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Atom interferometers are sensitive to a wide range of forces by encoding their signals in interference
patterns of matter waves. To estimate the magnitude of these forces, the underlying phase shifts
they imprint on the atoms must be extracted. Up until now, extraction algorithms typically rely
on a fixed model of the patterns’ spatial structure, which if inaccurate can lead to systematic errors
caused by, for example, wavefront aberrations of the used lasers. In this paper we employ an
algorithm based on Principal Component Analysis, which is capable of characterizing the spatial
phase structure and per image phase offsets of an atom interferometer from a set of images. The
algorithm does so without any prior knowledge about the specific spatial pattern as long as this
pattern is the same for all images in the set. On simulated images with atom projection noise we
show the algorithm’s reconstruction performance follows distinct scaling laws, i.e., it is inversely-
proportional to the square-root of the number atoms or the number of images respectively, which
allows a projection of its performance for experiments. We also successfully extract the spatial phase
patterns of two experimental data sets from an atom gravimeter. This algorithm is a first step
towards a better understanding and complex spatial phase patterns, e.g., caused by inhomogeneous
laser fields in atom interferometry.

I. INTRODUCTION

Atom interferometry allows for high precision experiments in several fields such as gravimetry [1–3], gravity cartog-
raphy [4] and inertial navigation [5, 6]. Other use-cases include measurements of fundamental constants like the fine
structure constant [7, 8], the gravitational constant [9] and the universality of free fall [10]. In atom interferometry, a
cloud of atoms is usually coherently split and recombined via atom-light interactions with laser pulses. The signal to
be measured is translated into a relative phase shift between the interferometer arms as depicted in Fig. 1a. However,
such a phase difference is not a quantum mechanical observable and therefore cannot be measured directly.

To measure the phase of an atom interferometer, it is projected into an interferogram, which can be detected after
the recombination of the two matter waves via a final laser pulse (Fig. 1a). Figure 1b illustrates a result of such a
measurement of atomic populations, e.g., obtained via fluorescence or absorption imaging [11, 12]. These two images
also show the typical structure of such an interferogram having two so-called ports. In a light interferometer the
ports’ brightness is given by the light intensity. For atom interferometers it is determined by the number of atoms
interacting with the detection laser. Their relative brightness between the ports directly depends on the phase shift
introduced during the sequence (see Fig. 1a).

In order to reconstruct the phase difference from its projection into intensity, one needs to recover their functional
relationship. To do so, interferograms with different phase offsets are recorded over multiple runs to cover a whole
oscillation period, which results in a phase scan as shown in Fig. 1c. Alternatively, intentionally creating a phase
shear imprint across the atomic clouds and fitting a fixed model has also been used to perform a phase measurement
in a single shot [10, 13, 14].

It is typically assumed that the ports of an interferometer have a phase difference of π and that the phase in each
port is spatially homogeneous. However, there are multiple processes which can introduce an unwanted spatial phase
pattern in addition to the desired signal phase into each of the ports. Early studies on spatial phase imprints in atom
interferometry [15, 16] focused on atom-atom interactions and waveguides. These optical and magnetic waveguides
often suffer from imperfections (e.g. speckles), which can lead to unwanted spatially dependent phase patterns. The
quality of atom interferometric measurements depends directly on the quality of the light used to manipulate the
atoms. Imperfections of the optical potentials are one of the leading systematic effects of current and probably future
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measurements. They are imprinted into the spatial phase profile of the final recorded interferometer images and
usually referred to as wavefront aberrations [17–19].

Currently, the primary mitigation strategy is to minimize these aberrations as much as possible [20]. That is
because they are difficult to accurately measure and post-correct for in terms of systematic shifts [7, 8, 19], which is
why standard analysis algorithms do not generally take them into account. Thus, this strategy introduces significant
systematic errors, if the wavefront aberrations are strong enough to have a significant impact on the measurements.

In the fields of light and acoustic interferometry a very similar problem appears in phase shifting interferometry
[21–23], which extracts the phase from a set of phase-shifted interferograms. One way to account for the spatial phase
imprints of wavefront aberrations is the use of statistical algorithms like Principal Component Analysis (PCA) and
Independent Component Analysis, which have been examined in [24–28].

In the context of atom interferometry, PCA was used to enhance the contrast and shape of shear-interferometer
fringes from atom interferometry output images for analysis [13, 14].

In this paper, we present a PCA-based, spatial phase reconstruction (PSPR) algorithm that extracts an arbitrary
spatial phase map and the phase offsets between different images of an image set. The algorithm shares similarities
with the one presented in [29] and we successfully apply it to both simulated atom interferometry data as well
as actual measurements. The paper is organized as follows. In Section II, we introduce the PSPR algorithm and
discuss the underlying assumptions in contrast to commonly used phase extraction methods in atom interferometry.
Section III establishes an accuracy baseline for PSPR by analyzing synthetic data of a two-port atom interferometer
in the absence of noise. We do so by studying synthetic interferometry images affected by three exemplary phase
patterns. Each of these patterns could be reconstructed from the synthetic images at almost the numerical machine
precision. In Section IV, we introduce atomic shot noise into our interferometer simulation and show that the
performance of the phase reconstruction scales inversely proportional with the square root of the number of atoms
per image as expected for uncorrelated particles. Finally, we showcase the application of the PSPR to experimental
data in Section V and show its robustness under real-world conditions. We extract the spatial phase patterns for two
different interferometer configurations and verify that the coefficients exhibit structures similar to the results from the
simulations. To conclude, in Section VI we discuss the potential of PSPR for precision interferometry in general and
for automation and data compression in particular for transportable atom interferometry sensors deployed on ground
or in space.

II. PCA-BASED SPATIAL PHASE RECONSTRUCTION (PSPR) ALGORITHM

A. The Interferometer Models Underlying the Extraction Algorithms

Every phase extraction algorithm is based on an assumed model of how the interferometer works. Any deviation
of the actual experiment from that model causes a systematic error in the results of the algorithm.

In almost all phase extraction algorithms, one needs to vary the phase difference of an interferometer to reconstruct
the phase that was projected into the interferograms. Varying the phase difference between the two arms causes the
intensity to oscillate, which allows to distinguish between background intensity and the intensity of the interferometer
output ports. This phase is usually varied between different experimental runs and therefore images. It is also possible
to vary the phase via an imprint across the atomic cloud to allow the phase extraction from a single image, as done
in phase shear interferometry [13, 14].

As a baseline for the models typically used in current state-of-the-art atom interferometers [30, 31], we focus on
taking multiple images and changing a phase offset in the last beam splitter. Assuming the phase in each of the
ports is constant over the whole area of the port, the phase offset determines how many atoms end up in the left
or right port as shown in Figure 1b. In order to extract amplitudes from these images, the ratio of the number of
atoms in each port needs to be determined. One approach is to simply define an area in the image and integrate the
intensity inside it, to determine the ratio of atom numbers between the areas (see Fig. 1b). Defining this integration
area is, however, a difficult trade-off because the clouds become very dilute at the edges. On the one hand, choosing
a too large integration area reduces the signal-to-noise ratio because the outer areas of the clouds are dominated by
background noise. On the other hand, if the integrated region is too small, information is discarded. Selecting a shape
for the integration area that more closely reflects the spatial distribution of the atoms can provide a better alternative
that allows using the whole atom cloud. This, however, can introduce an additional systematic error, if the assumed
cloud shape deviates from the actual data.

Both the box integral as well as fitting a specific shape on each cloud rely on estimating the number of atoms in
each port, also called populations. Plotting these populations as a function of the phase shift in the last beam splitter
results in oscillations like the ones depicted in Fig. 1c. The populations of each port are fitted to a cosine, in order to
determine the contrast and the phase shift of the interferometer. This population oscillation is shifted by the phase
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(b)
ϕ = 0.4π ϕ = 2π

(c)

FIG. 1: a) Scheme of an atom interferometer. The phase shift ϕ can be caused by multiple effects and is abstracted
by a box on one of the arms. b) Ideal images of the two ports of an atom interferometer for two different phase

shifts ϕ. The ports are illustrated by the marked integration regions for simple box integrals. The integration is the
estimation of the intensity in each port. c) A phase scan: The population of the two ports as a function of a
deliberately added phase shift ϕ. To estimate the phase shift a cosine can be fitted to this oscillation in the

populations.

shift caused by the measured quantity. Each population value can only be uniquely mapped into an interval from
[0, π] which results in a dynamic range of π. Doing such a cosine fit requires to reliably determine and control the
phase shift of each image relative to the other images or to fix the ambiguity introduced by phase jumps by correlating
the atom interferometer with a classical interferometer [5, 20, 32].

PSPR, on the other hand, does not rely on the existence of a port structure at all. It only requires a minimum of
two pixels which have a fixed phase offset ̸= π between each other over the whole image sequence. This is formalized
as defining a set of images that are assumed to follow the form

I(i, x, y) = A(x, y) +B(x, y) cos[Φ(i, x, y))] (1)

Φ(i, x, y) = θ(i) + γ(x, y). (2)

The image set has nimages images which are indexed with i and each image has xy many pixels with x indexing
the pixel row and y indexing the pixel column. A(x, y) is the background intensity, B(x, y) is an intensity envelope
defining the signal strength of each pixel and γ(x, y) is the free-form spatial phase profile of the interferometer. The
intensities and the phase profile are assumed to be the same in all analyzed images in the input set. θ(i) is the sum
of the phase shift from the measured quantity and the artificially introduced phase shift in image i.
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The form of Eq. (1) assumes that the intensity of each pixel is only ever influenced by a single phase Φ(i, x, y), so
it requires non-overlapping ports. Both the intensity and the phase do not, however, have any predetermined spatial
form and the order in which the images are recorded does not matter either. From such a set of images, PSPR allows
to reconstruct θ(i) and γ(x, y) with a dynamic range of 2π.

B. PCA Based Spatial Phase Reconstruction (PSPR)

The PSPR reconstruction steps are visually displayed in Fig. 2 and follow a similar logic than the one of reference
[29]. In the following, we introduce subscripts to properly distinguish the input phases θinp(i) and γinp(x, y) from the
reconstructed phases θrec(i) and γrec(x, y). The input model of Eq. (1) can be rewritten as a Fourier decomposition
yielding linear combinations of terms depending only on i or x, y:

I(i, x, y) = A(x, y) +B(x, y) cos[θinp(i)] cos[γinp(x, y)]−B(x, y) sin[θinp(i)] sin[γinp(x, y)]. (3)

As shown above, the image model has two linearly independent degrees of freedom. These two degrees of freedom
can be extracted using PCA. It decomposes any data set into the average intensity Ī(x, y) = mean[I(i, x, y)] and
ncomp linearly independent orthonormal components pcj(x, y) with associated coefficients wj(i). As depicted in step
2 in Fig. 2, PCA generates only two pcj(x, y) and wj(i) respectively, since there are only two linearly independent
components in any set of images generated with Eq. (1):

I(i, x, y) = Ī(x, y) + w1(i)pc1(x, y) + w2(i)pc2(x, y). (4)

The principal components pcj(x, y) are chosen by PCA such that they are orthonormal and maximize the variance of
the coefficients wj(i). Although cos[γinp(x, y)] and sin[γinp(x, y)] are orthogonal to each other analytically, they are
not orthogonal for almost any choice of A(x, y), B(x, y), θinp(i) and γinp(x, y). Likewise, the mean Ī(x, y) does not
generally equal A(x, y).

This causes plotting w1(i) against w2(i) or pc1(x, y) against pc2(x, y) (with B(x, y) = 1) to result in ellipses instead
of the ideal circles. If B(x, y) ̸= 1 the ellipse formed by pc1(x, y) and pc2(x, y) becomes distorted because each point
has a potentially different distance from the origin. Therefore, an ellipse fit [33, 34] is performed on the generated
w1(i) and w2(i) instead of fitting pc1(x, y) and pc2(x, y) as done in [29].

The ellipse fit (step 3 in Fig. 2) has the free fit parameters xc, yc, a, b and ϑ:

w1(i) = xc + a cosϑ cos ti − b sinϑ sin ti (5)

−w2(i) = yc + a sinϑ cos ti + b cosϑ sin ti (6)

The negation in front of w2(i) stems from the subtraction in Eq. (3). This negation needs to be assigned to either the
coefficients or the components during reconstruction in order to have a consistent sign between θrec(i) and γrec(x, y).

Correcting for the ellipse distortion in step 4 transforms w1(i) and w2(i) onto an approximate unit circle.

(
w′

1(i)
w′

2(i)

)
=

(
1/a 0
0 1/b

)
×

︸ ︷︷ ︸
scale

(
cos(−ϑ) − sin(−ϑ)
sin(−ϑ) cos(−ϑ)

)
×

︸ ︷︷ ︸
rotate

[(
w1(i)
−w2(i)

)
−
(
xc

yc

)

︸ ︷︷ ︸
translate

]
(7)

(
pc′1(x, y)
pc′2(x, y)

)
=

(
a 0
0 b

)
×

︸ ︷︷ ︸
scale

(
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
×

︸ ︷︷ ︸
rotate

(
pc1(x, y)
pc2(x, y)

)
(8)

Computing the angle of these corrected components pc′1(x, y) and pc′2(x, y) and coefficients w′
1(i) and w′

2(i) on their
respective unit circle in step 5 reconstructs the full phase Φrec(i, x, y) for each image:

θrec(i) = arctan2(w′
2(i), w

′
1(i)) (9)

γrec(x, y) = arctan2(pc′2(x, y),pc
′
1(x, y)) (10)

Φrec(i, x, y) = θrec(i) + γrec(x, y). (11)

In addition to the already mentioned [28, 34] the implementation of the algorithm, simulation and visualization in
this paper use the python libraries numpy [35] and jax [36, 37]. The bokeh library [38] was used for plotting, colorcet
[39] and palettes from [40] were used as a basis for the color schemes.
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1 Input Data
I(0, x, y) I(30, x, y) I(60, x, y) I(80, x, y) I(99, x, y)

... ... ... ...

2 PCA
I(i, x, y) = Ī(x, y) + w1(i) pc1(x, y) + w2(i) pc2(x, y)

3 Ellipse Fit

w1(i) = xc + a cosϑ cos ti − b sinϑ sin ti

−w2(i) = yc + a sinϑ cos ti + b cosϑ sin ti

4 Ellipse Correction
(
w′

1(i)
w′

2(i)

)
=

(
1/a 0
0 1/b

)
×

︸ ︷︷ ︸
scale

(
cos(−ϑ) − sin(−ϑ)
sin(−ϑ) cos(−ϑ)

)
×

︸ ︷︷ ︸
rotate

[(
w1(i)
−w2(i)

)
−
(
xc

yc

)

︸ ︷︷ ︸
translate

]

(
pc′1(x, y)
pc′2(x, y)

)
=

(
a 0
0 b

)
×

︸ ︷︷ ︸
scale

(
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
×

︸ ︷︷ ︸
rotate

(
pc1(x, y)
pc2(x, y)

)

5 Phase Reconstruction

θrec(i) = arctan2(w′
2(i), w

′
1(i))

γrec(x, y) = arctan2(pc′2(x, y), pc
′
1(x, y))

Φrec(i, x, y) = θrec(i) + γrec(x, y)

1
FIG. 2: Steps of the PSPR algorithm. Analysis begins with a set of images I(i, x, y) (1), those are transformed with
PCA (2), an ellipse is fit to the coefficients w1(i) and w2(i) (3), the coefficients wj(i) and components pcj(x, y) are

corrected for the ellipse distortion (4) and the phase is extracted via arctan2 (5).
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C. Comparison between Inputs, Outputs and Multiple Data Sets

The first fundamental building block for phase comparisons is the difference between two angles. When viewing the
two angles on a circle there are two distances between them, one going left-handed and the other going right-handed.
Given two phases φ1 and φ2, Eq. (12) returns φdiff ∈ [−π, π) which is defined as the shorter of the two possible
distances and the sign indicating which direction was taken around the circle:

φdiff(φ1, φ2) = mod(φ1 − φ2, 2π)− π (12)

with mod indicating the modulo operation.

Additionally, the model underlying PSPR (see Eq. (19)) maps multiple phases to the same images. This needs to be
taken into account when comparing inputs and outputs or outputs from two different analysis runs. When comparing
Φinp(i, x, y) and Φrec(i, x, y), there may be a sign switch which still results in the same images:

cos[Φinp(i, x, y)] = cos[s Φinp(i, x, y)] = cos[Φ′
inp(i, x, y)] ∀s ∈ {−1, 1}.

Comparing the individual outputs θrec(i) and γrec(x, y) with the inputs θinp(i) and γinp(x, y) adds another degree
of freedom c while all phases θ′inp(i) and γ′

inp(x, y) remain a solution for the same image set:

cos[Φinp(i, x, y)] = cos[θinp(i) + γinp(x, y)]

= cos(s{[θinp(i)− c] + [γinp(x, y) + c]})
= cos[θ′inp(i) + γ′

inp(x, y)]

∀ c ∈ [−π, π), s ∈ {−1, 1}.

(13)

The constants c and s are unique for each run and determined by the PCA. Both constants are determined by the
signs of the eigenvalues when computing the components and the maximation of variance under orthogonality.

In the following, c and s will be computed from θinp(i) and θrec(i) as the solution to:

min
c,s

(∑

i

{φdiff [θrec(i), s θinp(i)− c]}
)
with c ∈ [−π, π), s ∈ {−1, 1}. (14)

This minimization problem can be solved directly without iteration as described in the appendix.

Since c and s are the same for both θrec(i) and γrec(x, y), they are used for the computation of both θdiff(i) and
γdiff(x, y):

θdiff(i) := φdiff [s θinp(i)− c, θrec(i)] (15)

γdiff(x, y) := φdiff [s γinp(x, y) + c, γrec(x, y)] . (16)

III. NOISE FREE PHASE RECONSTRUCTION

This section establishes an accuracy baseline for the performance of PSPR by analyzing computer-generated sample
images, inspired by a simplified model of a two-port atom interferometer. The two ports of the interferometer have a
Gaussian intensity profile g(x, y, σ) and the same spatial phase pattern γinp(x, y). They are shifted relative to each
other in position by 2δx in x-direction, do not exhibit any overlap and the left port has an additional phase shift of
π. This is parametrized by:

g(x, y,∆) =
1

2π∆2
exp

(−(x2 + y2)

2∆2

)
(17)

Φinp(i, x, y) = θinp(i) + γinp(x, y) (18)

I(i, x, y) =

{
1
2 dxdy g(x− δx, y, 0.3){1 + C cos[Φinp(i, x− δx, y)]} if x ≥ 0
1
2 dxdy g(x+ δx, y, 0.3){1 + C cos[Φinp(i, x+ δx, y) + π]} if x < 0

. (19)
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a) 2x2 + 4y

b) 4x+ 4y

c) 4(0.2x)2 + 2y

FIG. 3: Spatial phase patterns γinp(x, y) used for the synthetic image generation as defined in Eq. (21). These cases
were chosen to show different scaling behaviors when including noise in Section IV. The two columns in each image
correspond to the two ports of the interferometer which are modeled as the two cases in Eq. (19). The reconstruction

was done from a data set of 100 images generated with Eq. (19) and the parameters in Eq. (20) and Eq. (21).
Almost all pixels are reconstructed close to machine precision around 10−16 rad, the original phase patterns are

weakly visible. Note the discrete and non-linear color bars in the difference plots to accommodate outliers.

C is the contrast and dx and dy are the width and height of each pixel respectively. This image model was used to
generate 100 images with nimages = 100 each for three choices for γinp(x, y) with the parameters:

θinp(i) =
2πi

nimages
with i ∈ [0, nimages) (20)

γinp(x, y) =





2x2 + 4y

4x+ 4y

4(0.2x)2 + 2y

. (21)

The input phase patterns γinp(x, y) and the main result of this section γdiff(x, y) are plotted in Fig. 3. γdiff(x, y) is,
with the exception of a few outlier pixels, close to machine precision. The differences vary slightly from run to run
and one can see weak remnants of the patterns γinp(x, y) in γdiff(x, y). The PSPR reconstruction yields an excellent
agreement in this case where θdiff(i) is close to the precision of the used floating point numbers, so for double precision
about 10−16 rad.

IV. PHASE RECONSTRUCTION IN THE PRESENCE OF SHOT NOISE

Shot noise, also referred to as quantum projection noise [41], is a type of noise which is present in all quantum
measurements. This type of noise was chosen to evaluate the reconstruction accuracy of PSPR in the case of realistic
measurement in a quantum system.
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(a) (b)

FIG. 4: Results for interferograms defined in Eq. (19) with shot noise for nimages = 10000, Natoms = 105, C = 1. a)
The distance r of the coordinate (w1(i), w2(i) to the center of the fitted ellipse as a function of θinp(i). b) The
reconstruction accuracy σi as a function of θinp(i). One can clearly see the strong correlation between σi and r.

The intensity of the model images in the previous section is used as the probability density to find an atom in a
particular pixel. For each atom, a single pixel is picked randomly according to this density. The brightness of each
pixel is then defined as the number of atoms that populate it. All intensity values in the following graphs are therefore
in units of atoms.

To understand the reconstruction performance of PSPR in the presence of shot noise, the image generation process
is repeated nrun times. All graphs in this chapter focus on the standard deviation std, because the differences
between input and reconstruction average to zero for the chosen parameter regimes. Each of the following figures was
generated with nrun = 74000 simulation runs per input parameter combination. The default input parameters are
ϕ(i) = 2πi/1000 with i ∈ [0, 1000), Natoms = 105, nimages = 1000 and the contrast C = 1.
The reconstruction accuracy σi := std[θdiff(i)] varies as a function of θinp(i) (Fig. 4b). This strongly correlates with

the radius of the coefficient pair on the ellipse (Fig. 4a).
This is abstracted away by taking the maximum max(σi), in order to understand and characterize the shot-noise

scaling as a function of other simulation parameters. σxy := std[γdiff(x, y)] does not show any scaling as a function of
Φinp(i, x, y).

When systematically changing the number of atoms per image Natoms, the number of images nimages per analysis,
the contrast C, and the spatial phase distribution γinp(x, y) one finds the following empirical scaling laws for max(σi)
and σxy:

max(σi) =
a

C N
1/2
atoms

(22)

σxy =
b

C
[
Ī(x, y) nimages

]1/2 . (23)

a and b are fit constants with a depending on the chosen pattern γinp(x, y):

a ≈





1.70 γinp(x, y) = 2x2 + 4y

1.67 γinp(x, y) = 4x+ 4y

2.51 γinp(x, y) = 4(0.2x2) + 2y

b ≈ 1.41.

Both laws match the intuition that the reconstruction accuracy depends on how many interfering atoms were
observed per reconstructed value and are compatible with atomic shot noise scaling.

Figure 5 and Fig. 6 confirm the shot-noise scaling of Eq. (22) and Eq. (23) with Natoms and nimages, respectively.
One can see that for about Natoms > 100 atoms per image and for nimages > 50 images per sequence the signal
quality is high enough for the scaling law Eq. (22) to hold. Since max(σi) does not scale as a function of nimages the
reconstruction accuracy converges towards constant values for large enough image sets.

Similarly, σxy solely scales with the total number of interfering atoms that fell into the reconstructed pixel during
the image sequence as depicted in Fig. 7.
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FIG. 5: Worst-case reconstruction accuracy max(σi) as
a function of Natoms for C = 1, nimages = 1000 and

θinp(i) as in Eq. (20). For approximately Natoms > 100
PCA works well enough so that max(σi) scales with
a/(C · √Natoms), with a being a fit constant which

depends on spatial phase pattern γinp(x, y).

FIG. 6: Worst-case reconstruction accuracy max(σi) as
a function of nimages. max(σi) is independent of nimages

and therefore only improves until nimages = 50 which
are enough images for PSPR to work well for C = 1,

Natoms = 105 and θinp(i) as in Eq. (20).

FIG. 7: σxy scaling with the atom number per image. This plot shows all pixels from all three phase patterns
γinp(x, y). Four different values from the scan of nimages were selected and are color-coded according to the legend.

The order in the plot from top to bottom is the same as in the legend. σxy scales with b/{C [nimagesĪ(x, y)]
1
2 } with

b = 1.41 as a fitted constant. One can see that σxy of a pixel only depends on the number of atoms that populated
that pixel over the course of the whole data set.

V. EXAMPLE RECONSTRUCTION OF THE IMAGE AND SPATIAL PHASES FROM
EXPERIMENTAL DATA

In this chapter, PSPR is used to extract the spatial phase profile of two interferometry ports in a set of experimental
data images. The experimental data was taken with the apparatus described in reference [42]. It uses an atom chip
and laser beams for the generation and preparation of Bose-Einstein condensates (BEC). The experimental sequence
is the fountain gravimeter shown in reference [43] where the atom chip is also used as a mirror for the interrogating
laser beam and therefore acts as the inertial reference of the measurement.

The atom chip has an optical coating to yield a highly reflective optical surface, but is not an ideal mirror. Its
surface has imperfections, which can lead to spatial wavefront distortions, beam intensity fluctuations and other
aberrations of the employed light fields. These can produce a spatial phase distortion in the interferometer outputs,
which is examined with PSPR in this article. A first test with a pure PCA-based evaluation on the experimental data
sets already showed that the intrinsic interferometer sensitivity can be enhanced by enlarged contrast and respectively
reduced technical noise [44].

The first measurement consists of 991 images from a Mach-Zehnder interferometer operated with Bragg diffraction
where each beam-splitter transfers a momentum of 2 h̄k onto the atoms [45, 46], with k denoting the wave number
of the Bragg laser and h̄ the reduced Planck’s constant. The second data set is from an interferometer with larger
momentum transfer of 6 h̄k via higher-order Bragg transitions and consists of 1015 images. Figure 8 shows the results
of step 2 of the PSPR algorithm (Fig. 2). The average intensity Ī(x, y) is clearly distributed over two ports. This
figure does not show the wj(i) because they are unordered due to vibrations causing large phase jumps between each
image. For the first data set the first component shows the typical pattern of mainly moving atoms between the two
ports, depending on the value of w1(i).

The result of step 3 of PSPR yields the ellipses of Fig. 9. In the second data set, other effects are stronger than
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Component Data Set 1 (2 h̄k) Data Set 2 (6 h̄k)

Ī(x, y)

pc1(x, y)

pc2(x, y)

pc3(x, y)

pc4(x, y)

FIG. 8: Average intensity Ī(x, y) and the first four principal components for a Bragg diffraction based atom
gravimeter featuring momentum transfers of 2 h̄k (Data set 1) and 6 h̄k (Data set 2). Data set 1 contains 991 images,
while the results for data set 2 are reconstructed from 1015 images. The two ports are visible in all images. Ī(x, y)
has a linear color map indicating the intensities while the components are plotted with a diverging color map with
blue indicating negative values and yellow indicating positive values. pc1(x, y) in the left column displays the main
interferometer function for relatively flat phase profiles, moving atoms from left to right positive coefficients and

from right to left for negative coefficients. The mean clearly shows the two ports, the first component is cosine-like
and encodes the movement of atoms between the two ports. The second component is the sine-like component while

the components three and four are most likely due to motion of the camera relative to the interferometer.

the interferometry so that the w2(i) and w4(i) form the ellipse used for phase reconstruction. The first data set has
a weaker spatial phase profile, which causes the ellipse to be more stretched compared to the second data set with a
phase profile which has a larger dynamic range of phases.

The main result of this section can be seen in Fig. 10 which shows the actual reconstruction of the spatial phase
profiles when using the whole algorithm. The second data set shows a much stronger spatial phase gradient, than
the first data set, which is to be expected due to the larger number of atom-light interactions. In the second data
set with the stronger 6 h̄k momentum transfer, the spatial phases are spanning a gamut of 2π so for any overall
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Data Set 1 (2 h̄k) Data Set 2 (6 h̄k)

FIG. 9: These two plots show the correlations between the two ”sine” and ”cosine” components of the first and
second data set (right). The coefficients wj(i) are the projections of each image I(i, x, y) onto the components

pcj(x, y) which are shown in Fig. 8. This ellipse pattern is a signature for the sine-like and cosine-like components.
When comparing with Fig. 10 one can see that the stronger ellipse-shape in the first data set corresponds to a more

flat spatial phase profile compared to the second data set. This is consistent with the simulations.

Data Set 1 (2 h̄k) Data Set 2 (6 h̄k)

FIG. 10: The reconstructed spatial phase profile γrec(x, y) for the two experimental data sets. The first data set
with 6 h̄k momentum transfers shows much stronger distortions which is to be expected since there were far more
atom-light interactions with distorted wavefronts during the sequence. In the areas on the sides of the ports, where

there are almost no atoms, the signal strength is too weak to give a meaningful signal.

interferometer phase there are always some interfering atoms in each of the ports. Analysing this data set without
taking into account the spatial phase profile would leave a lot of useful signal unutilized and would lead to increased
systematic effects.

In the second data set there are also two faint clouds between the strong clouds which are a loss channel formed
by atoms that interacted at a different momentum transfer order. These clouds indicate the possibility of utilising
information from what would normally regarded as a loss channel.

VI. CONCLUSION AND OUTLOOK

The PSPR algorithm developed in this article allows to reconstruct the spatial phase profiles in image sets of atom
interferometry ports. Its performance was proven to theoretically reach the machine precision level. The algorithm was
then successfully applied to reconstruct the experimental phase front pattern seen in the ports of an atom gravimeter.
These results point towards a future use of PSPR in the analysis of atom interferometers embracing and utilizing
non-plane wavefronts to make measurements more accurate and versatile instead of simply smoothing the inevitable
wavefronts of the interrogation lasers.

It is a first step towards measuring wavefront aberrations using the exact atom-light phase profiles at the positions
where the interaction occurs during experimental sequences. This will improve the understanding of the systematics
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in matter wave systems by varying different parameters in the setup and characterizing the impact on the spatial
phase map.

All parts of PSPR can be implemented very efficiently even on hardware with limited performance and memory. For
PCA, randomized out-of-core algorithms exist, which can achieve the decomposition without ever loading the whole
data set into the main memory [47]. Furthermore, the ellipse fitting algorithm is stable even with in the presence of
significant instrument noise levels and completely iteration-free [33].

PSPR performs a lossy compression that is well adapted to interferograms of atom interferometers. It exploits
that the spatial phase imprints do not vary much during each measurement while still allowing arbitrary phase
patterns which can be tracked over the long-term operation of the interferometer. Using this knowledge it reduces
the three-dimensional I(i, x, y) into the much smaller one-dimension θ(i) and two-dimensional Ī(x, y) and γ(x, y).

Additionally, PSPR offers two heuristics that can be used to automatically detect when the atom interferometer
deviates too much from its expected behavior. The first heuristic is how well the two components that are used for
the phase reconstruction describe the whole image set. This can be computed, for example, by projecting the images
into that basis and evaluating their deviation from the raw data. The second heuristic is how well the ellipse fits onto
the coefficients giving a clear indicator for how accurately the two selected components actually describe the expected
interferogram defined in Eq. (1).

Having the potential to realize the phase extraction and tracking of key performance characteristics directly on the
specific atom interferometry device, PSPR helps to make autonomous operation possible. For instance, as part of
the setup of the interferometer one can calibrate expectation thresholds for how well the two used PCA components
and the ellipse fit explain the data. When these thresholds are violated, the device may, depending on the use case,
launch debugging routines, safeguards, warnings or special calibration routines to mitigate the problems or explicitly
request user intervention.

For future atom interferometers deployed in real-world environments on ground and in space [20, 48, 49], it will be
necessary to fully automate the data analysis directly on an embedded processor. For field applications, the number
of measurements will be too large to be analyzed with manual intervention by non-experts. Moreover, the storage
requirements for the raw data also become a limiting factor. Finally, in space or in environments where communication
is denied, bandwidth to send raw data to be processed is not available or insufficient. For all these reasons, PSPR
will be a well suited on-board tool.
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Appendix: Computing the Minimal Difference Between Two Phase Results

The phase offset degree of freedom c can be determined using φdiff :

ϑ(i) = φdiff [θinp(i), θrec(i)]

x = mean{cos[ϑ(i)]}
y = mean{sin[ϑ(i)]}
c = arctan2(y, x).

The value of c is the average of all differences between θinp(i) and θrec(i) while not making averaging errors due to
the phase wrap-around after 2π. That average is the angle of the average position of the points of all angles on the
unit circle.
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The sign s is determined by computing c for both φdiff [θinp(i), θrec(i)] and φdiff [θinp(i),−θrec(i)] and choosing the
sign for which that difference is smaller.
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