant with respect to imaginary frequency
leads to the simpler condition

Re(εj(k, ω)) = ω, (4)

which is often found to provide a satisfactory approxima-
tion. Here, the {εj} denote the eigenvalues of the effec-
tive Hamiltonian (see Eq. (2)), which are straightforward
to compute. In fact condition (4) is often used in liter-
ature [18, 32, 34]. Solving Eq. (4) leads to M curves

ωQP
j (k) which determine the complex poles {ej(k)} by:

ej(k) = εj(k, ω
QP
j (k)). (5)

The success of this approximation is intuitively clear
since we are mainly interested in long-living excitations,
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FIG. 2. Level-spacing statistics for weakly interacting (panel
(a), UB = 0.1) and non-interacting (panel (b), UB = 0) B-
sublattice for a system of L = 14 sites; other parameters in
both panels: J = 1.0, τ0 = 1.0, τ1 = 0.0, v0 = −1.0, v1 = 0.0,
UA = 1.5, OBC. The different lines refer to different particle
numbers N , and at N = 7 (half filling) the data refers to the
particle-hole symmetrized sub-block. Both situations show a
clear GOE behavior. Statistical fluctuations are bigger for
lower N , where fewer states contribute. Results for N > 7
are implied by particle-hole symmetry.

which correspond to poles close to the real-frequency-axis
[50]. A selfenergy which only varies slowly with respect
to the imaginary-frequency is then well approximated by
their value along the real-frequency-axis. As expected
by these arguments, our numerical results indicate that
Eq. (4) is less precise for fast decaying (short-lived) exci-
tations.

A. Classification with Braid-Groups

Since for ordinary interacting systems the band-
structure can be understood in terms of a complex quasi-
particle dispersion, previous insights on complex bands
in NH Hamiltonians may be adapted to our present set-

FIG. 3. Spectral functions A(k, ω) in various braiding phases
computed using NEGF ((a), N = 200 unit cells) or ED ((b),
N = 8 unit cells). The corresponding link diagrams are shown
in the insets. (a) and (e): trivial braid c = 0,γ = 1 with J =
1.5, τ0 = 1.0, τ1 = 0.0, v0 = 0.0, v1 = 0.0, Ua = 1.5, Ub = 0.1
; (b) trivial braid with crossings c = 0,γ = σ1σ

−1
1 and pa-

rameters J = 1.5, τ0 = 1.0, τ1 = 0.0, v0 = 0.0, v1 = 0.0, Ua =
1.5, Ub = 0.1; (c) lower left and (f) right: braid within phase
c = 1,γ = σ1 and J = 1.0, τ0 = 1.0, τ1 = 0.0, v0 = −1.0, v1 =
0.0, Ua = 1.5, Ub = 0.1; (d) braid in phase c = 2,γ = σ1σ1

and J = 1.0, τ0 = 0.2, τ1 = 1.0, v0 = −0.2, v1 = −1.0, Ua =
1.5, Ub = 0.1. The red dotted line shows the real-part of the
quasiparticle dispersion as a guide to the eye.

ting of quasiparticle spectra. Specifically, in 1D it was
found that a complex band structure {e(k)} can be clas-
sified within the framework of braiding groups Bn [13, 15–
17, 51, 52]. Given a concrete quasiparticle spectra with
M separable complex energies bands en(k) depending on
the momentum k ∈ [−π, π], pictorially they build up M
strings in a solid torus spanned by the complex plane and
the periodic Brillouin zone (see Fig. 1 (b)). These strings
form different conjugacy classes of braids which cannot
be continuously deformed into each other without band-
touchings. Consequently, two NH band structures are
topological distinct if they obey a different braid class.
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Using the M − 1 Artin generators[52] {σj} in a M -band
system we can also denote each braid by a braid word γ.
For example, the generator σj interchanges the string j
with the string j + 1, such that the first over-crosses the
second, respectively the inverse σ−1

j describes the under-
crossing. Generally, for a braid with M strings, the braid
word indicates whether two neighboring strings may over-
cross or under-cross after being projected onto a plane.
In our case, we project onto the real-part and flatten
the imaginary-part (Fig. 1(c)) as is physically motivated
by notion of a spectral function. Topologically protected
crossings then directly correspond to nodal spectral func-
tions.

In the following we will concentrate only on two-band
models, that is the simplest non-trivial braid group B2.
It obeys only one Artin-generator σ1 and is isomorphic
to the integers Z. Given a dispersion {e1(k), e2(k)} the
braiding class c ∈ Z is defined by a winding number[13,
15]:

c = −i

∫ π

−π

dk

π
∂kln(e1(k)− e2(k)). (6)

With these braid classification tools we investigate the
quasiparticle dispersion {e1(k), e2(k)} in 1D.
Braiding Topology in Real Systems. Using NEGF and

ED, we compute the rGF in the frequency-momentum
domain in thermal equilibrium for the model described
by Eq. (3) with PBC so as to obtain the spectral func-
tion and the quasiparticle dispersion. In Fig. 3 the spec-
tral functions A(k, ω) are presented for different param-
eters. Here, the real-part of the computed quasiparticle
dispersion {e(k)} corresponds well to the maxima of the
band-structure (red dotted line). The same conclusion
is true for the imaginary-part describing the broadening
of the bands as showed in the appendix A. Both these
observations confirm that the analytical definition of the
quasiparticle dispersion provides a physically reasonable
framework. Furthermore, we compute the braiding class
c, as visualized by the corresponding link diagram (in-
set), showing that the chosen model can realize different
topological braiding phases due to its sublattice depen-
dent interaction. As expected, the braiding class is al-
ready visible from the spectral function and thus of im-
mediate experimental relevance. We note that the ED
results are qualitatively inline with the NEGF approach
and indicate that the braiding classification is already
meaningful for systems of small size.

IV. CONSEQUENCES OF THE
BRAID-TOPOLOGY

A. Topologically Protected Crossings

The complex nature of the band-structure (see Eq. (5))
has interesting implications regarding crossings in the
spectral function. Specifically, such a crossing occurs if

two real-part projections of the quasiparticle dispersion
intersect, i.e. if Re(e1(k)) = Re(e2(k)) at some momen-
tum k (see Fig. 3). Since the imaginary degree of free-
dom is in general gapped, crossings are stable, i.e. every
small perturbations only renormalizes their position, but
cannot gap out the nodal spectral function (see (b) in
Fig. 1).

Local Stability. Locally in frequency-momentum-
space, the only way to gap out an isolated crossing is
to overcome the gap in the imaginary-part, which nec-
essarily leads to a degeneracy in the complex energies.
This generically results in an EP [53] where the rGF(see
Eq. (2)) becomes non-diagonalizable and two eigenvec-
tors coalesce [7, 11, 18, 27].

FIG. 4. (a) Spectral function A(k, ω) for J =
{1.00, 1.15, 1.26, 1.45} (panels in reading order) calculated us-
ing NEGF for N = 200. Green dashed lines correspond to
real-part of quasiparticle dispersion, in good agreement with
intensity maxima. Red dashed lines mark imaginary Fermi
arcs connecting the EPs (red dots). Initially (J = 1.0) the
system is in the braiding phase c = 1, with increasing J EPs
move closer to the crossing, and finally merge resulting in a
gapped trivial phase c = 0. (b) Spectral function A(k = 0, ω)
at fixed momentum and J = {1.00, 1.25, 1.37, 1.6} (from blue
to yellow), calculated within ED for N = 7. Inset: gap ∆ for
different perturbation strengths J , calculated using the dis-
tance between the intensity maxima. Other parameters in all
plots: τ1 = 1.0, v = −1.0, Ua = 1.5, Ub = 0.1, T = 5, periodic
boundary conditions

.
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Fig. 4 (a) shows how a typical crossing locally gaps out,
the results are computed using NEGF and the perturba-
tion is an increase in J (see Eq. (3)). First, for a wide
range of perturbations the single nodal point shifts but
stays intact (Fig. 4 upper row). Finally, a pair of EPs ap-
proaches and as both merge, the crossing gaps out(Fig. 4
lower row). The occurrence of EPs close to a phase tran-
sition is a robust feature as well as the so called imagi-
nary Fermi-arc (red dashed line) [11, 18] which, though
spectroscopically invisible, facilitates a complex analyti-
cal understanding of the process. Specifically, the imagi-
nary Fermi-arc intersects the crossing and thus connects
the two EPs. Since ED is limited to small systems sizes,
the rGF there lacks a sufficient resolution in momentum-
space for locating the EPs. However, the stable cross-
ing may be visualized by the spectral function for dif-
ferent perturbations at momentum k = 0 (Fig. 4 (b)).
In agreement with the NEGF data on larger systems, a
splitting of a single peak in two smaller ones can be seen,
which occurs only at significant perturbation strengths
J (Fig. 4 (b) inset). This observation also complements
earlier findings of EPs close to the Kondo transition in
[21, 25].

Global Stability. A second way to gap out a crossing is
by including a second nodal point, and then smoothly de-
forming the system until both may annihilate each other.
As an example, the braid γ = σ1σ

−1
1 = 1 (Fig. 3 upper

right) can be smoothly deformed without EPs into an
insulator (Fig. 3 upper left). In this scenario, a local
crossing can get continuously annihilated by its inverse
without the necessity of an EP transition.

These phenomena can be generalized to the full Bril-
louin zone, respectively the ”global” conjugacy class c
(Eq. (6)) induces at least |c| crossings which can only be
gapped by EPs, thus for a non-trivial dispersion like the
lower ones in Fig. 3 the crossings are also globally sta-
ble. Eventually, stable semimetallic phases are the first
consequence of the previously introduced classification in
braiding groups.

Finally, it is worth to mention that the stability of
nodal points contradicts with a Hermitian description
of quasiparticle bands, where already a small perturba-
tion can destroy a crossing. Further, since this effect
is induced by the non-Hermiticity of the selfenergy, we
may argue that crossings of electronic band-structures
are genuinely stabilized by interactions with a non-trivial
orbital structure, in our case a sublattice dependence.

B. Non-Reciprocal Single-Particle Green’s
Function Excitations

Besides the quasiparticle energy, the group velocity
vj(k) corresponding to an excitations is of interest, which
we defined by the momentum derivative of the quasipar-
ticle energy Eq. (5):

vj(k) = ∂kRe(ej(k)). (7)

The velocity vj(k) in combination with the correspond-
ing inverse lifetime Im(ej(k)) allows to gain insights at a
qualitative level on the propagation dynamics of single-
particle excitations and the timescales for which certain
modes are relevant.
Non-Reciprocal Crossings An ordinary crossing of-

ten obeys group velocities in opposite directions, i.e.
sgn(v1(k)) = −sgn(v2(k)), and a stable crossing typi-
cally consists of a broader and a sharper band, as their
lifetimes differ due to the imaginary gap. Then, the ex-
citations of one band decay slower than the excitations
of the second band that move in the opposite direction.
Consequently, a perturbation that is equally exciting left-
and right-movers close to the crossing, is expected to
exhibit non-reciprocal dynamics. In the spectral func-
tion A(k, ω) Fig. 3 these local non-reciprocal crossings
are very well visible. By looking at the rGF in real-space
and real-time, we see that the quasiparticle dynamics in-
deed acquires a non-reciprocal asymmetry very fast in
the non-trivial braiding phase (see Fig. 5).
Observing this local non-reciprocity requires selec-

tively exciting quasiparticles close to a crossing. By con-
trast, in the upper right band-structure in Fig. 3, the
second crossing counters the effect induced by the first
crossing, thus preventing clear non-reciprocal effects in
real-space. A more stable approach to reveal the non-
reciprocal dynamics is to look at a regime, where the
longest-living excitations are close to a crossing. This
ensures that on intermediate and larger time-scales these
excitations dominantly determine the dynamics.
Generalizing non-reciprocity to a global topological

perspective, we find that every odd braiding number
c = 2n − 1 (n ∈ Z) exhibits non-reciprocal behavior
in the above dynamical sense unless the dispersion is
non-analytic (see proof in Appendix C). Alternatively,
defining reciprocity as equivalent to inversion symmetry
k → −k (as in [52]), it follows that every non-trivial braid
is non-reciprocal. Apart from possible fine-tuned excep-
tions, we find that any non-trivial braidings are at least
good candidates to also see the previously described local
non-reciprocity.

C. Non-Reciprocal Charge Propagation

In addition to the previously described non-reciprocal
rGF properties, non-reciprocity in non-trivial braiding
phases can be observed in non-equilibrium dynamics of
the charge density after a local parameter quench, indi-
cating that non-reciprocal quasiparticles may influence
common measurable quantities.
Quench Setup To this end, we assume that the sys-

tem is initially prepared in thermal equilibrium at tem-
perature T = 5, before an on-site potential Ht>0 =
H + Vj (nj,A + nj,B) at site j is switched on at t = 0.
Pictorially speaking, the potential pushes particles away
from the chosen site j, and creates a charge perturba-
tion spreading over the whole system, which is sensitive
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FIG. 5. (a) and (c): Absolute value of the trace |Tr(Ĝ(j, t))| in
real-space within the braiding phase c = 1 and J = 1.0, τ0 =
1.0, τ1 = 0.0, v0 = −1.0, v1 = 0.0, Ua = 1.5, Ub = 0.1, N =
200(NEGF), N = 8(ED), showing a non-reciprocal behaviour.
(b): Absolute value for fixed times t (same parameters as in
(a)), with a Gaussian ballistically moving peak. (c): PBC
and small system size leading to circulating behaviour.

to the quasiparticles described by the rGF. A similar
quench setup has been used to study non-equilibrium dy-
namics in spin- 12 XXZ-Chains and Fermi-Hubbard mod-
els [54–57]. The propagation of the density excitation
can be seen in the particle-density per site ∆n(j, t) =∑

α={A,B}⟨nj,α(t) − nj,α(0)⟩. Here nj,α(t) denotes the

density operator in the Heisenberg picture. The particle-
density after the quench was computed using NEGFs for
the insulator model with trivial braiding and the non-
trivial model with conjugacy class c = 1 of the previous
section within open boundary conditions and N = 50
unit cells.

Non-Reciprocity in the Topological Phase As shown
in Fig. 1 (d) and Fig. 6 (a) the charge perturbation
spreads over the system in time, building-up a light-cone
structure. Interestingly, this light-cone is now asymmet-
ric for a non-reciprocal band-structure, i.e. the left and
right moving excitation both propagate ballistically for
short times, but with increasing time the former spreads
diffusively, while the latter still propagates linearly. This
picture is in line with the lifetime difference of the right-

FIG. 6. Time dependent change of the density ∆n(j, t)
illustrating charge propagation after an onsite quench by
switching on the a potential Vm (nA(m) + nB(m)) at site
m = 25(Vm = 1.0): (a) reciprocal system with trivial braid-
ing and parameters J = 1.5, τ0 = 1.0, τ1 = 0.0, v0 = 0.0, v1 =
0.0, Ua = 1.5, Ub = 0.1, (b) real-space cuts of ∆n(j, t) as
a function of distance |j − m| to the perturbed site m for
fixed times t in the non-reciprocal braiding phase c = 1
(cf. Fig. 1(d)), right-moving part shown in blue and the left-
moving part in orange. Parameters are J = 1.0, τ0 = 0.0, τ1 =
1.0, v0 = 0.0, v1 = −1.0, Ua = 1.5, Ub = 0.1.

and left-moving quasiparticles in the spectral function,
suggesting that the non-reciprocity of the quasiparticle
bands consequently leads to non-reciprocity in the real-
space charge dynamics. The non-reciprocity gets even
more visible by looking at real-space cuts of ∆n(j, t) for
fixed times t(Fig. 6 (b)), where the excitation moving to
the right shows a stable ballistic peak structure (blue),
contrary to the smoothly broadening front moving to the
left (orange). For comparison, we also simulated the re-
ciprocal system in Fig. 6 (a) which is found to exhibit
a symmetric charge propagation as expected. This clar-
ifies that the non-reciprocity is indeed an intrinsic ef-
fect of the system and does not result from the shape of
the perturbation or the open boundary conditions. The
asymmetric charge-propagation exemplifies that the non-
trivial braiding phases have observable effects beyond the
spectral function A(k, ω), thus highlighting the relevance
of NH topology for the dynamics of interacting many-
body systems.

D. Pseudo-Chiral Mode Limit

The lifetime difference at a crossing may be tuned up
to a point, where one mode acquires (practically) infinite
lifetime. In our model, this limit is realized by switching
off the interactions on the B-sublattice (UB = 0). For
strongly sublattice dependent interactions (compare to
Eq. (3)), interactions on one sublattice do not necessarily
affect quasiparticles on the other sublattice. This can be
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illustrated by the inverse rGF in matrix representation
(see also Eq. (2)):

ĜR(k, ω)−1 = ω1−
(
hAA(k) + Σ(k, ω) h∗

BA(k)
hBA(k) hBB(k)

)
. (8)

Here the non-interacting Bloch-Hamiltonian ĥ(k) was
used in its matrix components and the self-energy Σ(k, ω)
is only non-zero on the AA-entry, which is a consequence
of UB = 0 in Eq. (3). In case of a vanishing coupling
hBA(k

QP ) = 0 at some momentum kQP , the effective
Hamiltonian is diagonal. The corresponding eigenvalues
are then easily obtained by ε1(k

QP , ω) = hAA(k
QP ) +

Σ(kQP , ω) and ε2(k
QP , ω) = hBB(k

QP ). It follows im-
mediately that the inverse lifetime Im(ε2(k

QP , ω)) = 0
of the second eigenvalue vanishes. Consequently, the
spectral function on the B-sublattice AB(k

QP , ω) =
− 1

π Im
(
GR

BB(k
QP , ω)

)
∝ δ(ω − hBB(k

QP )) gets a sharp

peak at ω = hBB(k
QP )(see Appendix D), also visible

in the full spectral function. In the vicinity of kQP the
coupling might be still small, leading to a sharp band dis-
persion [58]. Interestingly, these modes do not preclude
the non-integrability of the model (see section II B), and
thus constitute individual ballistic modes embedded in a
fully chaotic environment.

The corresponding quasiparticles in the vicinity of kQP

obey approximately an infinite lifetime and have energy

eQP (k) ≈ vQP (k − kQP ) + hBB(k
QP ), (9)

where vQP corresponds to the group velocity vQP =
∂khBB(k)|kQP . Such excitations have a strongly pseudo-
chiral character, in particular if the counter-propagating
excitation has a finite (short) lifetime. This limit of non-
interacting modes provides an intuitive picture for the
non-reciprocal effects in our model. Further, in the ex-
treme limit of practically uni-directional motion it con-
stitutes a NH one-dimensional counterpart of chiral edge
states familiar from two-dimensional quantum Hall sys-
tems. However, the non-reciprocity of crossings described
above is much more general and its visibility in observ-
ables extends far beyond the parameter regime of the
pseudo-chiral limit.

V. CONCLUDING DISCUSSION

With this work we propose the notion of nodal spec-
tral functions, i.e. spectral functions that exhibit robust
crossings in the real part of the dispersion that are stabi-
lized by the NH topology of complex quasiparticle bands,
in particular by their braid class. We have exempli-
fied the generic occurrence of such nodal NH topological
phases in correlated 1D systems by numerically solving a
two-banded microscopic lattice model with a sub-lattice
dependent interaction strength. Remarkably, this simple
model system already hosts a variety of distinct braiding
phases, that leave clear fingerprints both in the spectral
function and in non-reciprocal charge dynamics. At the

level of NH tight-binding models, the topological clas-
sification of complex energy bands in terms of braiding
classes has recently been discussed in several studies [13–
17, 37, 38]. Our present work establishes spectral func-
tions of correlated electron systems as a natural physical
setting where these concepts enter the stage to explain
the abundance and robustness of nodal band structures.
Exceptional points, the main focus of previous work on
nodal NH topology, here hallmark the transitions be-
tween different braiding phases. Our insights comple-
ment an earlier result [22], where EPs close to a Kondo
transition were discussed.

The relation between nodal spectral functions and non-
reciprocal dynamics or transport may be intuitively un-
derstood from the generically finite (except at an EP)
gap in the imaginary part of the quasiparticle spectrum
right at the crossing of the real part. This amounts to a
lifetime difference for excitations close to the nodal point,
i.e. the left-mover and right-mover exhibit a different de-
gree of ballistic coherence. As a consequence, we have
identified non-reciprocal dynamics both in the real-space
GF (see Fig. 5) and in the charge propagation after a
local quench (see Fig. 6). In the context of disordered
systems with sub-lattice dependent impurity scattering
[59], we note that a related non-reciprocity in mesoscopic
quantum transport has also been explained by topologi-
cal properties of an effective NH Hamiltonian.

Our model contains an interesting phenomenology in
the limit of an entirely sub-lattice selective interaction
(UB = 0). There, while we find that the model remains
non-integrable, an isolated free (or perfectly ballistic)
mode emerges at the protected level crossing. This situ-
ation is reminiscent of the uni-directional transport in a
chiral edge state known from two-dimensional quantum
Hall systems. While fermion doubling (or in 1D simply
Bloch’s theorem) seems to exclude a uni-directional mode
in 1D, a sizable splitting in the imaginary part may be
seen as a non-reciprocal damping of ballistic transport,
thus burying the counter-propagating mode deeply in the
lower complex half-plane and largely blurring its visibility
in the spectral function, respectively. To understand this
phenomenon in more depth, we have presented an ana-
lytical approach to the non-interacting excitation, thus
providing a complementary microscopic view of the non-
reciprocal dynamics in this extreme limit. However, we
note that the occurrence of non-reciprocity from real-part
crossings accompanied by an imaginary gap is far more
general than the UB = 0 limit.

From an experimental perspective, the observation
of nodal spectral functions and their distinction from
gapped systems is conceptually simple but in practice
strongly depends on the ability to tune and resolve the
lifetime difference between orbitals or sub-lattices. The
predicted non-reciprocal dynamical effects additionally
rely on the ability to selectively excite modes close to
nodal points.
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Appendix B: Winding using ED

FIG. 8. Winding of the complex dispersion {ej(k)} calcu-
lated with ED. (b): trivial braid with J = 1.5, τ0 = 1.0, τ1 =
0.0, v0 = 0.0, v1 = 0.0, Ua = 1.5, Ub = 0.1, N = 14. (a): braid
within phase c = 1 and J = 1.0, τ0 = 1.0, τ1 = 0.0, v0 =
−1.0, v1 = 0.0, Ua = 1.5, Ub = 0.1, N = 14. Despite the lim-
ited system-size a clear braiding characteristic is visible.

Appendix C: Equivalence of the Reciprocity of the
Bandstructure and the Refelection symmetry

Given a 1D complex dispersion {ej(k)} as function
of the momentum k in the Brillouin zone consisting of
M bands, we assume that such a dispersion is recipro-
cal if for every mode ej(k1) at momentum k1 exist a
mode el(k2) at momentum k2 with the same complex
energy ej(k1) = el(k2),i.e. lifetime and excitation en-
ergy are the same, but both move in opposite direction,
thus their group velocities are equal up to a minus sign
∂kRe(ej(k))|k1

= −∂kRe(el(k))|k2
. Notice that the band

index j, l can be equal or different. We will now show
that for uneven braids in the braiding group B2 assum-
ing both bands are analytic(real and imaginary part can
be expanded in a Taylor series), the reciprocity condi-
tion above is equivalent to the assumption that the dis-
persion is reflection symmetric k → −k after applying
a momentum translation in the periodic Brillouin zone.
This leads to a contradiction since a non-trivial braid-
ing cannot obey reflection symmetry, from what follows
uneven braidings are incompatible with reciprocity.

We start by unfolding the braid, doubling the Bril-
louin zone and see the original braid as one complex band
e(k) = e1(k)⊕ e2(k) in the expanded Brillouin zone, this
is possible since we assume an uneven braid(Fig. 9). Con-
sequently e(k) is periodic on the interval k ∈ [0, 4π] and
bounded in its complex energy. From now on we con-
centrate on the real-part Re(e(k)) = eR(k), which also

FIG. 9. Unfolding procedure for braidings with uneven braid-
ing c, by doubling the Brillouin zone one gets an effective one
band description. Schematic illustration of the partition in
intervals {In} on which one can define the smooth shift func-
tions fn.

fulfils these conditions. Here eR(k) can divided in an
even number of pairwise disjunct intervals {In}, where
each In has a partner Iñ with a function fn(k) ∈ Iñ
such that eR(k) = eR(fn(k)) for k ∈ In. Given an inter-
val In we choose now the partner interval Iñ such that
∂keR(k)|k1 = −∂keR(k)|fn(k1), what defines a differential
equation which determines fn(k).

∂keR(fn(k))|k1
= ∂keR(k)|fn(k1)∂kfn(k)|k1

(C1)

= −∂keR(k)|k1∂kfn(k)|k1 (C2)

∂keR(fn(k))|k1
= ∂keR(k)|k1

(C3)

Subtracting the second from the third line leads an equa-
tion for fn(k).

∂kfn(k) = −1 (C4)

fn(k) = −k + cn (C5)

After solving the differential equation we see that the
fn(k) just consist on a momentum inversion and a fixed
shift cn. Thus for each interval pair Iñ, In the band fulfils
a local reflection symmetry eR(k) = eR(−k + cn).
In the next step we show that under the assumption

that eR(k) is analytic everywhere, each local reflection
symmetry is not only valid on the intervals Iñ, In but
also on the whole Brillouin zone. For that we expand
eR(k) at k1 ∈ In and at cn − k1 ∈ Iñ:

eR(k) ≈eR(k1) + ∂keR(k)|k1(k − k1)

+
1

2
∂2
keR(k)|k1

(k − k1)
2... (C6)

eR(k) ≈eR(−k1 + cn) + ∂keR(k)|−k1+cn(k + k1 − cn)

+
1

2
∂2
keR(k)|−k1+cn(k + k1 − cn)

2... (C7)

=eR(k1)− ∂keR(k)|k1(k + k1 − cn)

+
1

2
∂2
keR(k)|k1

(k + k1 − cn)
2... (C8)
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The replacement of the derivatives at the cn − k1 follows
from the reflection symmetry. Now we using the property
of analytic functions, that knowing the Taylor-expansion
at one point necessarily determines the full dispersion
eR(k) on the Brillouin zone, so we now shift our function
by k → ks + cn

2 and sum up both expansions to gain
the expansion at k = cn

2 or in the new shifted space at
ks = 0, it follows that all uneven multiples in ks vanish.

eR(ks) ≈ C0 + 0 · ks + C2k
2
s + 0 · k3s + C4k

4
s ... (C9)

This expression is reflection symmetric around ks = 0.
Consequently it follows that each reflection symmetry is
simultaneously fulfilled by the dispersion eR(k) on the
whole Brillouin zone, thus we conclude eR(k) obeys at
least one reflection symmetry. Since we assumed in the
beginning ej(k) = el(k̃), i.e. if the real-part coinci-
dence also the imaginary-part coincidence, thus also the
imaginary-part has the same symmetry and so the full
dispersion e(k) is symmetric under reflection after a po-
tential shift in momentum. In the last step we backfold
our dispersion onto the original Brillouin zone, however
this operation does not destroy the symmetry.

Appendix D: Exact non-interacting mode in the
spectral function

We start from Eq. (8) and remember the infinitesimal
iη in the BB-entry, we can neglect it in most cases for
a non-trivial imaginary selfenergy Σ(k, ω). Here also the

coupling hAB(k
QP ) = 0 vanishes so the rGF on the B-

sublattice has no imaginary selfenergy, thus we can not
neglect the iη. Being at momentum kQP where the cou-
pling hAB(k

QP ) = 0 vanish, we get:

ĜR(kQP , ω)−1 = ω1−
(
hAA +Σ 0

0 hBB − iη

)
. (D1)

For the readability we omitting the arguments in the
matrix entries, hAA(k

QP )=̂hAA, Σ(k
QP , ω)=̂Σ. Due to

the diagonal structure the spectral function A(kQP , ω) =
− 1

π Im(GR(kQP , ω)) can now easily evaluated:

Â(kQP , ω) =

− 1

π
Im

(
(ω − hAA − Σ)−1 0

0 (ω − hBB + iη)−1

)
. (D2)

The spectral function on the B-sublattice is now defined
as ABB(k

QP , ω) = − 1
π Im(ω−hBB(k

QP )+ iη)−1. Taking
the limit η → 0 gives:

ABB(k
QP , ω) = lim

η→0

1

π

η

(ω − hBB(kQP ))2 + η2

= δ(ω − hBB(k
QP )) (D3)

As consequence the full spectral function
Tr(Â((kQP , ω))) = AAA(k

QP , ω) + ABB(k
QP , ω)

also shows a delta function.
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