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Multimode squeezed light is enticing for several applications, from squeezed frequency combs for spec-
troscopy to signal multiplexing in optical computing. To generate squeezing in multiple frequency modes, opti-
cal parametric oscillators have been vital in realizing multimode squeezed vacuum states through second-order
nonlinear processes. However, most work has focused on generating multimode squeezed vacua and squeez-
ing in mode superpositions (supermodes). Bright squeezing in multiple discrete frequency modes, if realized,
could unlock novel applications in quantum-enhanced spectroscopy and optical quantum computing. Here, we
show how Q factor engineering of a multimode nonlinear cavity with cascaded three wave mixing processes
creates strong, spectrally tunable single mode output amplitude noise squeezing over 10 dB below the shot
noise limit. In addition, we demonstrate squeezing for multiple discrete frequency modes above threshold. This
bright squeezing arises from enhancement of the (noiseless) nonlinear rate relative to decay rates in the system
due to the cascaded generation of photons in a single idler “bath” mode. A natural consequence of the strong
nonlinear coupling in our system is the creation of an effective cavity in the synthetic frequency dimension that
sustains Bloch oscillations in the modal energy distribution. Bloch mode engineering could provide an oppor-
tunity to better control nonlinear energy flow in the synthetic frequency dimension, with exciting applications
in quantum random walks and topological photonics. Lastly, we show evidence of long-range correlations in
amplitude noise between discrete frequency modes, pointing towards the potential of long-range entanglement
in a synthetic frequency dimension.

I. INTRODUCTION

Quantum states of light prepared using nonlinear paramet-
ric processes have attracted significant interest for applica-
tions in precision measurement and quantum technologies
through noise squeezing and entanglement properties [1–4].
Second order nonlinear processes have emerged as a key plat-
form to generate quantum states of light by processes in-
cluding second harmonic generation and parametric down-
conversion in optical parametric oscillators (OPOs), leading
to numerous theoretical proposals and experimental realiza-
tions of entangled single photon pairs, single mode squeez-
ing, squeezed supermodes (including two-mode squeezing),
and broadband quantum frequency combs [5–17]. However,
most of these works have focused on single mode and multi-
mode squeezed vacua (as generated, for example, by OPOs
pumped below threshold). Nondegenerate OPOs operated
above threshold have also been investigated for amplitude
squeezing. In many works, twin beam squeezing is often con-
sidered, given the strong correlation between intensity noise
in signal and idler modes from a single parametric downcon-
version process. Single beam squeezing is also possible, con-
sidering the photon number filtering that twin beam correla-
tions induce [18–20]. However, the output amplitude noise
squeezing for a single nondegenerate downconversion process
is theoretically limited to 3 dB below the shot noise limit [18].
This squeezing is also generally limited to narrow spectral
ranges depending on the nonlinear crystal used and its phase
matching conditions. Achieving tunable single mode and mul-
timode “bright” amplitude squeezing in systems with multiple
frequency modes remains unexplored, despite exciting poten-
tial for quantum optical information multiplexing and bright
squeezed frequency combs for spectroscopy applications [21].

Here, we explore a novel scheme for amplitude squeez-
ing within a multimode cavity with second-order nonlinear-
ity that employs cascaded parametric amplification mediated
by a common terahertz “bath” mode to create an infrared
frequency comb with terahertz mode spacing [22–24]. We
demonstrate that by strategically engineering the cavity’s Q
factor profile, we can manipulate the nonlinear energy flow
through frequency space, thereby significantly shaping both
mean field and noise properties. Our method works by creat-
ing a high Q factor cavity in frequency space that traps non-
linear energy flow within a finite (and controllable) span of
discrete frequency modes [25]. This enables very strong non-
linear coupling between nearest-neighbor frequency modes
that can exceed decay rates in the system. This can lead to
excitation of counter-propagating Bloch modes in the “fre-
quency cavity,” whose interference is manifested in a stand-
ing wave distribution of steady state modal energies. By in-
creasing the outcoupling (lowering the loaded Q factor) for
one or more selected discrete frequency modes, we show that
the frequency cavity supports simultaneous output amplitude
squeezing in these mode(s) over a > 100 MHz bandwidth.
Strong squeezing emerges because of an enhancement in the
noiseless nonlinear coupling over dissipation. Finally, we de-
scribe how the strong nonlinear interactions in our system cre-
ate strong long-range correlations in amplitude noise that may
suggest existence of long-range entanglement in a synthetic
frequency dimension. Our study of quantum noise through
cascaded nonlinear interactions suggests many exciting possi-
bilities, including bright squeezed frequency combs, trapped
states and solitons in the synthetic frequency dimension, tun-
able quantum walks, and much more [25].

The rest of this paper is structured as follows. In Sec. II, we
introduce our system and describe how its mean field dynam-
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ics and quantum noise behavior can be calculated. Included in
this section is a discussion of the “frequency cavity” that our
system realizes, which supports counter-propagating resonant
Bloch modes that cause interference patterns in the modal en-
ergy distribution. In Sec. III A, we describe intracavity mean
field dynamics, noise, and the presence of relaxation oscil-
lations due to strong multimode nonlinear coupling. In Sec.
IV, we show tunable single mode and multimode squeezing
in output amplitude noise, describing the limitations and con-
ditions for generating strong squeezing. Lastly, in Sec. V, we
show how the coupling of the infrared frequency comb to a
common terahertz bath mode allows strong long-range corre-
lations in frequency space.

II. THEORY

At the heart of our concept is the novel Q engineering of
a multimode nonlinear cavity [26], as illustrated in Fig. 1a.
Our system comprises a comb of infrared (IR) cavity modes,
each mode coupled to its nearest neighbors via a bath mode,
here specifically a terahertz (THz) frequency mode (whose
small frequency allows for many modes in a small IR span).
The process begins with nonlinear three wave mixing (TWM)
where a pump photon (ω0) simultaneously amplifies a seed
photon (ω1) and generates a new photon in the idler “bath”
mode (ωT ). Subsequently, cascading steps are initiated by
the nonlinear interaction of the bath mode (THz) with the IR
modes, resulting in multiple equally spaced modes. This pro-
duces a frequency comb with spacing given by ωT . By prop-
erly engineering the Q factors of the cavity modes, one can
favor the three wave downconversion processes that create
THz idler photons. This enhances the rate of nonlinear energy
flow in the cavity and, due to its noiseless nature, can result in
squeezing when the nonlinear rate surpasses dissipation rates
in the system.

We design the multimode cavity such that, through phase
matching constraints, only TWMs of the form ωn−1 ↔ ωn +
ωT are supported (here, ωk < ωn when k > n). The decay
rates for modes of all other frequencies are assumed much
faster than the relevant timescales in this system, so we restrict
our attention to the system specified by the coupled IR modes
and the THz mode.

We simulate the mean field and noise properties of our sys-
tem by using the Heisenberg-Langevin equations of motion
for the mode field (annihilation) operators (see Appendix for
details), which read

ȧT = κ
∑
n

a†nan−1 − γTaT +
√
2γT sT

ȧn = κ
(
a†Tan−1 − an+1aT

)
− γnan +

√
2γnsn,

(1)

where an are field operators that determine the photon num-
ber ⟨a†nan⟩, κ ∈ R has units of s−1 and denotes the non-
linear coupling strength (related to the nonlinear susceptibil-
ity χ(2) and assumed frequency-independent), γn, γT denote
the outcoupling rates for the IR and THz modes, sn denotes

the external fields, and the indexing is such that n > 0 cor-
respond to redshifted modes relative to the pump at n = 0.
An estimation of typical values of κ for realistic experimental
settings is provided in the Appendix. Unless specified oth-
erwise, only modes a0,1 are pumped, so that only s0,1 have
nonzero mean. Note that in the Heisenberg-Langevin formal-
ism, the zero-mean terms

√
2γnsn are Langevin forces asso-

ciated with the outcoupling process (see Appendix). In Sec.
IV, we consider the effect of intrinsic loss, which adds fur-
ther noise to the system through other Langevin forces (the
full equations of motion including intrinsic loss are provided
in the Appendix). In our simulations, we numerically solve
the Heisenberg-Langevin equations of motion in the mean
field domain using backward differentiation [45] to obtain the
steady state mode amplitudes an ≡ ⟨an⟩, a∗n = ⟨a†n⟩ from a
vacuum initial state.

Assuming a strong, coherent pump (up to small fluctu-
ations), when the system reaches steady state, we can lin-
earize the equations of motion about the mean values for
the fields (ân = an + δân where here we made explicit
the distinction between an operator and complex number)
to construct linearized equations of motion for the operators
δan, δa

†
n. Note that we do in general need to linearize with

respect to two degrees of freedom for each mode (an, a†n).
However, by picking zero initial conditions for the fields and
taking κ ∈ R, the steady states will be real-valued in this
model. Then, we can define quadrature operators pn =
an + a†n, qn = −i

(
an − a†n

)
, whose fluctuations directly

give the amplitude and phase noise of mode an (as shown
in the Appendix). Because the modal amplitudes are real-
valued, pn, qn do not couple. We can perform a Fourier trans-
form and derive a system linear in the fluctuations δpn(ω)
that can be arranged in matrix form as M(ω)P (ω) = F (ω),
where P (ω) = [δp0(ω)δp1(ω) · · · δpN (ω)δpT (ω)]

T and F =

[F0(ω)F1(ω) · · ·FN (ω)FT (ω)]
T is the Langevin force vec-

tor. The zero-mean Langevin forces satisfy ⟨F †
nFn′⟩ =

2γnδnn′ (see Appendix for details). An explicit expression
for the fluctuation matrix M is also provided in the Appendix.
The amplitude noise for mode an is coupled to the noise of
aT , an−1, an+1 in the frequency domain according to

δpn =
κ [δpT (an−1 − an+1) + aT (δpn−1 − δpn+1)] + Fn

−iω + γn
.

(2)

From the elements of the inverse fluctuation matrix M−1 as
well as the Langevin force correlators, the intracavity and out-
put amplitude noise can be computed according to

⟨δp†n,inδpn,in⟩ = |M−1
n,N+1|

2(2γT ) +

N∑
k=0

|M−1
n,k|

2(2γk)

⟨δp†n,outδpn,out⟩ = 1 + 2γn⟨δp†n,inδpn,in⟩ − 4γnRe(M
−1
n,n),

(3)

where the output fluctuation amplitude for mode an is given
by δpn,out =

√
2γnδpn,in − (δsn + δs†n). To compute

the squeezing factor, we compare the amplitude noise to the
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FIG. 1: Squeezing in a multimode cavity with THz-mediated cascaded three wave mixing. (a) Cascading infrared (IR) orders are resonant
in a multimode cavity and undergo three wave mixing (TWM) mediated by a terahertz (THz) mode, creating a frequency comb (red) with modes
separated by the THz frequency ωT (green). The cascade starts with a single TWM process wherein a pump photon at ω0 amplifies a seed
photon at ω1 (solid line) and simultaneously creates an idler photon (THz, dashed line) (1). Subsequently, the amplified mode at ω1 initiates
cascading downconversion processes, now seeded by the THz idler photon (2). Concomitantly, THz photons can also initiate upconversion
processes that repopulate the IR orders (3). By shaping the Q factor distribution of the cavity (e.g., through a frequency-dependent coupler),
the modes blueshifted relative to the pump frequency ω0 can be suppressed, biasing downconversions that create THz photons. Through
parametric squeezing enabled by the strong nonlinear rates, the multimode cavity can create above-threshold output squeezing in frequency
mode(s) that are separated from the coherent pump mode by multiple idler photons. (b) Shown for a single mode, the output squeezing emerges
due to destructive interference between the intracavity fluctuations and vacuum shot noise on the output facet of the cavity outcoupling mirror.
(c) Strong squeezing requires strong nonlinear energy flow, which creates a kind of nonlinear tight binding system in frequency space. The
system is bounded by low Q modes at frequencies ω0,N , resulting in a frequency space cavity (modes within the cavity generally have high
Q factors). Excitation of counter-propagating Bloch modes in this cavity creates an interference pattern that is observable in the modal energy
distribution.

corresponding shot noise limit (SNL) in the absence of any
nonlinear processes. Under only driven-dissipative dynam-
ics (and neglecting intrinsic loss), one can show (see Ap-
pendix) that ⟨δp†n,in(ω)δpn,in(ω)⟩ = 2γn/(γ

2
n + ω2) and

⟨δp†n,out(ω)δpn,out(ω)⟩ = 1. These represent what we will
use as “reference coherent states” when analyzing intracavity
and output noise in our system. As we will show, enhance-
ment of nonlinear coupling can enable destructive interference
between the vacuum field sn and the intracavity field pn,in,
generating output squeezing as shown in Fig. 1b.

III. INTRACAVITY MEAN FIELD DYNAMICS AND
NOISE

A. Frequency space cavity

Our system is analogous to the implementation of coupled
resonator optical waveguides in a synthetic frequency dimen-
sion [27]. When the system is truncated by boundary modes
in the frequency dimension, it can be thought of as a Fabry-
Perot-type cavity in frequency space defined by the finite ex-
tent of the high Q factor cascading orders and bounded by
lower Q factor frequency “mirrors.” The leakiest modes lie
outside the frequency cavity. In Fig. 1c, this is shown for
a one-sided comb where frequency cavity modes ω1,...,N−1

have high Q factor (Qr) and frequency mirrors at ω0,N have
lower Q factor (Q0,N ). A natural consequence is that the ex-
citation of modes in this frequency space cavity should man-
ifest in the steady state energy distribution of the frequency

modes. We can make this rigorous by considering a Bloch
mode analysis, noting that our system is a kind of nonlinear
tight-binding model with quasi-discrete translational symme-
try (up to boundary conditions at the frequency mirrors) in the
synthetic frequency dimension. As a crude approximation,
in the case of linear coupling (i.e. assuming aT is constant)
and neglecting dispersion, we have the result that two counter-
propagating Bloch waves with wave vectors k± = π/2a
(where a = ωT is the lattice constant of the frequency crystal
defined by the cascading frequency modes) are excited [25].
(Though beyond the scope of our work, we note that higher
order Bloch modes may be excited by using a pump detuned
from ω0. This provides an extra degree of freedom that could
allow synthesis of arbitrary states/modal profiles in the fre-
quency dimension.) Interference of the Bloch modes creates
a modal energy distribution with quasi-periodicity 2a (due to
dissipation, modal energy drops further from the pump mode).
The magnitude of interference can be tuned via the reflec-
tivity of the frequency mirrors. For example, one can mini-
mize interference by creating an open boundary condition at
ωN . This can be done by “impedance matching” mode aN
such that γN ≈ κaT . This results in minimum reflectivity at
ωN . While minimizing interference is advantageous for max-
imizing efficiency of populating the terahertz idler mode [26],
other design methods, which we describe below, are more op-
timal for maximizing output squeezing.

We briefly note that the interference state in steady state
modal energy naturally translates into interference in the low
frequency modal amplitude noise from the linearization pro-
cedure. In steady state, an ∝ an−1 − an+1 and at zero noise
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frequency, δpn(0) ∝ δpT (0)(an−1 − an+1) (the first term in
Eq. 2 is usually dominant since the terahertz mode contains
additive noise from all of the TWM processes). Thus, gen-
erally, cascading IR modes with higher intracavity intensity
are accompanied with higher low-frequency intracavity am-
plitude noise.

In Fig. 2a, b, we show how a Q engineered multimode cav-
ity that favors frequency downconversions enables strong non-
linear energy flow that creates a frequency comb in modes red-
shifted relative to the pump mode a0. Fig. 2a shows the tem-
poral dynamics of the modal energy distribution for a multi-
mode cavity with Q factor spectrum given by the first panel of
Fig. 2b. Intuitively, energy “bounces” back and forth between
the two frequency mirrors, eventually creating a steady state
modal energy distribution that shows Bloch mode interference
(excitation of Bloch modes with wavevectors k± = π/2ωT )
for the infrared modes lying inside the cavity, as shown in the
second panel of Fig. 2b. Only modes trapped within the fre-
quency cavity defined by the frequency mirrors at ω0,N are
appreciably occupied. Of additional note is the high energy of
the terahertz idler mode in the steady state, reflecting the abil-
ity of our system to generate the terahertz idler mode with
high efficiency [26]. In the Appendix, we show how one-
sided (blueshifted) and two-shifted frequency combs can also
be produced in our system with appropriate Q factor shaping.

B. Intracavity noise

Using the formalism described in Sec. II, we can com-
pute the Fano factor noise spectrum for an arbitrary mode
an as ⟨δn†

n(ω)δnn(ω)⟩/nn = ⟨δp†n(ω)δpn(ω)⟩ (where nn =
a†nan, δnn = anδa

†
n + a∗nδan denote the intracavity photon

number and its fluctuations for mode an). In Fig. 2c, this
noise spectrum is plotted for several frequency modes. The
low Q blueshifted modes do not have strong nonlinear cou-
pling with other modes in the system and are governed by
driven-dissipative dynamics, generating an intracavity coher-
ent state (blue curve). By contrast, the idler mode (green),
cascading infrared orders (red), and pump mode (black) un-
dergo strong nonlinear interactions that dominate their dy-
namics. This results in strong gigahertz relaxation oscillations
(on the order of the characteristic nonlinear rate |κaT |). Sev-
eral relaxation oscillation peaks are present due to the strong
nonlinear coupling between multiple modes within the cavity.

In Eq. 3, at frequencies much smaller than the cavity
bandwidth, the inverse fluctuation matrix has entries (for the
cascading IR orders) governed by the smallest timescale in
the system, in our case M−1

n,k ∼ 1/max(κaT , γ0), and the
noise for these modes is dominated by the leakiest (low-
est Q) mode, which is generally the pump mode a0. Thus,
the low frequency noise for the cascading orders scales as
⟨δp†n(0)δpn(0)⟩ ∼ O(γ0/max(κaT , γ0)

2). In Fig. 2d, we
show how, when compared to the noise of a “reference co-
herent state” with equivalent loss but no nonlinear coupling,
the low frequency noise is of order γ0γn

max(κaT ,γ0)2
≪ 1 times

that of the coherent state. Thus, the intracavity low-frequency
noise reduction relative to the aforementioned coherent state

(b)
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FIG. 2: Intracavity dynamics and noise due to strong cascaded
nonlinear interactions. (a) Q factor shaping (through the use of
frequency-dependent couplers) permits the creation of frequency
combs containing only redshifted modes relative to the pump mode
a0. The temporal dynamics feature Bloch waves that propagate
through frequency space, establishing the steady state interference
pattern in intracavity modal energy. (b) Q factors for the differ-
ent frequency modes and quasi-periodic modal energy distribution
in frequency space enabled through cascaded nonlinear interactions.
Green denotes the (THz) idler mode aT , red denotes infrared cas-
cading orders an>0, black denotes the pump mode a0, and blue de-
notes blueshifted modes an<0 (suppressed in the present system).
The dashed lines indicate the boundaries of the cavity in the syn-
thetic frequency dimension. (c), (d) Intracavity relative intensity
noise spectra for modes aT (green), aN−1,N (red, ▲ for aN and
■ for aN−1), a0 (black), and a−1 (blue). The blueshifted mode is a
coherent state that is approximately decoupled from the nonlinear in-
teractions due to its low Q factor. The pump and IR cascading orders
have low frequency noise that lies far below the reference coherent
state defined by a state with identical decay channel but no nonlin-
ear coupling. However, these modes feature strong GHz relaxation
oscillations (ROs). Multiple relaxation oscillation peaks (around the
nonlinear rate |κaT |) are present due to the TWM processes occur-
ring in the multi-resonant cavity. In these simulations, the pump and
seed wavelengths are λ0,1 = 1064, 1068 nm (so that ωT = 2π ·1.06
THz). N = 9 cascading orders are simulated, along with two low Q
“padding modes” on either side of the frequency space cavity. Q fac-
tors used are: Qr = 107 (redshifted modes in frequency space cav-
ity), Q0 = QN = 105 (frequency mirrors), Qb = 102 (blueshifted
modes), and QT = 104 (THz idler mode). The nonlinear strength is
κ = 4.70 s−1 and the input pump and seed powers are |s0,1|2 = 1
MW.

is enhanced by maximizing the nonlinear rate κaT while
making the Q factor for all cascading modes large, so that
γ2
n|M−1

n,k|2 ≪ 1. This low-frequency noise reduction can be
interpreted as the enhancement of noiseless nonlinear pro-
cesses relative to dissipative outcoupling which, as we will
see, permits output amplitude noise squeezing.
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Finally, we note that in the systems we have examined, in-
tegrated intracavity noise appears to remain at the shot noise
limit due to high frequency relaxation oscillations (ROs), re-
sulting in multimode intracavity coherent states. System con-
figurations that damp ROs for some (or all) modes and thus
permit intracavity squeezing may exist, such as systems with
saturable absorbers or other nonlinear losses [28, 29]. Non-
linear dissipation has been proposed as a method to generate
strong single mode intracavity squeezing, and its multimode
extension should be investigated.

IV. OUTPUT NOISE SQUEEZING

A. Single mode squeezing

We now describe how strong output amplitude noise
squeezing can be generated using cascaded nonlinear inter-
actions in a multimode cavity. Notice from Eq. 3 that there
should be strong destructive interference between the intra-
cavity fluctuations of mode an and far-field vacuum fluc-
tuations sn for the same mode (Fig. 1b). At the same
time, the noise contributions from all other modes should be
minimized. Specifically, the conditions to maximize output
squeezing read

(1) [1− 2γnRe(M
−1
n,n(ω))]

2 ≪ 1

(2) 4γnγk|(M−1
n,k(ω))|

2 ≪ 1, k ̸= n,

where M−1
n,k is an element of the inverse fluctuation matrix

that denotes the contribution of fluctuations in mode ak to the
(intracavity) amplitude noise of mode an and γn denotes the
outcoupling rate for mode an. These conditions are satisfied
when the mode to be squeezed has a decay rate γn on the or-
der of the nonlinear rate κaT , while the other modes with non-
negligible steady-state amplitude are of higher Q factor (and
other modes with low Q factor are negligibly occupied). To
see this, notice that for an ideal driven-dissipative state at zero
noise frequency, Re(M−1

n,n(0)) = 1/γn so the self-induced
noise from condition (1) is at the shot noise limit, while for
Re(M−1

n,n(0)) = 1/(2γn) perfect destructive interference in
condition (1) is achieved (zero self-induced noise in the out-
put). In our system, this can be tuned by the ratio γn/κaT .
When all other modes in the frequency comb have high Q
factor, the additive effect on noise in the outcoupled field due
to other modes is minimal (condition 2), and squeezing can be
observed.

Conditions 1 and 2 determine which discrete frequency
modes can be squeezed. It is not possible for the high Q in-
termediate cascading orders to be squeezed since condition
1 is violated. The external cavity noise for these modes is
dominated by external vacuum shot noise. However, mode
aN , for example, terminates the frequency comb and thus
has a larger outcoupling (and lower loaded Q factor). When
γN = O(κaT ), destructive interference of the intracavity am-
plitude fluctuations with the external vacuum shot noise can
occur. Condition 1 can be satisfied through optimizing M−1

N,N ,
which in turn can be controlled by the Q factor profile of the

cavity. When all other cascading orders (including the pump
and seed) are of higher Q factor, both conditions 1 and 2 can
be satisfied, yielding strong output amplitude noise squeezing
for aN that exceeds 10 dB over nearly gigahertz bandwidths,
as described below.

In Fig. 3a, we consider a one-sided comb with N = 15 cas-
cading orders where we selectively squeeze a terminal mode
(λ15 = 1127 nm) or a mode lying inside the frequency cav-
ity (λ9 = 1101 nm) by creating a low Q factor defect for
the squeezed mode in the otherwise high Q factor frequency
cavity (left panel of Fig. 3a). In the center panel, notice that
(1) the nonzero reflectivity of frequency mirror aN generates
Bloch interference in the mean field and (2) the low Q factor
for the squeezed mode guarantees its large outcoupled power.
Satisfying condition 1 (due to the low Q factor of the squeezed
mode) and condition 2 (due to the high Q factor of all other
coupled modes) generates strong single mode squeezing in
low frequency output amplitude noise over 10 dB below the
shot noise limit, as seen in the right panel.

In Fig. 3b (first panel), we show the contribution of condi-
tions (1) and (2) to the output noise in the terminal mode aN .
The total output noise is minimized when the sum of the two
contributions is minimized. We also show the contribution of
intrinsic loss to output squeezing (second panel), which re-
veals that strong squeezing in aN persists even when intrinsic
loss is around 10% of the outcoupling rate, i.e. γn/µn ≈ 10
(the same ratio of intrinsic loss to outcoupling is used for all
modes).

In Fig. 3c, we examine how various setup parameters shape
single mode squeezing in the terminal mode aN . In the first
panel, we see that stronger squeezing is achieved for higher
QT . In addition to enhancing cycling of the terahertz idler
photon within the cavity (which strengthens nonlinear energy
flow), a higher QT reduces the effect of coupling of fluctua-
tions in aT to output noise in aN . As expected from condition
(1), with fixed QT , we see there is an optimal QN to gen-
erate strongest squeezing. When QN is too low or too high,
destructive interference with the external vacuum field is inef-
fective. In the second panel, we sweep over QN and the num-
ber of cascading orders N . The most distinctive feature is the
weakened squeezing for even N . This occurs due to the ef-
fect of Bloch interference, specifically the pump mode. When
N is odd, the low Q factor end of the frequency space chain
a0, a−1 are negligibly occupied, so the squeezing for aN is
strong. When N is even, the noise contribution from a0, a−1

is significant since they are non-negligibly occupied, so the
squeezing in aN is less due to noise coupling to a0, a−1. We
also notice a tendency towards stronger squeezing for longer
combs (larger N ). This appears to be because of an inverse
scaling with N of the coupling of the idler mode fluctuations
to the output noise in aN , due to an enhancement in the effec-
tive nonlinear rate relative to dissipation rates. We have found
that when condition (1) is fully satisfied, the output noise (rel-
ative to the SNL) in aN goes as γT |aT |2

N2γN |aN |2 . This holds as
long as the idler mode is the dominant source of (coupled)
noise and may break down for very large N when the additive
contribution of the noise coupling from the high Q infrared
cascading orders becomes significant.
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FIG. 3: Single and multimode output noise squeezing. (a) Using a similar cavity design to that presented in Fig. 2, single frequency modes
in the synthetic frequency dimension can be squeezed in output noise. Here, we simulate N = 15 cascading orders, and the mode with low
Q is squeezed. Dashed lines demarcate the boundaries of the frequency space cavity. We plot the steady state output power in the modes;
due to their low Q, the squeezed modes have the highest power outside the cavity. The remaining IR modes show an interference pattern in
steady state power characteristic of the Bloch interference phenomenon in Fig. 2. The terahertz mode aT also has high power, while modes
outside the frequency space cavity are very leaky and negligibly occupied in the steady state. The modes that are designed to have low Q
are the only ones to show significant departure from the shot noise limit (SNL), demonstrating intensity noise squeezing exceeding 10 dB. In
these simulations, Q0 = 3 × 106, QN = 2 × 105, Qr = QT = 109 and κ = 14.1 s−1. (b), (c) The single mode output squeezing (here
for mode aN ) can be maximized by optimizing multiple parameters simultaneously. Here, we show that higher QT and lower intrinsic loss
generates stronger squeezing due to stronger nonlinear energy flow. A larger number of modes (N ) can also help increase squeezing, though
too many modes can make the noise contribution from modes ak ̸=N significant (red dashed curve in (c)). Lastly, an optimal QN exists (with all
parameters held equal) to maximize squeezing. Roughly, this QN maximizes destructive interference with vacuum shot noise as per condition
(1) (red dotted curve in (c)). In (b), (c), Qr = 108 and µ/γ denotes the ratio of intrinsic loss to the outcoupling rate. (d), (e) By shaping the Q
factor profile of the multimode cavity, specifically by introducing multiple Q factor “defects,” output squeezing can be obtained for multiple
frequency modes. Here, N = 7 modes are simulated. The bandwidth for squeezing in the inset is around 100 MHz, but can be optimized to
> 1 GHz by enabling stronger nonlinear rates.

B. Multimode squeezing

By introducing multiple low Q factor “defects” into the
chain of cascading orders, multiple frequency modes can be
squeezed in output amplitude noise. When Bloch interference
is present, modes with opposite parity to mode aN have sig-
nificantly damped low-frequency intracavity noise, so the de-
structive interference with external vacuum shot noise is in-
effective. Therefore, modes aN , aN−2, ... with the same par-
ity as aN (high steady-state amplitude, high intracavity noise
branch) are more strongly squeezed. As the number of modes
we would like to squeeze increases, the degree of squeezing
decreases. Suppose we aim to squeeze m modes by introduc-
ing m identical “defects” (Q factor dips). In the ideal case,
the noise is dominated by these low Q modes. Let x denote
the quantity 2γnM

−1
n,n for one such squeezed mode. Then, for

equal squeezing in all modes, we compute

min
x

[
(1− x)2 + (m− 1)x2

]
= 1− 1

m
. (4)

Notice that this gives the 3 dB single beam output squeezing
limit of the signal and idler beams when m = 2 [18]. As m
grows large, all modes approach the shot noise limit.

In Fig. 3d, e, we show how introducing 1 (aN squeezed), 2
(aN , aN−2 squeezed), and 3 (aN , aN−2, aN−4 squeezed) de-
fects generates single and multimode output amplitude noise
squeezing. By further tuning the Q factors of the squeezed
modes, it may be possible to control the “distribution of
squeezing” over the squeezed modes (e.g., in the trivial case,
only one low Q factor defect corresponds to single mode
squeezing). As expected from the previous discussion, the
squeezing for multiple modes weakens. The inset shows that
the bandwidth over which squeezing occurs is similar to that
for intracavity squeezing and limited by the onset of relax-
ation oscillations. The amplitude noise returns to shot noise
level around 100 MHz-1 GHz. This bandwidth is limited by
the onset of intracavity relaxation oscillations (i.e. the non-
linear rate in our system). Thus, strong nonlinear interactions
can in principle reach GHz-surpassing bandwidths.
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FIG. 4: Twin beam correlations. (a) Single beam outcoupled power
and (DC) output noise. (b) Twin beam intensity sum and difference
fluctuations ⟨δni ± δnj⟩ normalized to the uncorrelated twin beam
noise. Despite certain modes being strongly antisqueezed in (indi-
vidual) output amplitude noise, strong correlations between multiple
pairs of modes significantly reduce the twin beam noise. These cor-
relations span the dimension of the frequency cavity and may point
towards the possibility of long-range entanglement in a synthetic fre-
quency dimension. Simulation parameters are Q0 = QN = Qr =
Qb = 3×106, QT = 105, κ = 3×10−4 J−1/2, and |s0|2 = 1 MW,
|s1|2 = 100 W. All noises are computed at noise frequencies much
lower than the cavity bandwidth.

V. MULTIMODE TWIN BEAM QUANTUM
CORRELATIONS

In this section, we examine quantum noise correlations be-
tween discrete frequency modes in our system. In the case of a
single ideal TWM process, it is well known that the amplitude
sum of the signal and idler is noiseless and signal and idler
photons are entangled [30]. When cascaded nonlinear pro-
cesses are present, this entanglement is now distributed over
many modes. In Fig. 4, we consider a two-sided comb (in
contrast to the one-sided comb design for squeezing above;
see Appendix for Q factor profile) and plot the low frequency
noise in the output intensity sum Sij =

∑
k,k′∈{i,j}⟨δn

†
kδnk′⟩

and difference Dij =
∑

k,k′∈{i,j}(−1)1+δk,k′ ⟨δn†
kδnk′⟩,

where nk = a†kak is the number operator for mode k (fur-
ther details on the calculation are provided in the Appendix).
These twin beam noises are normalized to the uncorrelated
twin beam noise Uij =

∑
k∈{i,j}⟨δn

†
kδnk⟩. Normalization by

Uij shows that twin beam squeezing emerges due to correla-
tions between the two modes rather than single beam squeez-
ing.

We can compare the twin beam noise to the noise in a sin-

gle mode. In Fig. 4a, we plot the outcoupled power and low
frequency output amplitude noise for individual modes. Cer-
tain modes are near the SNL, while others are strongly anti-
squeezed. Fig. 4b demonstrates that twin beam noise can
be reduced by orders of magnitude relative to single beam
noise. This strong squeezing relative to single beam noise
generally occurs when the two modes have comparable indi-
vidual noise, as this permits stronger destructive interference
in the amplitude fluctuations. We see that strong correlations
can occur within the frequency cavity and with the common
terahertz idler mode, resulting in squeezing over 20 dB rela-
tive to the uncorrelated twin beam noise. In contrast to the
correlations for a single TWM process, the correlations in our
system can be much longer range, spanning the dimension of
the frequency cavity. We also point out the twin beam squeez-
ing in the noise of the amplitude difference pn − p−n. This
is reminiscent of the strong squeezing reported in the super-
modes of soliton microcombs, pn ± p−n [14]. We conclude
by noting that recent experiments have reported strong noise
correlations for multiple wavelength pairs in the continuous
spectrum generated by a nonlinear fiber, providing impetus for
realizing multimode quantum states over discrete frequency
modes [31].

VI. DISCUSSION

In this paper, we demonstrated bright single- and multi-
mode squeezing using cascaded three wave mixing processes
in a nonlinear cavity. Our work constitutes a distinct paradigm
shift relative to most previous works that have focused on
below-threshold parametric squeezing in the single- and mul-
timode regimes. Furthermore, we have shown the existence
of quantum correlations between multiple pairs of frequency
modes, extending the concept of twin beam squeezing that is
well-known for single parametric downconversion processes.
In this section, we provide an outlook on this work from both
a theoretical and experimental perspective.

We have noted previously that intracavity squeezed state
generation in the proposed system is difficult given the ex-
istence of high frequency relaxation oscillations. However,
the generation of multimode intracavity bright squeezed states
could enable a new regime of cavity QED experiments [32–
35]. For example, single mode cavity QED is generally lim-
ited to global interactions well-described by mean field the-
ory, whereas multimode cavity QED may permit tunable local
couplings that can elucidate beyond-mean-field physics [36].
Thus, mechanisms for the suppression of relaxation oscilla-
tions should be investigated, such as recent theoretical work
on the application of nonlinear dissipation to single mode in-
tracavity squeezing in lasers [28, 29].

Exciting topological phenomena have been studied in syn-
thetic dimensions in photonics, and our work suggests a plat-
form for studying the intersection of topology and nonlinear
quantum optics in a synthetic frequency dimension [37, 38].
For example, recent work has explored the use of external am-
plitude and phase modulation in ring resonators and coupled
OPOs to generate non-Hermitian tight-binding coupling be-
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tween resonant frequency modes [39–41]. Our system offers
the opportunity to tune both nonlinear coupling (as we have
done here) and non-Hermitian modulation, shaping energy
propagation between discrete frequency modes. This could
unlock novel topological phenomena such as skin effects in
a synthetic frequency dimension and topologically-protected
quantum optical states.

Recent work with electro-optic modulated thin-film lithium
niobate microresonators has revealed the potential of using
interference between Bloch modes to tailor the flow of light
in the synthetic frequency dimension, creating, for example,
trapped states [25]. Applying similar techniques to our system
could allow creation of squeezed frequency-space solitons and
other more exotic classical and quantum states of light. Ad-
ditionally, we anticipate that squeezing in these Bloch modes
or quasi-Bloch modes that diagonalize the nonlinear Hamil-
tonian could be even larger than the squeezing for individual
frequency modes described here, inspired by recent proposals
to generate output squeezing exceeding 15 dB in supermodes
of a soliton microcomb system [14].

We now comment on experimental platforms that may re-
alize the effects described in this paper. The important crite-
rion to generate squeezing and strong long-range correlations
is a strong enhancement of the nonlinear coupling relative to
dissipation in the system, which requires (1) high pump and
seed power, (2) a strongly resonant nonlinear multimode cav-
ity, and (3) a method to tune the dissipation (Q factor) for
different frequency modes. In addition to free space opti-
cal parametric oscillators (OPOs), on chip OPOs may offer
a platform to realize the effects described here with compact
form factor [42]. Recent advances in the integration of lithium
niobate photonics with ultra high Q whispering gallery mode
resonators [43, 44], for instance, may provide the necessary
elements to generate cascading nonlinear processes, though
intrinsic losses (particularly at the idler frequency) will need
to be minimized.

The effects we have described here do not depend on spe-
cific spectral ranges for the pump, signal, and idler modes.
Depending on the platform and material, a higher frequency
mid-IR idler mode could be used instead, potentially with
lower losses at the expense of a shorter comb. Furthermore, an
essential part of our approach is Q factor engineering, which
allows one to tune the length of the frequency comb, rela-
tive amplitudes of the different modes, and which modes are
squeezed/correlated. Experimentally, this Q factor engineer-
ing can be achieved by using photonic crystals that provide
frequency-tunable filters for coupling into and out of the cav-
ity.

Our work establishes the mechanism of cascaded nonlinear
optical processes as a method to generate frequency combs
that exhibit bright squeezing and quantum correlations over
a broad (and tunable) spectral range. We envision future ap-
plication of the concepts described here to tunable squeezed
light sources, multimode entanglement for sensing and quan-
tum computing protocols, and much more.
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