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We analyze the pinning of vortices for a stationary rotating dipolar supersolid along the low-
density paths between droplets as a function of the rotation frequency. We restrict ourselves to
the stationary configurations of vortices with the same symmetry as that of the array of droplets.
Our approach exploits the fact that the wave function of each droplet acquires a linear phase on
the coordinates, and hence the relative phases between neighboring droplets allows us to predict
the position of the vortices. For a confined system, the estimate accurately reproduces the Gross-
Pitaevskii results in the spatial regions where the neighboring droplets are well defined.

I. INTRODUCTION

Supersolids were experimentally created for the first
time in 2017 in spin-orbit coupled Bose-Einstein conden-
sates (BECs) [1], BECs with cavity mediated interactions
[2, 3], and in 2019 in dipolar BECs [4–6], with many other
experiments featuring them afterwards [7–20]. This state
of matter combines the frictionless flow of the superfluids
with a translational symmetry breaking typical of crys-
tals [21–26]. In the case of dipolar supersolids, one can
obtain them either by generating a roton instability into
an already condensed gas [4–6, 18, 27–33], or by directly
condensing the gas from a thermal cloud into a supersolid
[20]. Dipolar supersolids break the translational symme-
try by spontaneously forming a position-dependent den-
sity distribution, which includes droplets of high density
separated by lower-density areas. In such a supersolid
phase of dipolar BECs [34–36], given that droplets are
separated by low density valleys, the barrier required for
the nucleation of vortices is reduced with respect to the
superfluid case (see e.g. [37]). In particular, for sta-
tionary rotating systems, it was shown that low-density
regions reduce the energetic barrier for a vortex to enter
the system, which lowers the nucleation frequency and
help in pinning the vortices in the interstitial zones be-
tween droplets [35].

The aim of this work is to predict the positions of vor-
tices in a stationary arrays in supersolid dipolar BEC
[18, 34, 35] forming a triangular lattice of droplets when
it is subject to rotation. Our approach consists in approx-
imating the system wave function through a superposi-
tion of the localized wave functions of individual droplets.
Such a hypothesis is based on the fact that the density
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is concentrated on the droplets, which are surrounded
by very low relative density valleys. Then, any droplet
exhibiting axial symmetry around a line parallel to the
rotation axis acquires a homogeneous velocity field [38],
which is determined by the velocity of the center of mass
of the rotating droplet. In consequence, the phase of the
droplet wave function turns out to exhibit a linear expres-
sion in terms of the spatial coordinates [38, 39]. Such an
expression can be conveniently employed for estimating
the vortex positions between two neighboring droplets
through a simple formula, as it has been already shown
for a BEC in rotating square lattices [39]. In the present
work, which involves a triangular lattice, we show that
the use of three droplets in the model leads to more accu-
rate values for the vortex positions along the low-density
paths that separate the droplets.
The paper is organized as follows. In Sec. II we intro-

duce the basic characteristics and parameters of a rotat-
ing triangular lattice of droplets, which will be considered
in our analysis, and in Sec. IIA we outline the method for
determining the vortex positions. In Sec. III we describe
the confined system of dipolar atoms and show a typical
stationary configuration, whereas Sec. III A is devoted
to the determination of the coordinates of vortices of dif-
ferent configurations. Finally, a summary of the results
is given in Sec. IV.

II. TRIANGULAR DROPLET LATTICE

We start by considering the stationary configuration
of a rotating supersolid dipolar BEC, which forms an ex-
tended triangular lattice of droplets. The key properties
of this system are outlined below, and will be then used
to predict the characteristics of the vortex array that
emerges within the low-density regions between these
droplets. We assume the density is modulated as [18]

ρ(r) = ρ0

[
1 + C

3∑
i=1

cos(qi · r)

]
, (1)
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FIG. 1. Density plot of the density distribution given by
Eq. (1), where the density maxima are marked with red dots.
The thin white lines indicate the low-density paths around
the droplets, while the dashed line marks the specific path
described in the text. In such a path, the saddle point at
ys = λ is marked with a triangle, and the minima at yv1 =
d/

√
3 and yv2 = 2d/

√
3 (vertices) with crosses.

where the parameter C > 0 represents the contrast. The
vectors qi, which lie in the (x, y) plane, are defined by

q1 = qŷ , q2 = −1

2
qŷ+

√
3

2
qx̂ , q3 = −1

2
qŷ−

√
3

2
qx̂ , (2)

with q = 2π/λ. It is worth noting that in a realistic setup,
the overall density factor may exhibit a dependence on
the coordinate z, ρ0 = ρ0(z). This dependence can be
modeled by a Gaussian or Thomas-Fermi distribution.
However, for the purposes of the subsequent discussion,
this dependency can be safely disregarded without loss
of generality.

In Fig. 1 we show a plot of the density distribution in
Eq. (1). By analyzing its maxima, minima, and saddle
points, we can characterize the density pattern as fol-
lows. The distance between neighboring droplet maxima
is d = 2λ/

√
3. The minima are located at equidistant

positions from three neighboring droplets, namely at the
vertices of the hexagonal structure depicted in the figure.
In the following, we will use the term path to denote the
line segments connecting them (namely, each side of the
hexagon). When the droplets have all the same size and
shape, as in the ideal case depicted in Fig. 1, all paths in
between the first ring of droplets are equivalent. These
are the paths that will be specifically relevant for the dis-
cussion in Sec. III. Therefore, here we will focus ourselves
on the vertical path marked by the dashed line in Fig. 1,
without loss of generality. For this specific case, the two
vertices are located along the y-axis at yv1 = d/

√
3 and

yv2 = 2d/
√
3. At the center of the path, ys =

√
3/2d,

which corresponds to the middle point between the two
neighboring droplets, the density displays a saddle point.

When the supersolid lattice is put under rotation, sta-
tionary vortices will appear along the low-density paths
between the droplets [33, 37, 39]. The position of the
vortex along those paths, denoted as Yv for the specific
path considered above, can be easily estimated using the
ansatz discussed below, in Sec. IIA.
In Sec. III we will consider a finite realization of this

system, which can be achieved through numerical calcu-
lations. In order to do so, we will introduce a harmonic
trap to confine the system. Given that we also subject
the system to rotation at constant frequency Ω along the
z-axis, the effective confinement varies with Ω. Then, the
distribution of droplets and their densities vary as well.
We will verify that a number of droplets arrange in a
triangular lattice, and hence compute d and the remain-
ing geometrical quantities from the obtained densities for
each frequency.

A. Estimate of the vortex positions

In this section, we outline the way to estimate the po-
sition of the vortices, following Ref. [39]. We assign to
each droplet k a localized wave function wk(r,Ω) nor-
malized to unity, where r = (x, y, z). Hence, the wave
function of the system of droplets can be approximated
by

ψD(r, t) =
∑
k

wk(r,Ω) e
iϕk(t)

√
Nk(t) , (3)

where Nk(t) is the number of particles of the droplet,
ϕk(t) its global phase, and the indices k runs upon all
the droplets. Given the axial symmetry of each droplet,
we may further approximate [38]

wk(r,Ω) = |wk(r,Ω)|ei
m
h̄ (r−rk

cm)·(Ω×rk
cm), (4)

where we have fixed to zero the phase of wk at the center
of mass of the droplet.
Two-droplet case. Let us first consider the case in

which the vortex sits between two neighboring droplets,
labeled as k′ and k. Specifically, we examine the two
droplets indicated in the upper section of Fig. 1, which
are symmetric with respect to the vertical y-axis. We
denote the generic coordinates of a vortex core in the
z = 0 plane as (Xv, Yv, 0). Due to symmetry, a vortex
lying between these two droplets will have Xv = 0, while
the vertical coordinate Yv can be obtained by requiring
the vanishing of the wave function at the vortex core,
ψD(Xv, Yv, 0) = 0, namely

wk′(r) eiϕk′
√
Nk′ + wk(r) e

iϕk
√
Nk = 0 , (5)

where we have omitted the time dependence for ease of
notation. By writing,

(r − rkcm) · (Ω× rkcm) = (r − rk
′

cm) · (Ω× rk
′

cm)

+ r · (Ω× (rkcm − rk
′

cm)), (6)
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Eq. (5) can be rewritten as,√
Nk|wk| ei(

m
h̄ r·(Ω×(rk

cm−rk′
cm))−φk) +

√
Nk′ |wk′ | = 0 ,

(7)
where φk(t) = ϕk′(t) − ϕk(t) is the phase difference be-
tween the centers of such neighboring droplets.

In terms of the center-of-mass coordinates one has,

r · (Ω× (rkcm − rk
′

cm)) = −x(ykcm − yk
′

cm)Ω

+ y(xkcm − xk
′

cm)Ω . (8)

As for the droplet label k, here we set k = 0 for the central
droplet, and let run k clockwise for the outer droplets,
as indicated in Fig. 1. Then, considering the case of the
two droplets with k = 2 and k′ = 1 in Eq. (8), for which
y1cm = y2cm, we may obtain, from the condition that the
imaginary and real parts of Eq. (7) should vanish, the
vortex coordinate Yv(t),

Yv(t) =

(
φ(t)

π
+ 2l + 1

)
πh̄

mdΩ
, (9)

where d = x2cm − x1cm is the distance between the center
of mass of the droplets, and φ = φ2 = ϕ1 − ϕ2. Here, l
is an integer number labeling different possible solutions,
with l = 0 corresponding to the first vortex that enters
through that path [39]. It is also important to remark
that the coordinates of the center of mass increase as
functions of the rotation frequency due to the centrifugal
force, and we will estimate its position by searching the
density maxima of the droplets.

Three-droplet case. In principle, in a triangular lat-
tice, when the location of a vortex approaches a vertex
of the droplet lattice, the presence of a third neighboring
droplet should affect the vortex position, and hence it
becomes important to take such an effect into account.
Then, one can approximate the wave function in such a
region as

ψD(r, t) ≃
2∑

k=0

|wk(r,Ω)|ei
m
h̄ (r−rk

cm)·(Ω×rk
cm)+iϕk

√
Nk .

(10)
In this case we cannot extract an analytical expression
for the vortex coordinates. However, by adequately mod-
elling the individual wave functions of the droplets, an
approximate solution can be obtained. Here we shall
consider the two droplets at the first ring (k = 1, 2) to-
gether with the central one (k = 0), a case that will be
relevant for the finite realization presented in the follow-
ing section. For such a purpose we will approximate |wk|
by Gaussian functions with widths a and heights which
almost reproduce the characteristics of our droplets. We
further assume that ϕk = ϕ0 for all sites. With these ap-
proximations, we can again obtain an expression for Yv
by imposing that the wave function of Eq. (10) vanishes
at the position of the vortex core. In particular, the value

of Yv is given by the solution of

√
N0

N1
e

d(d−
√
3Yv)

2a2 + 2 cos

(
md

2h̄
ΩYv

)
= 0, (11)

where we have accounted for the fact that in a finite
realization the central droplet population N0 may be dif-
ferent from the population N1 = N2 of the other two
droplets. Notice that Eq. (11) has multiple solutions
which are related to those labeled by l in Eq. (9).

The above Eq. (11), along with Eq. (9), constitutes
one of the central results of the present work. In Sec.
IIIA, we will compare it with exact results from numeri-
cal simulations, demonstrating its accuracy in predicting
vortex positions.

III. ROTATING STATIONARY SUPERSOLID

In order to present a practical case study, we focus
on investigating a rotating stationary supersolid config-
uration within a dipolar system akin to the one studied
in Ref. [35]. Specifically, we consider a Bose gas com-
posed by N = 1.1 × 105 dipolar 162Dy atoms trapped
by an axially symmetric harmonic trap of frequencies
{ωr, ωz} = 2π×{60, 120} Hz. For this atomic species, the
dipolar scattering length is add = 130a0, where a0 stands
for Bohr radius. The magnetic dipoles are considered to
be aligned along the z direction by a magnetic field B.
The s-wave scattering length of the contact interaction
is fixed to as = 92a0 throughout the whole paper. The
system is set to rotate at an angular velocity Ω around
the polarization axis.

The advantage of this specific configuration is that
it features a triangular supersolid lattice as the ground
state, which is the closest packing configuration and thus
is of special interest. However, the model developed in
this paper does not require any specific geometry and
could be applied to other supersolid configurations as
long as the positions of the droplets are correctly taken
into account[40].

We consider the gas to be at T = 0, thus no ther-
mal fluctuations are taken into account. We describe the
system using the usual extended Gross Pitaevskii (eGP)
theory, which includes both the quantum fluctuations in
the form of the Lee-Huang-Yang (LHY) correction [41–
43] and the dipole-dipole interaction [44]. To account for
the rotation of the condensate we will work in the rotat-
ing frame, for which an additional term is introduced into
the energy functional [45, 46]. The energy functional of
such a system can be written as EGP+Edd+ELHY+EΩ,
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with

EGP =

∫ [
h̄2

2m
|∇ψ(r)|2 + V (r)n(r) +

g

2
n2(r)

]
dr ,

Edd =
Cdd

2

∫∫
n(r)Vdd(r − r′)n(r′)drdr′ ,

ELHY =
2

5
γLHY

∫
n5/2(r)dr , (12)

EΩ = −Ω

∫
ψ∗(r)L̂zψ(r)dr ,

where EGP = Ek+Eho+Eint is the standard GP energy
functional including the kinetic, potential, and contact
interaction terms, V (r) = (m/2)

∑
α=x,y,z ω

2
αr

2
α is the

harmonic trapping potential, and g = 4πh̄2as/m is the
contact interaction strength. The system wave function
ψ(r) is normalized to the total number of particles N
and the condensate density is given by n(r) = |ψ(r)|2.
The inter-particle dipole-dipole potential is Vdd(r) =
(1 − 3 cos2 θ)/(4πr3) with Cdd ≡ µ0µ

2 its strength, µ
the modulus of the dipole moment µ, r the distance be-
tween the dipoles, and θ the angle between the vector r
and the dipole axis, cos θ = µ · r/(µr). The LHY coef-

ficient is γLHY = 128
√
πh̄2a

5/2
s /(3m)

(
1 + 3ϵ2dd/2

)
, with

ϵdd = µ0µ
2N/(3g). The last term EΩ accounts for the

rotating frame, with L̂z = −ih̄(x∂y − y∂x) represent-
ing the angular momentum operator along z. To obtain
the supersolid stationary states in the rotating frame, we
perform numerical simulations [47] in which we minimize
the above energy functional employing a conjugate gra-
dient method (see e.g. [48]). Among the several possible
stationary configurations, we select those corresponding
to a triangular supersolid lattice by means of a suitable
choice of the trial wave function [49].

A typical configuration is displayed in Fig. 2, featuring
the density contours and velocity field in the upper panel,
and the phase distribution along with the position of the
vortex cores in the lower panel. This figure corresponds
to the case with Ω = 2π × 20 Hz, and serves as a rep-
resentative illustration for all cases within the range of
rotation frequencies considered in this work. Figure 2 re-
veals well-localized, circularly symmetric densities of the
gas droplets (depicted in black) arranged in a triangular
structure formed by a central droplet at (x, y) = (0, 0),
and six droplets located along a ring around it. It may
be seen that each of these droplets exhibits a uniform
velocity field vk = Ω× rkcm. Additionally, at the border,
very low-density clouds with non-circular shapes (in red)
are present and display a diffuse distribution with an ex-
tended velocity field. Then, such a cloud is not included
in the region where ψD is defined. Between the droplets,
we observe the presence of vortices whose positions form
a lattice structure determined by the periodic arrange-
ment of the supersolid droplets, see bottom panel in Fig.
2.

-4 -2 0 2 4

-4

-2

0

2

4

x	[μm]

y	
[μ
m
]

FIG. 2. Typical density and phase configuration of the sta-
tionary supersolid triangular lattice obtained from the eGP
simulations, in the rotating frame. Here Ω = 2π×20 Hz. (top)
Isodensity contours and velocity field around the stationary
droplets. The black curves correspond to the contours around
the six first-ring droplets at a density value of 0.2ρmax, and the
red curves around the low-density clouds at a density value of
0.04ρmax, where ρmax is the maximum density value. The red
arrows at the droplet maxima correspond to the vk. (bottom)
Color map of the phase of the supersolid wave function at the
plane z = 0. The plus signs mark the location of the vortices,
and the curves are isodensity contours of the droplets for the
same values as in the top panel.

A. Vortex pinning

In order to investigate the position of the vortices as
a function of the rotation, we employ the method out-
lined in Sec. II A. Here we focus on the location of the
vortices along the low-density paths bounded by two ver-
tices, such as the line joining yv1 and yv2 in Fig. 1. We
begin by considering the effect of pairs of neighboring
droplets. The mean relative distance d between droplet
pairs is shown in Fig. 3 as a function of the rotation fre-
quency Ω (blue circles). We observe an increase of such
a distance with the frequency, which can be mainly at-
tributed to the effect of the centrifugal force acting on
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FIG. 3. Mean value of the inter-droplet distance d (blue
circles) as a function of the rotation frequency Ω. The data
have been obtained by identifying the density maxima from
the calculated supersolid configurations. The solid red line
correspond to the distance for a non-rotating configuration
with an effective trap frequency ω̃r =

√
ω2
r − Ω2.

the particles. This can be proved by comparison with
the inter-droplet distance of a non-rotating gas trapped
at the effective frequency ω̃r =

√
ω2
r − Ω2 so as to mimic

the centrifugal force effect, shown in the same Fig. 3
(solid red line).

Then, we extract the positions of any vortices present
in the system using a plaquette method [50] and com-
pare them to our estimate in Eq. (9). In Fig. 4 we show
examples of the stationary density distribution at differ-
ent rotation frequencies, along with the vortex locations.
This figure shows that the vortices are not necessarily
pinned to the vertices, but rather along the low-density
paths that connect them. The configurations conserve
the triangular symmetry both for the density and phase
profiles, and we observe that they display vanishing phase
differences among droplet centers, i.e., φk = 0,∀k. This
leads to the prediction Yv = (2l + 1)πh̄/(mdΩ). It is
worth noting that the position of the vortex along the
straight path between the vertices yv1 and yv2 (see figure)
corresponds to the solution with l = 0, whereas different
values of l identify additional vortices that may enter the
system from outside. Nevertheless, we remark that those
additional vortices that appear, e.g., for Ω/(2π) = 30 Hz
(bottom panel of Fig. 4) cannot be properly described
by the ansätze (9) and (11) because they are nucleated
in the low-density cloud, outside the region of validity of
the analytical approach.

At this point, we are now able to compare the analyt-
ical predictions of Eqs. (9) and (11) with the extracted
values of the vortex positions Yv as a function of the ro-
tating frequency, as summarized in Fig. 5. Overall, this
figure demonstrates that the analytical ansatz discussed
in Sec. II A provides an accurate prediction for the po-
sitions of the vortex cores between supersolid droplets in
stationary rotating configurations. It is also worth not-

FIG. 4. Density plots of stationary supersolid configurations
obtained from the eGP simulations at the z = 0 plane for
some representative rotation frequencies: Ω/(2π) = 16, 20,
and 30 Hz (from top to bottom, respectively). The black
dots mark the maxima of the density. The vortex positions
determined with the plaquette method are shown as white
plus symbols (+). The position of the vortex core obtained
from the analytical ansatz, along the straight path between
the vertices yv1 and yv2 [yellow crosses (×)], is indicated by
a green square.

ing that the pinning at the saddle points, represented by
a dotted line in the graph, and density minima do not
seem to be favored with respect to other points along
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16 18 20 22 24 26 28 30 32
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1.5

2

2.5

3

3.5

4

Ω/(2π) [Hz]

Y
v 

[µ
m

]
vortex position
two droplets
three droplets

FIG. 5. Vortex position as a function of the rotation fre-
quency Ω, for the stationary configurations. The positions
extracted from full eGP simulations using a plaquette method
(see text) are marked as blue points with their corresponding
error bar. The prediction provided by Eq. (9) with l = 0
(black dashed line) and (11) (solid red line) have been cal-
culated using the values of d obtained from the numerical
simulations, which are shown in Fig. 3. They correspond to
the ansatz based on two and three droplets, respectively. The
parameters of the three-droplet ansatz are a = 0.75µm and√

N0/N1 = 1.06. The (green) dashed lines represent posi-
tions of the vertices, whereas the (black) dotted line indicates
the position of the saddle point.

such paths, as stated previously (see e.g. [33]). Instead,
the vortex position smoothly changes as a function of
the rotation frequency. As a matter of fact, in a rotat-
ing supersolid, the slow variation of the vortex location
arises from the imprinted velocity field on the droplets,
rather than from density holes that typically pin vortices
in non-rotating systems.

Finally, let us comment about the two- and three-
droplet approximations. Although the two-droplet
ansatz is not expected to hold far from the saddle
point, where other effects should be taken into account,
the ansatz accurately predicts the rotation frequency at
which vortices locate near such a point, through an ana-
lytical formula. Instead, the three-droplet model permits
us to numerically estimate with accuracy the position of
vortices along the line joining the saddle point and the
vertex yv1. This is evident from the figure, where the
positions of the vertices are indicated by (green) dashed
lines. In particular, for the saddle point ys, the predic-
tion of the rotation frequency for reaching such a point
using the two- and three-droplet approximations differ
in less than 0.3%, as the exponential term in Eq. (11)
is smaller than 10−2 at the saddle point. Notice that
neglecting such an exponential term altogether, the two-
droplet ansatz is exactly recovered. In contrast, for the
vertex yv1, the two-droplet rotation frequency estimate
is given by Ω/2π = h̄

√
3/(2md2) ≃ 28 Hz; whereas, us-

ing the three-droplet approach of Eq. (11), one obtains
Ω/2π ≃ 37 Hz. This result may be seen considering that
the argument of the exponential vanishes at the vertex
yv1, and hence the frequency at which the vortex should
reach such a vertex satisfies

cos

(
md2Ω

2h̄
√
3

)
= −1

2

√
N1

N0
. (13)

Then, assuming equal populations N0 = N1 the above
equation leads to Ω/2π = 2h̄/(

√
3md2) ≃ 37 Hz for the

lowest Ω value that corresponds to vortex position with
l = 0 in Eq. (9), consistently with the numerical findings
of the eGP simulations. In summary, we have shown that
the three-droplet model better describes the vortex posi-
tion as a function of rotation frequency from the saddle
ys to vertex yv1.

IV. SUMMARY AND CONCLUDING
REMARKS

We have shown that when a dipolar supersolid is sub-
jected to rotation, the positions of vortices between two
neighboring droplets can be predicted in terms of the ro-
tation frequency and the inter-droplet distance. Such a
distance can be roughly estimated using the non-rotating
system with a harmonic potential that mimics the net
confinement produced by the rotating trap. The vortex
positions are a smooth function of the rotation frequency
and are distributed along the low-density paths between
both droplets, instead of being fixed at a density min-
imum. Such a formulation applies in the regions where
robust droplets acquire on-site axially symmetric profiles.
We have further shown that a very accurate value of the
vortex locations can be numerically obtained by consider-
ing three neighboring droplets within the triangular lat-
tice. In the present case, due to the external confinement,
three well-formed neighboring droplets could be observed
only around the first vertex, but given that our estimate
remains valid from the vertex up to the saddle, we may
conclude that the model should work well for less con-
fined systems where more droplets are formed around
other vertices of the triangular lattice.
As a final remark, the approach can be generalized

to more complex droplets configurations as long as the
droplets themselves are axially symmetric and well de-
fined. Vortices will likely be placed in areas in which 2
or 3 neighboring droplets are enough to precisely predict
their positions, regardless of the lattice structure of the
supersolid.
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