
Bell’s and Mermin’s inequalities, entangled coherent states and unitary operators

S. P. Sorella1, ∗

1UERJ – Universidade do Estado do Rio de Janeiro,
Instituto de F́ısica – Departamento de F́ısica Teórica – Rua São
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We elaborate on the recent proposal of employing unitary operators in Quantum Mechanics.
The Bell and Mermin inequalities for entangled coherent states are scrutinized by making use of
the unitary displacement operators. A violation of the Mermin inequality close to the maximum
allowed value is reported, in agreement with the existing literature.

I. INTRODUCTION

In this work we pursue the investigation on the use of unitary operators in order to study the violation of both
Bell-CHSH [1, 2] and Mermin [3] inequalities.

Unitary operators {A}, A†A = AA† = 1, are a special case of a more general class of operators, {Q}, known as
normal operators: Q†Q = QQ†. Normal operators possess a spectral representation [4], a fundamental tool in Quan-
tum Mechanics. As outlined in [5–7], these operators are considered the natural candidates to generalize the notion
of observable in Quantum Mechanics. In particular, setting

A =M + iN , M =M
† , N = N

† , (1)

it follows that the unitary conditions yield

[M,N ] = 0 , M
2
+N

2
= 1 . (2)

Equation (2) tells us that a unitary operator can be thought as being constituted by two Hermitian commuting
operators (M,N ) whose eigenvalues belong to the unit circle.

Concerning now the Bell-CHSH and the Mermin inequalities, let us remind their formulation

⟨ψAB ∣ C∣ ψAB⟩ , C = (A1 +A2)B1 + (A1 −A2)B2 , (3)

and

⟨ψABC ∣M3∣ ψABC⟩ , M3 = A2B1C1 +A1B2C1 +A1B1C2 −A2B2C2 , (4)

where M3 stands for the Mermin operator of order three. The state ∣ψAB⟩ refers to a bipartite system AB, while
∣ψABC⟩ to a three-partite system ABC. The operators (A1,A2), (B1,B2), (C1,C2) are Hermitian dichotomic opera-
tors fulfilling the conditions

A1 = A†
1 , A2 = A2

† , B1 = B
†
1 , B2 = B2

† , C1 = C
†
1 , C2 = C2

† ,

A2
1 = A2

2
= B2

1 = B2
2
= C2

1 = C2
2
= 1 , (5)

and

[ A1,B1 ] = [ A2,B1 ] = [ A1,B2 ] = [ A2,B2 ] = [ A1,C1 ] = [ A1,C2 ] = 0 ,

[ B1,C1 ] = [ B1,C2 ] = [ A2,C1 ] = [ A2,C2 ] = [ B2,C1 ] = [ B2,C2 ] = 0 ,

[ A1,A2 ] ≠ 0 , [ B1,B2 ] ≠ 0 , [ C1,C2 ] ≠ 0 . (6)
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One speaks of a violation of the Bell-CHSH inequality whenever

2 < ∣⟨ψAB ∣ C∣ ψAB⟩∣ ≤ 2
√
2 . (7)

The value 2 is the classical bound, while 2
√
2 is the maximum allowed violation, the so-called Tsirelson bound [8]. In

the case of the Mermin inequality of order three, eq.(4), the violation occurs for [3]

2 < ∣⟨ψABC ∣M3∣ ψABC⟩∣ ≤ 4 . (8)

Making use of unitary operators means that, instead of employing operators as in eqs.(5).(6), computations are done
with operators (A,A′), (B,B′), (C,C′) subjects to the conditions

A
†
A = 1 = AA† , A

′†
A
′
= 1 = A′A′

†
,

B
†
B = 1 = BB† , B

′†
B
′
= 1 = B′B′

†
,

C
†
C = 1 = CC† , C

′†
C
′
= 1 = C′C′

†
,

[ A,B ] = 0 , [ A
′,B ] = 0 , [ A,B′ ] = 0 , [ A

′,B′ ] = 0 , [ A,C ] = 0 , [ A,C′ ] = 0

[ A
′,C ] = 0 , [ A

′,C′ ] = 0 , [ B,C ] = 0 , [ B,C′ ] = 0 , [ B
′,C ] = 0 , [ B

′,C′ ] = 0

[ A,A′ ] ≠ 0 , [ B,B′ ] ≠ 0 , [ C,C′ ] ≠ 0 (9)

Replacing equations (5), (6) by eqs.(9) requires a detailed re-examination of both classical and quantum bounds for
the Bell-CHSH and Mermin inequalities. From the analysis performed in [7], it follows that the Bell-CHSH and
Mermin inequalities can be consistently formulated in terms of unitary operators provided the reality conditions hold:

⟨ψAB ∣ AiBj ∣ψAB⟩ = real value ∀i, j = 1,2 ,

⟨ψABC ∣ AiBjCk ∣ψABC⟩ = real value ∀i, j, k = 1,2 , (10)

where

{Ai, i = 1,2} = (A,A
′
) , {Bj , j = 1,2} = (B,B

′
) , {Ck, k = 1,2} = (C,C) . (11)

As we shall see, the conditions (10) are fulfilled in the case in which (∣ψAB⟩, ∣ψABC⟩) are entangled coherent states and
the operators (A,A′), (B,B′), (C,C′) are identified with the unitary displacement operators. This setup might result
in new insights on the study of the properties of entangled coherent states for multipartite systems, while providing
a useful application of the unitary operators.

The work is organized as follows. In Sect.(II) we present the treatment of the Bell-CHSH via unitary displace-
ment operators. Sect.(III) is devoted to the Mermin inequality of order three. Sect.(IV) collects our conclusion.

II. THE BELL-CHSH INEQUALITY VIA UNITARY DISPLACEMENT OPERATORS

The main tool of the present investigation is the use of the unitary displacement operator

Da(z) = e
za†−z∗a , Da(z)D

†
a(z) = D

†
a(z)Da(z) = 1 , (12)

where z is a complex number, z = x + iy, and

[a, a†
] = 1 , [a, a] = 0 , [a†, a†

] = 0 , (13)

stand for the criation and annihilation operators acting on the Hilbert space HA of the subsystem A. Similarly, the
displacement operator for the subsystem B reads

Db(w) = e
wb†−w∗b , Db(w)D

†
b(w) = D

†
b(w)Db(w) = 1 , (14)
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where w = u + iv and (b, b†)

[b, b†] = 1 , [b, b] = 0 , [b†, b†] = 0 , [a, b] = 0 , [a, b†] = 0 , (15)

being the ladder operators acting on the Hilbert space HB . The full Hilbert space is H =HA ⊗HB .

For further use, it is worth to write down the main relations which will be employed in the sequel:

Da(z)Da(iη) = .e
−iηR(z)

Da(z + iη) , (16)

where η is a real number. Also

D
†
a(iη) Da(z) Da(iη) = .e−2iηR(z) Da(z) ,

Da(iη) Da(z) Da(−iη) = e2iηR(z) Da(z) ,

Da(iη) Da(z) Da(iη) = Da(z + 2iη) . (17)

Analogous equations hold for Db(w). Let us proceed by specifying the entangled coherent state ∣ψAB⟩ to be used in
order to test the Bell-CHSH inequality:

∣ψAB⟩ = N (Da(iη)Db(iσ) −Da(−iη)Db(−iσ)) ∣0⟩ , (18)

where σ is a real parameter. For the normalization factor N one finds

N =
1
√
2

1

(1 − e−2(η2+σ2))
1/2 . (19)

The next step is that os specifying the operators (A,A′), (B,B′). As already underlined, we shall make use of the
unitary displacement operators, namely

A = Da(z) , A
′
= Da(z

′
) , B = Db(w) , B

′
= Db(w

′
) . (20)

Therefore, for the Bell-CHSH inequality we have

⟨ψAB ∣ C ∣ψAB⟩ = ⟨ψAB ∣ ((Da(z) +Da(z
′
))Db(w) + (Da(z) −Da(z

′
))Db(w

′
)) ∣ψAB⟩ . (21)

We see that the displacement operators are employed for defining both the state ∣ψAB⟩ and the Bell operators. This
interesting possibility is consistently justified by noticing that the reality condition (10) is fulfilled. In fact, a quick
computation shows that

⟨ψAB ∣ Da(z)Db(w) ∣ψAB⟩ = N
2
[2e−

1
2 (∣z∣

2+∣w∣2) cos (2ηR(z) + 2σR(w)) − e−
1
2 (∣z+2iη∣

2+∣w+2iσ∣2)
− e−

1
2 (∣z−2iη∣

2+∣w−2iσ∣2)
] .

(22)
Thus, for the Bell-CHSH correlator we get

⟨ψAB ∣ C ∣ψAB⟩ = N
2
[2e−

1
2 (∣z∣

2+∣w∣2) cos (2ηR(z) + 2σR(w)) − e−
1
2 (∣z+2iη∣

2+∣w+2iσ∣2)
− e−

1
2 (∣z−2iη∣

2+∣w−2iσ∣2)
]

+ N
2
[2e−

1
2 (∣z

′∣2+∣w∣2) cos (2ηR(z′) + 2σR(w)) − e−
1
2 (∣z

′+2iη∣2+∣w+2iσ∣2)
− e−

1
2 (∣z

′−2iη∣2+∣w−2iσ∣2)
]

+ N
2
[2e−

1
2 (∣z∣

2+∣w′∣2) cos (2ηR(z) + 2σR(w′)) − e−
1
2 (∣z+2iη∣

2+∣w′+2iσ∣2)
− e−

1
2 (∣z−2iη∣

2+∣w′−2iσ∣2)
]

− N
2
[2e−

1
2 (∣z

′∣2+∣w′∣2) cos (2ηR(z′) + 2σR(w′)) − e−
1
2 (∣z

′+2iη∣2+∣w′+2iσ∣2)
− e−

1
2 (∣z

′−2iη∣2+∣w′−2iσ∣2)
] .(23)

The meaning of the above expression is well captured by Fig.(1), where the value of the Bell-CHSH correlator is
reported as a function of the parameters (η, σ) which define the entangled coherent state ∣ψAB⟩. The values of the
complex numbers z = x + iy, z′ = x′ + iy′, w = u + iv, w′ = u′ + iv′ have been chosen after an optimization numerical
analysis as:

z = x + iy , x = 0.01 , y = 0.12211

z′ = x′ + iy′ , x′ = 0,01 , y′ = −0.67795

w = u + iv , u = 0.001 , v = 0.122

w′ = u′ + iv′ , u′ = 0.01 , v′ = −0.67826 . (24)

The orange surface shows the behavior of < C >, while the blue surface corresponds to the classical bound < C >= 2.
One sees the existence of a rather big region in which the orange surface is above the blue one. All values of (η, σ)
belonging to this region correspond to violations of the Bell-CHSH inequality. The biggest value of the violation is of
about < C >max≈ 2.23.
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FIG. 1. Behavior of the Bell-CHSH correlator < C > as a function of the parameters (η, σ). The values of the complex numbers
(z, z′,w,w′) are as in equation (24). The region of the orange surface above the blue one corresponds to a violation of the
Bell-CHSH inequality.

III. THE MERMIN INEQUALITY

We move now to the Mermin inequality. The Hilbert space is H =HA⊗HB ⊗HC . We need one more pair of ladder
operators (c, c†):

Dc(ζ) = e
ζc†−ζ∗c , Dc(ζ)D

†
c(ζ) = D

†
c(ζ)Dc(ζ) = 1 , (25)

with

[c, c†] = 1 , [c, c] = 0 , [c†, c†] = 0 , [a, c] = 0 , [a, c†] = 0 , [b, c] = 0 , [b, c†] = 0 . (26)

Here, we make use of the same class of entangled coherent states employed by [9, 10], namely

∣ψABC⟩ = NABC [Da(iη)Db(iσ)Dc(iτ) −Da(−iη)Db(−iσ)Dc(−iτ)] ∣0⟩ , (27)

where

NABC =
1
√
2

1

(1 − e−2(η2+σ2+τ2))
1/2 . (28)

Also in this case, the reality condition (10) is fulfilled. In fact, it turns out that

⟨ψABC ∣ ABC ∣ψABC⟩ = N
2
ABC [2e

− 1
2 (∣z∣

2+∣w∣2+∣ζ∣2) cos (2ηR(z) + 2σR(w) + 2τR(ζ))]

− N
2
ABC [e

− 1
2 (∣z+2iη∣

2+∣w+2iσ∣2+∣ζ+2iτ ∣2)
+ e−

1
2 (∣z−2iη∣

2+∣w−2iσ∣2+ζ−2iτ ∣2)
] . (29)

Therefore, for the Mermin inequality one finds

⟨ψABC ∣M3 ∣ψABC⟩ = N
2
ABC [2e

− 1
2 (∣z

′∣2+∣w∣2+∣ζ∣2) cos (2ηR(z′) + 2σR(w) + 2τR(ζ))]

− N
2
ABC [e

− 1
2 (∣z

′+2iη∣2+∣w+2iσ∣2+∣ζ+2iτ ∣2)
+ e−

1
2 (∣z

′−2iη∣2+∣w−2iσ∣2+∣ζ−2iτ ∣2)
]

+ N
2
ABC [2e

− 1
2 (∣z∣

2+∣w′∣2+∣ζ∣2) cos (2ηR(z) + 2σR(w′) + 2τR(ζ))]
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− N
2
ABC [e

− 1
2 (∣z+2iη∣

2+∣w′+2iσ∣2+∣ζ+2iτ ∣2)
+ e−

1
2 (∣z−2iη∣

2+∣w′−2iσ∣2+∣ζ−2iτ ∣2)
]

+ N
2
ABC [2e

− 1
2 (∣z∣

2+∣w∣2+∣ζ′∣2) cos (2ηR(z) + 2σR(w) + 2τR(ζ ′))]

− N
2
ABC [e

− 1
2 (∣z+2iη∣

2+∣w+2iσ∣2+∣ζ′+2iτ ∣2)
+ e−

1
2 (∣z−2iη∣

2+∣w−2iσ∣2+∣ζ′−2iτ ∣2)
]

− N
2
ABC [2e

− 1
2 (∣z

′∣2+∣w′∣2+∣ζ′∣2) cos (2ηR(z′) + 2σR(w′) + 2τR(ζ ′))]

+ N
2
ABC [e

− 1
2 (∣z

′+2iη∣2+∣w′+2iσ∣2+∣ζ′+2iτ ∣2)
+ e−

1
2 (∣z

′−2iη∣2+∣w′−2iσ∣2+∣ζ′−2iτ ∣2)
] . (30)

As done in the case of the Bell-CHSH we illustrate, in Fig.(2) the behavior of the Mermin correlator ⟨M3⟩ asa function
of (η, σ), for the following values of the remaining parameters obtained through a maximization numerical analysis

z = 0.020091 − i 0.00055757 , z′ = 0.040244 − i 0.00114505 ,

w = 0.015207 − i 0.0000692535 , w′ = 0.036766 − i 0.00036440

ζ = 0.0247087 − i 0.00050390 , ζ ′ = 0.0437431 − i 0.00087464 ,

τ = 41.2201 . (31)

Again, the orange surface above the blue one shows the region in parameter space in which the Mermin inequality is
violated. It is interesting to observe that Fig.(2) is in very good agreement with the results obtained by [9], where the
Mermin inequality of order three for coherent states has been addressed by employing different operators (A,B,C).
From Fig.(2) one notices a region, η− >→ 38.8525, σ → 36.5831, for which the violation of the Mermin inequality is
very close to the maximum allowed value, namely: ⟨M3⟩max = 3.99383 ≈ 4. This is exactly the same pattern observed
in [9].

IV. CONCLUSION

In this work we have pursued the study of the use of unitary operators in order to analyse both Bell-CHSH and
Mermin inequalities. Such a possibility has been put forward by the authors [5], who have underlined the role of the
normal operators as the natural class of operators which might be regarded as candidates to generalize the notion of
observable in Quantum Mechanics.

As far as unitary operators are concerned, we might give the following overview:

• as shown in [7], both Bell-CHSH and Mermin inequalities can be consistently formulated in terms of unitary
operators, provided the reality conditions (10) are fulfilled.

• the conditions (10) hold in the case of entangled coherent states, eqs.(18),(27), when the operators (A,B,C) are
identified with the unitary displacement operators, eqs.(20), (25). This enables us to employ these operators for
defining both states as well as Bell-CHSH and Mermin correlators.

• As one sees from equations (23),(30), the explicit calculations for both Bell-CHSH and Mermin inequalities are
almost immediate, resulting in rather simple analytic expressions.

• From Fig.(2) one learns that the violation of the Mermin inequality is nearly close to the maximum value of 4.
This result is in agreement with the previous analysis worked out in [9].

• The displacement operators (Da(z),Db(w),Dc(ζ)) are examples of Weyl operators, characterized by the Weyl
algebra [4], namely

Da(z) Da(z
′
) = e

1
2 (zz

′∗−z∗z′)
Da(z + z

′
) . (32)

As such, the present setup can be applied in the cases in which the Weyl algebra is present. As useful examples
of such systems we may mention:

i) the coordinate-momentum system (q, p) in Quantum Mechanics [11]. For the Weyl operators, we have

Uδ = e
iδq , Vω = e

iωp , [q, p] = i . (33)
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where (δ, ω) are real parameters.

ii) the Weyl operators of a relativistic Quantum Field Theory [12]:

Af = e
i ∫ d4x φ(x)f(x) , (34)

where φ(x) is the scalar quantum field and f(x) a smooth test function with compact support, see [12] and
refs. therein. These examples give an idea of the large applicability of the present framework.
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FIG. 2. Behavior of the Mermin correlator <M3 > as a function of the parameters (η, σ). The values of the complex numbers
(z, z′,w,w′, ζ, ζ ′, τ) are as in equation (31). The region of the orange surface above the blue one corresponds to a violation of
the Mermin inequality.
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