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Cavity quantum materials combine the rich many-body physics of condensed matter systems
with strong coupling to the surrounding electromagnetic field, which presents both novel prospects
and intricate challenges. One is often interested in the properties of one specific aspect of the
material, e.g. the electronic many-body dynamics, subject to a structured bath of phononic and
photonic modes. Open quantum systems featuring non-Markovian dynamics are routinely solved
using techniques such as the Hierarchical Equations of Motion (HEOM) but their usage of the system
density-matrix renders them intractable for many-body systems. Here, we combine the HEOM
with the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy to reach a consistent and
rigorous description of open many-body systems and their quantum dynamics. We demonstrate
first the strength and limitations of this stacked hierarchy for superradiant emission and spin-
squeezing of established quantum optical models before presenting its full potential for quantum
many-body systems. In particular, we explicitly simulate the impact of charge noise on the dynamic
of the Fermi-Hubbard model subject to a structured bath comprising cavity and vibro-phononic
environment. Strong optical coupling not only modifies the dynamic of the many-body system
but serves furthermore as measurement channel providing information about the correlated motion
imprinted by charge noise. Our work establishes an accessible, yet rigorous, route between condensed
matter and quantum optics, fostering the growth of a new domain at their interface.

Please note, this early version will be refined and updated
with additional results in the near future.

I. INTRODUCTION

The ability to control many-body quantum systems
with quantized light is imperative in modern quan-
tum technologies such as photonics, quantum memories,
quantum sensing, or quantum information.[1–4] An ide-
alized description of the fundamental building block, the
quantum emitter, is challenged by disturbances, such as
charge noise or phonon scattering, that hint at the in-
herent many-body character of each quantum system.
Strong light-matter coupling allows to control interac-
tions over extended length scales[5–9], holding promise to
design materials [10–12], devices [13, 14], or even chem-
ical properties [15–19] non-intrinsically and on demand.
The many-body physics originating from electronic and
vibrational structure, as well as their respective decoher-
ence, is crucial for a comprehensive understanding and
refinement of this control-strategy.[20–24]

Our primary challenge in this study is to address phys-
ical processes wherein many-body interactions, strong
light-matter coupling, and strong system-environment
coupling are all fundamental. Achieving this goal necessi-
tates combining concepts from quantum optics and solid-
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state physics. Quantum optics often treats light-matter
interaction non-perturbatively but simplifies the struc-
ture of materials drastically. Conversely, condensed mat-
ter or quantum chemistry approaches accurately describe
the material system but oversimplify interactions with
surrounding environments. Our aim is to bridge quan-
tum optical and condensed matter/quantum chemistry
approaches to create a framework for studying the effects
of strong light-matter coupling on many-body physics
more efficiently than previously possible.

One approach to handle non-Markovian dynamics is to
resort exact numerical methods, where the effects of the
environment are taken into account stochastically. These
methods could be wave function based, such as non-
Markovian Quantum State Diffusion (NMQSD) [25–27]
or density matrix based such as the Hierarchical Equa-
tions Of Motion (HEOM) [28, 29]. In this work we fo-
cus on the latter approach. HEOM has been used to
solve a large variety of problems such as the dynamics
of the Holstein polaron [30] or the problem of coupling
to multiple environments [31]. To use HEOM, the bath
correlation function, which measures the response of the
environment to the open system needs to be fitted with
exponential functions [32]. The resulting hierarchy cou-
ples the physical density matrix to auxiliary density ma-
trices, and the hierarchy’s depth depends on the system-
environment coupling strength. However, this approach
becomes impractical for many-body systems due to the
exponential scaling of physical and auxiliary states with
system size. Our aim is to combine the HEOM approach
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with an efficient strategy for many-body dynamics.

The second challenge to face is the strong coupling be-
tween the material system and the cavity field. Micro-
and plasmonic cavities will often require the consider-
ation of multiple modes [13, 33]. Commonly used ap-
proaches, such as adiabatic elimination [34] or mean
field [35], show at best limited success at approximat-
ing the exact dynamic. Cluster expansion techniques
for the light matter interaction [36, 37] and HEOM re-
lated expansions for the material system alone have been
proposed [38, 39] but they still suffer from poor scal-
ing for many-body quantum systems. Entering the ul-
trastrong coupling regime [40], counter-rotating [41] and
self-polarization terms [42, 43] become essential which
necessitates the usage of the correct Lindblad dissipa-
tor that connect between the correlated eigenstates. In
this work, we will limit ourselves to the strong coupling
regime where such effects play a subordinate role.

Lastly, the third challenge is to control the exponen-
tial scaling of the many body system. Wavefunction-
based approaches, such as tensor networks [44] or ma-
trix product states, increase exponentially in cost over
time which limits their use to short time-scales [45, 46].
Non-equilibrium Green functions approaches made re-
cent progress after the successful integration of the gen-
eralized Kadanoff-Baym ansatz [47, 48] but a consistent
treatment of complex structured baths remains challeng-
ing. An attractive approach with good scaling prop-
erties is to perform a cluster expansion of the density
matrix into single-,two-,three- and N -body reduced den-
sity matrices and then truncate the resulting Bogoli-
ubov–Born–Green–Kirkwood–Yvo (BBGKY) hierarchy
at some low order [49, 50].

Here, we combine BBGKY and HEOM to establish a
stacked BBGKY-HEOM hierarchy that provides an effi-
cient framework for the simulation of correlated many-
body systems subject to structured baths. The remain-
der of this article is structured as follows: Sec. II provides
a short introduction to non-Markovian open-system and
many-body theory before the derivation of the BBGKY-
HEOM equations in Sec. II B. We illustrate their per-
formance, limitation, and associated physical intuition
for various systems in Sec. II. In particular, Sec. III A
demonstrates that BBGKY-HEOM succeeds in repro-
ducing the quantum many-emitter physics in the superra-
diant driven Tavis-Cummings model while retaining con-
stant scaling with emitter size. We subsequently shift
our focus to many-body electronic systems in the form of
the Fermi-Hubbard model coupled to a lossy cavity mode
and subject to charge noise in Sec. III B. This system in
then embedded into a highly structured bath in Sec. III C
that represents phononic motion in organic crystals. The
BBGKY-HEOM provides accurate predictions for as long
as the onsite repulsion U , and with it the degree of elec-
tronic correlation, remains moderate. We notice that the
bath adds a stabilizing contribution to the BBGKY equa-
tions. Sec. IV finally concludes our study and provides
an outlook into the nearer future.

II. THEORY

A material comprising electrons and nuclei moving at
non-relativistic velocities is described by Schrödinger’s
equation. Its interplay with electromagnetic fields neces-
sitates the consideration of the (quantized) normal modes
of the Maxwell equations. This combined system can be
described using the minimal coupling Hamiltonian. In
Coulomb gauge,

Ĥ =

Ne+Nn∑
i=1

1

2mi

[
− iℏ∇i − qiÂ(ri)

]2
+ Ĥ∥

+
ε0
2

∫
dr3

[
Ê⊥(r)2 + B̂(r)2

] (1)

for Ne electrons and Nn nuclei with charge qi and mass
mi. We will use atomic units in the following. Eq. (1)
treats the transversal degrees separate from the longitu-
dinal and instantaneous Coulombic interactions H∥. The
latter includes electronic and nuclear interactions which
are typically treated in first quantization at first

Ĥ∥ = V̂ee + V̂en + V̂nn; V̂ee =

Ne∑
i ̸=j

1

|ri − rj |

V̂en =

Ne,Nn∑
i,j

−qi
|ri −Rj |

; V̂nn =

Nn∑
i ̸=j

qiqj
|Ri −Rj |

.

(2)

Their interplay results in rich many-body physics that
gives rise to electronic, vibronic, and phononic structure
and, unfortunately, to an exponentially increasing com-
plexity. The system-bath strategy aims now at identi-
fying the smallest possible subsystem that we can treat
explicitly while absorbing the remainder into a bath[51].
First step is to simplify the Hamiltonian to a form that
contains only linear interactions between various subsys-
tems

Ĥtot = Ĥsys + ĤB + Ĥsys,B . (3)

Such a separation can be formalized using the projection
operators P and Q = 1 − P , which are defined in such a
way that the relevant state of the subsystem is obtained
by projecting the total state ρtot(t) to the relevant sub-
space

ρsys(t) = Pρtot(t). (4)

A common choice is Pρtot(t) = Trsys{ρtot(t)}⊗ρB , where
ρB is some fixed reference state. Typically it is also as-
sumed that at some specific initial time t0, the total state
is a product ρ(t0) = ρsys(t0) ⊗ ρB . Moreover, it is often
possible to choose the partitioning of the Hamiltonian in
such way that the odd moments of the interaction term
vanish with respect to the reference state (a typical sit-
uation is for example the case where ρB corresponds to
the thermal state of a quadratic bosonic bath to which
the open system couples linearly).



3

The gauge freedom of the electromagnetic modes pro-
vides various different paths. An intuitive approach
is to isolate the bilinear term

∑
i −iℏqi/miÂ(ri) · ∇i

as coupling operator and absorb the quadratic diamag-
netic term into dressed photonic operators[42, 43]. A
second direction, often more promising for finite sys-
tems, is to shift into the multi-polar gauge (detailed in
App. C). Combination with the long-wavelength approx-
imation provides then a simple bilinear coupling between
dipole moment and displacement field. In addition, self-
polarization terms modify the dynamic of the system and
the redefinition of the optical creation and annihilation
operators introduce the need to reconsider the interpre-
tation of system and bath. Vibrational and phononic
interaction follow similarly. The influence of nuclei mo-
tion on the electron-nuclear interaction can be expanded
around the equilibrium configuration

V̂en ≈ V̂en|0 +
∑
j

δRj ·∇j V̂en|0 + ... (5)

and truncated at harmonic order, resulting in a bilin-
early coupled electron-phonon or electron-vibration cou-
pling that depends on the electronic configuration. Note
that also here second-order (known as Debye-Waller) cor-
rections appear that require to carefully scrutinize the
separation between system and bath.[52] The following
derivations and demonstrations are agnostic to such sub-
tleties as we will focus on the development and illustra-
tion of the BBGKY-HEOM methodology. A thorough
derivation of system-bath couplings for a specific physi-
cal realization is evidently essential for meaningful pre-
dictions but it is not the focus of this manuscript.

A. Many-body Open Quantum Systems beyond
the Markovian Limit

Very often the environment can be modeled as a col-
lection of non-interacting quantum harmonic oscillators.
This is for example frequently the case in quantum op-
tics [53], or when the system is coupled weakly to a
large number of degrees of freedom where central limit
type of arguments yield an approximately Gaussian re-
sponse [54]. When a description of the environment in
terms of harmonic oscillators is suitable, then the HEOM
approach yields an exact description for the evolution of
the open quantum system [28, 29, 55]. In fact, HEOM
type of techniques can be even extended to cases where
the environment is anharmonic [56, 57]. In this work, we
focus on the case of harmonic baths, either correspond-
ing to optical modes confined in an imperfect cavity or a
phonon bath into which a quantum emitter is embedded.
The influence functional of the bath can then be com-
puted exactly under the harmonic assumption when us-
ing the path integral formalism [58]. HEOM follows from
this influence functional [29] and we provide a sketch of
the derivation for the open system in App. D.

Following the previous motivation, we start with a
many-body system that is linearly coupled to a collec-
tion of harmonic oscillators. Especially in the case of
cavity quantum materials many different environments
(e.g. phonon- and electromagnetic environment) can be
relevant for the problem. We label these distinct en-
vironments with k, such that the bosonic annihilation
(creation) operators belonging to mode λ of bath k are

given by akλ (ak†λ ). The evolution of the total state ρtot
of system and environments is then described by

ρ̇tot = − i[H, ρtot], (6)

H =Hsys +
∑
k,λ

gkλ(Lkak,†λ + Lk†akλ) +
∑
λ

ωk
λa

k†
λ akλ,

(7)

where Lk is the system operator that describes the cou-
pling to environment k and ωk

λ, gkλ are the frequencies
and coupling strengths of the respective modes. The
environments are characterized by their spectral den-
sity Jk(ω) =

∑
λ|gkλ|2δ(ω − ωk

λ) or equivalently by their

bath correlation function αk(τ) =
∫∞
0

Jk(ω)e−iωτdτ . We
are foremost interested in the reduced dynamics in the
system Hilbertspace Hsys but it should be noticed that
HEOM keeps track of the bath degrees of freedom. For
the moment, the N particles of the many-body Hamil-
tonian are assumed to behave identical under a single
particle Hamiltonian Hi and experience two-particle in-
teractions Vij . In addition, we assume identical coupling
to the environments via the single particle operator Lk

i ,
such that the many-body Hamiltonian and the coupling
operators can be decomposed into

Hsys =

N∑
i=1

Hi +

N∑
i ̸=j

Vij , Lk =

N∑
i=1

Lk
i . (8)

The evolution equation (6) is therefore invariant under
particle exchange. Such assumptions are natural for in-
distinguishable particles but one can easily relax this con-
dition if one would like to describe for example ensembles
of inhomogeneously broadened emitters.

B. Combining HEOM with BBGKY

Despite the restrictions employed above, the resulting
system-bath Hamiltonian applies to a vast range of sys-
tems, from typical quantum optical setups over Rydberg
ensembles to molecules in cavities. However, due to the
large size of the Hilbert space it is typically not possible
to diagonalize Eq. (6) exactly.

Starting point for the derivation of a holistic descrip-
tion that combines many-body and system-bath dynamic
is the HEOM equation. We present in the following only
the equations for a single environment for the sake of
simplicity but note that the extension to multiple envi-
ronments is trivial and will be illustrated in Sec. III C.
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The HEOM equation accounts for the non-Markovianity
of the coupled environment with an infinite set of coupled

equations for the system density matrices ρ
(n,m)
sys ∈ Hsys.

Here, ρ
(0,0)
sys = TrB(ρtot) =: ρ is the reduced density ma-

trix of interest and m,n are vector indices labelling (un-
physical) auxiliary density matrices. The hierarchy is
truncated at a sufficiently high order which is determined
by the non-Markovianity of the system-bath interaction,
i.e., a Markovian bath corresponds to a truncation at first

order according to ρ
(ek,0)
sys ∝ Lρ

(0,0)
sys , ρ

(0,ek)
sys ∝ ρ

(0,0)
sys L†.

The evolution equation for the auxiliary density matri-

ces (including the physical reduced density matrix ρ
(0,0)
sys )

reads

ρ̇(n,m)
sys = −i[Hsys, ρ

(n,m)
sys ] − (w · n + w∗ ·m) ρ(n,m)

sys

+

M∑
k=1

(
Gk

(
nkLρ

(n−ek,m)
sys + mkρ

(n,m−ek)
sys L†

)
+
[
ρ(n+ek,m)
sys , L†

]
+
[
L, ρ(n,m+ek)

sys

])
,

(9)

where bold symbols indicate the vector character of a
variable and ek denotes the unit vector in direction k.
The complex coefficients Gi, wi can be obtained from an
exponential fit of the bath correlation function α(τ) ≈∑

i Gie
−wiτ or inferred from scattering theory [59]. The

number of coefficients required for the fit sets the di-
mension of the vector indices and therefore increases the

computational complexity.
This equation has been successfully applied to a wide

range of systems [55, 60–65], but a major limitation is the
requirement for the entire system density matrix. The
latter scales exponentially with the size of the subsystem
and is therefore practically inaccessible for the vast ma-
jority of many-body quantum systems. Application to
many-body systems requires therefore to identify a path
that retains the dimensionality of the systems descriptor,

thus far ρ
(n,m)
sys , on a manageable level.

An intuitive way to accomplish this is presented by
the BBGKY hierarchy which is build around the reduced
density matrices (RDM)

F
(m,n)
123 =N(N − 1)(N − 2) Tr4,5,...,N (ρ(m,n)),

F
(m,n)
12 =N(N − 1) Tr3,4,...,N (ρ(m,n)),

F
(m,n)
1 =N Tr2,3,...,N (ρ(m,n)).

(10)

Here Tri,i+1,...,N denotes the trace over all particles with
index larger than i and the reduced density matrices are
normalized to the provide the particle number under con-
traction [66]. Note that since we are restricting ourselves
to permutationally symmetric systems the order of in-
dexing is irrelevant.

Our goal in the following is to derive a closed hierarchy
of equations for the reduced density matrix F12, such
that the (auxiliary) density matrices in Eq. (9) only scale
with the square of the dimension of the single-particle
Hilbertspace. From Eq. (9) it follows that (see App. B)

Ḟ
(n,m)
12 = −i[H1 + H2, F

(n,m)
12 ] + Tr3

(
[V13 + V23, F

(n,m)
123 ]

)
− (w · n + w∗ ·m)F

(n,m)
12

+

M∑
k=1

(
Gk

(
nk(L1 + L2)F

(n−ek,m)
12 + nk Tr3(L3F

(n,m)
123 ) + mkF

(n,m−ek)
12 (L†

1 + L†
2) + mk Tr3(L†

3F
(n,m)
123 )

)
+
[
F

(n+ek,m)
12 , L†

1 + L†
2

]
+
[
L1 + L2, F

(n,m+ek)
12

])
.

(11)

For any interacting many-body system, the two-body
RDM F12 will couple to the three-body RDM F123, which
in turn will couple to the four-body RDM and so on. In
order to close this hierarchy we therefore need to express
the three-body RDM in terms of the one- and two-body
RDM

F123 ≈ F̃123(F12, F1).

We demonstrate in App. B how this can be achieved by
reformulating the hierarchy of equations for the density

matrices ρ
(n,m)
sys as an equation for a single operator in

an extended Hilbertspace Hext = Hsys ⊗Haux and sub-
sequently neglecting three-body correlations within the
system. However, we keep correlations between two par-

ticles in the system and the auxiliary degree of freedom
that captures the influence of the environment. With
these approximations we arrive at the expression below
for the three-body RDM, where we have left out indices
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(0,0) for brevity

F̃
(m,n)
123 = 4

(N − 1)(N − 2)

N3
Tr(F

(m,n)
1 )F1F2F3

+
N − 2

N

(
F12F

(m,n)
3 + F

(m,n)
2 F13 + F

(m,n)
1 F23

)
+

N − 2

N

(
F1F

(m,n)
23 + F

(m,n)
13 F2 + F

(m,n)
12 F3

)
− N − 2

N2
Tr(F

(m,n)
1 ) (F12F3 + F13F2 + F1F23)

− 2
(N − 2)(N − 1)

N2

(
F

(m,n)
1 F2F3

+ F1F
(m,n)
2 F3 + F1 + F2F

(m,n)
3

)
.

(12)

Inserting the above approximation into Eq. (11) pro-
vides the BBGKY-HEOM equation up to three-body cor-
relations – the central tool of this work. As desired, it
represents a closed hierarchy for the two-particle RDM
that can account for interactions within the system and
simultaneously includes the influence of a generic non-
Markovian environment.
F̃

(m,n)
123 is invariant under particle exchange, but does not

preserve the (anti-)symmetry of the wavefunctions as re-
quired for (fermionic) bosonic particles. As explained
in detail in App. B this can be achieved by employ-
ing an (anti-) symmetrization operator which projects

F̃
(m,n)
123 onto the (anti-) symmetric subspace of the the

Hilbertspace while retaining its norm [50].

III. RESULTS

Every quantum system is a collection of individual par-
ticles, may it be a collection of single-photon emitters or
the individual electronic and vibrational degrees of free-
dom that constitute one such emitter. We demonstrate
in the following the applicability, strength, and limitation
of BBGKY-HEOM for both of these cases. In particu-
lar, we focus on two well known paradigmatic models
from quantum optics and condensed matter physics: the
driven Tavis-Cummings and Fermi-Hubbard model.

A. Driven-dissipative many-emitter systems

A collection of emitters that share a common mode
can interact with it collectively, potentially resulting in
burst-like correlated emission known as superradiance.
Such phenomena are closely linked to the non-classical
dynamic of squeezed spin states. Following a series of
simplifications for matter, cavity, and light-matter cou-
pling, one obtains the widely used Dicke Hamiltonian [53]

HDicke = ωa

∑
i

σi
z + ωca

†a + g
∑
i

σi
x(a† + a). (13)

The Pauli matrices σi
x,y,z represent the SU(2) algebra of

an idealized two-level emitter while a†(a) are the cre-
ation (annihilation) operators of the cavity mode. The
collection of emitters can be brought out of equilib-
rium by continuously pumping energy into the system
Hdrive = 2Ω cosωdt

∑
i σ

i
x. A unitary transformation

moves us into a frame that rotates with the driving fre-
quency ωd. As long as the drive is close to resonance,
i.e., ωd ≫ ∆z,∆x, g,Ω with the detunings ∆z = ωa−ωd,
∆c = ωc − ωd, we can safely discard counter-rotating
terms ei(ωd+ωa/c) that oscillate too fast to influence the
dynamic of the system. We obtain the paradigmatic
driven Tavis-Cummings Hamiltonian

HDTC =∆z

∑
i

σi
z + Ω

∑
i

σi
x + ∆ca

†a

+g
∑
i

(
σi
+a + σi

−a
†) . (14)

We will consider the emitters or spins in the following
as our system of interest and the cavity as environment
dissipating energy into free space at a rate κ. The bath
correlation function is readily obtained, for example from
the Heisenberg-Langevin equations [51], as

α(τ) = g2⟨a†(τ)a(0)⟩ = g2e(−i∆c−κ)τ . (15)

For this simple example a fitting procedure is thus not
necessary and we can readily use Eq. (11) with M = 1
and G = g2,W = i∆c + κ. Using the suggested trunca-
tion of the many-body BBGKY hierarchy, we then evolve
a hierarchy of 2-particle RDMs, here 4×4 matrices, aug-
mented with the HEOM indices (m,n). The computa-
tional complexity is therefore independent of the number
of emitters as all emitters are identical.

Given the necessary computational resources, we could
have just as well decided to directly solve the entire sys-
tem of N-emitter plus lossy cavity using the Lindblad
master equation

ρ̇ = −i[HDTC , ρ] + κ
(
aρa† − a†aρ− ρa†a

)
. (16)

This exact solution will be used to estimate the quality
of the BBGKY-HEOM and can be obtained in a collec-
tive spin picture Sk =

∑
i σ

i
k, k ∈ {x, y, z,+,−}. The

2N dimensional system Hilbert space can then be re-
stricted to a basis of N + 1 permutationally symmetric
Dicke states {|N/2,m⟩ ,m = −N/2,−N/2 + 1, . . . , N/2}
which results in a linear increase of the relevant basis
size with N and therefore a quadratic increase of the Li-
ouville space. However, the collective spin-picture fails as
soon as individual emitter-emitter interactions need to be
included, resulting in an exponentially growing Hilbert
space that prohibits exact solutions for systems larger
than a handful of emitter. The computational cost for
BBGKY-HEOM on the other hand is unaffected by this
change and remains system-size independent. Note, that
even if there is no direct interaction in this model the
spins still interact indirectly via the cavity mode.
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Figure 1: Squeezing and superradiance in the driven Tavis-Cummings model: A) Spin dynamic for

N = 50, g
√
N/κ = 0.5, ∆z/κ = 0.2, Ω/κ = 0.05, ∆c/κ = 10. B) Corresponding spin-squeezing (see text). C)

Superradiant emission from fully excited state. Parameters adjusted to ∆z/κ = 2, ∆x/κ = 1, ∆c/κ = 2.4, g/κ = 0.1.
D) Photon-occupation normalized by N2 over time and maximum photon number in burst (not normalized) for
different N obtained with BBGKY-HEOM. BBGKY-HEOM provides reliable predictions and only begins to deviate
slightly at long times when explicit 3-body correlations accumulate to noticeable values.

Fig. 1 (A) illustrates the system dynamic in the rotat-
ing frame for N = 50 emitter strongly coupled to the cav-
ity

√
Ng/κ =

√
N/4 in comparison to the exact solution

of the Master equation. The spin components ⟨Si⟩ are
accurately predicted within the simulation window, de-
spite the non-classical dynamic of the system. Shown in
the upper inset is the spin squeezing (see App. A) which
is exhibiting values smaller than unity – a sufficient con-
dition for entanglement. We observes small deviations at
long times which can be understood by investigating the
slow increase in the explicit 3-body correlations (lower
inset), i.e., the term that is discarded in the currently
chosen truncation. The spin-squeezing is further illus-

trated by the spin-Q function Q = ⟨θ, ϕ| ρ |θ, ϕ⟩ in the
upper right subplot (B), with |θ, ϕ⟩ the spin coherent
state. Mean-field theory will fail in predicting any of the
spin-squeezing effects.

Let us fully excite all emitters and illustrate the re-
sulting superradiant emission in Fig. 1 (C) (parameters
adjusted, see caption). BBGKY-HEOM follows closely
the exact dynamic and small deviations are visible only
close to the fully de-excited steady-state. While mean-
field theory models the initial frequency quite accurately,
it fails to model the spontaneous emission process and re-
mains trapped at the upper fix-point. The inset projects
this dynamic on the Bloch-sphere which illustrates that
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Figure 2: Fermi-Hubbard model coupled to lossy cavity mode: (Left) Dynamic of dipole moment of

Fermi-Hubbard model (J = 1, parameters in text) after site-dependent quench V(t) =
∑3

i=0 Vi(t)c
†
i ci with

Vi(0
+) = 1

5(i+1) , which mimics a charge localization event, for different onsite repulsion U . BBGKY-HEOM (blue

solid) provides reliable predictions for weak to moderate onsite repulsion when compared to the exact solution

(black dashed). (Right) Dipole moment driven by time-dependent potential Vi(t) = f(t)
5(i+1) , where f(t) is a step

function as shown by the grey dashed line and U = 0.1. The example simulates charge noise due to the movement of
electrons in the vicinity of the molecule. Inset illustrates onsite occupation.

the failure of the mean field can be connected to re-
striction to the surface of the sphere while the correct
dynamic requires to transverse it diagonally. The sud-
den increase in the photon number originating from the
burst-like emission of N correlated emitter is presented
in Fig. 1 (D), demonstrating again accurate predictions
by BBGKY-HEOM. Continuous driving results in a con-
tinuous replenishment of the cavity mode. The maxi-
mum photon-number (inset) is correctly described in its
quadratic increase with the emitter number N . In conclu-
sion, BBGKY-HEOM provides accurate predictions for
matter and cavity observables at constant cost, i.e., for
arbitrary many emitter and with the option to account
for direct interaction. We will now relax the simplifi-
cation of the emitter and instead combine the dynamic
of the many-body correlated system with a structured
system-bath coupling.

B. Many-body electronic systems coupled to
non-Markovian optical environments

The electronic structure of most organic molecules is
dominated by covalent bonds or conjugated π-systems,
requiring many-body methods to faithfully model their
electronic properties. An excitation in such a system
cannot be represented by the excitation events of a sin-
gle electron. Instead, the surrounding electronic cloud
reacts and screens the polarization induced by the exter-
nal field – every optical excitation in a molecule or solid
is inherently a many-body process. Electronic correla-

tion can increase to bizarre levels for systems including
transition metals, which contribute strongly localized d
and f-orbitals shielded from molecular orbitals. Moving
two electrons to such a state costs a considerable amount
of energy, as they strongly repel each other, resulting in
electronic motion that is strongly correlated. A proto-
typical approach to describe such a system is given by
the Hubbard model

ĤH = −J
∑
σ

N∑
i=1

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

+ U
N∑
i=1

ĉ†
i,+ 1

2

ĉ†
i,− 1

2

ĉi,− 1
2
ĉi,+ 1

2
,

(17)

with the hopping rate J between two localized Wannier
orbitals and the onsite energy U . Usually U > 0 as it
costs energy to force two electrons on the same site. Weak
onsite interaction U/J ≪ 1 will only marginally limit
the free hopping of electrons between the states while
extreme values of U/J ≫ 1 will result in states similar to
Wigner crystals [67]. We focus here on small to moderate
onsite interactions U/J < 1 to account for the weak to
moderate correlation in molecular systems.

Naturally, the electronic structure is embedded in an
environment of optical (or vibro-phononic) modes, result-
ing in the emergence of polaritonic states if coupled suffi-
ciently strong. Our BBGKY-HEOM approach allows to
consistently describe and monitor how the dynamic of the
lossy cavity mode imprints correlations in the electronic
many-body system and vice versa. The corresponding
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minimal Hamiltonian for such a Cavity-Fermi-Hubbard
system [68, 69]

Ĥ = ĤH + ℏω(â†â +
1

2
)

−
√

ℏω
2ε0V

(â + â†)ecav · µ̂ +
1

2ε0V
(ecav · µ̂)2,

(18)

includes self-polarization contributions of the localized

dipole moment µ̂ = echain
∑

σ

∑N
i=1 riĉ

†
i,σ ĉi,σ. The lo-

cal positions ri ∈ {−N−1
2 ∆, ..., 0, ...,+N−1

2 ∆} as well as
their spacing ∆ are defined with respect to the center of
the PZW gauge [42, 43]. We will use J = 1, ω = 0.5,
assign a cavity loss of κ = 0.2, a coupling strength of

g =
√

ℏω
2ε0V

= 0.1, and disregard the self-polarization for

the moment.
One strength of explicitly treating the many-body elec-

tronic system is that the electronic response to external
stimuli, such as charge noise, can be explicitly modelled.
Assume a short polyacetylene molecule with 4 sites host-
ing 4 electrons, represented by Eq. (18), and initially in
equilibrium. A distortion in the surrounding structure
suddenly traps an electron near our molecule, resulting

in a repulsive Coulomb potential V (t) =
∑3

i=0 Vi(t)c
†
i ci

and Vi(0
+) = 1

5(i+1) . The subsequently induced dipole

moment is presented in Fig. 2 (left) for three different
values of onsite repulsion U . Without direct electronic
interaction, the BBGKY-HEOM is nearly exact as the
many-body correlation induced by the cavity is compa-
rably small in this case. The quality of our approximation
remains excellent for U = 0.1 and slowly worsens for sys-
tems with sizeable correlation of U = 0.2, as one would
expect.

Charge will not only localize once but randomly tun-
nel in and out of the impurity. The dynamic originating
from the random localization of charge on the dipole mo-
ment is shown in Fig. 2 (right) with the corresponding
changes in occupation (inset) and time-dependent (gray
dotted) potential. Clearly, hitting a resonance condi-
tion such as at Jt = 40 can result in large deviations
from the equilibrium state without noticeable influence
on the quality of the BBGKY-HEOM predictions. One
strength of the BBGKY-HEOM is therefore to resolve
the many-body electronic dynamic that originates from
time-dependent modulations which allows us to simulate
e.g. charge noise, dynamic screening, or triplet-triplet
annihilation explicitly – a feature that we plan to lever-
age further in the future.

Let us end this section by illustrating the limitations
of the BBGKY hierarchy. The 4 sites of our Hubbard-
chain host again 4 electrons but we force them initially
to occupy the 1st and 3rd site only, i.e., our initial state
has two doubly occupied and two empty sites. Naturally,
this state is far from the correlated ground-state and re-
sults in a violent dynamic of density sloshing forward and
backward. Fig. 3 illustrates the onsite occupation, i.e.,
the electronic density, of the initially occupied sites over
time. The exact reference calculations (black dashed)

0 25Jt

0.25

2.00

n i

0 25Jt
-0.04

0

m
in

. e
ig

.-v
al

.

BBGKY-HEOM, i=1 BBGKY-HEOM, i=3 Master Eq.

Figure 3: Strong dynamic in
Cavity-Fermi-Hubbard model: Occupation for
second and last site, both initially doubly occupied,
over time. Sites 0 and 2 are initially empty, resulting in
rapid charge-oscillations between the sites and a quick
build-up of 3-body correlations. The BBGKY-HEOM
becomes increasingly worse with ongoing time which is
accompanied with the appearance of negative
eigenvalues in the 1RDM that could potentially lead to
instabilities.

follow our predictions closely up to Jt ≈ 20 before the
quality of the BBGKY-HEOM prediction deteriorates.
We can relate this sudden loss of accuracy to the appear-
ance of artificial negative eigenvalues in the reduced den-
sity matrix (see inset) – a failure caused by the fact that
the BBGKY hierarchy is not contraction consistent by
default. Contraction consistency refers to the fact that
the 2RDM must be obtained from the trace of the ap-
proximated 3RDM. Neglecting this condition results in a
build-up of negative eigenvalues that will inevitably lead
to numerical instabilities. Fortunately, such effects can
be circumvented by enforcing contraction consistency via

more complex reconstruction functionals F̃123 as shown
in [50, 70]. BBGKY-HEOM is remarkably stable when
compared to the bare dynamic of the electronic system
alone. We attribute this observation to the fact that the
decoherence imprinted by the structured bath penalizes
instabilities as large uncontrolled oscillations couple ef-
ficiently to the optical mode which dissipates a notable
fraction of the energy and thus stabilized the dynamic of
the system.

C. Many-body dynamic embedded into organic
crystals

Many-body electronic systems, such as molecules or
(an)organic frameworks, are often embedded in a liq-
uid or crystalline environment. For example, organic
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Figure 4: Cavity-Fermi-Hubbard model under the
influence of a complex phonon bath: The
evolution of the electronic dipole with (blue, solid) and
without (gray, dashed) the phonon bath after a quench
Vi(0

+) = 4
5(i+1) induced by charge noise. Parameters

are identical to Fermi Hubbard example in previous
section with U=0.1. The inset shows the phonon
spectral density with

∫
Jphon(ω)dω = 0.12 (coupling

identical to cavity mode) where the superohmic
background is highlighted as black dotted line.

molecules embedded in organic crystals can serve as
highly coherent emitter[1], quantum memory[71], or or-
ganic light-emitting diode. Their environment is a combi-
nation of local vibrational, extended phononic, and pho-
tonic modes, giving rise to a highly structured and com-
plex spectral function. BBGKY-HEOM provides now the
means to retain the complexity of the electronic structure
and combine it with the full system-bath dynamic, i.e.,
extending beyond previous approaches that relied on a
simplified description of the electronic system[72].

Fig. 4 demonstrates the impact of the non-Markovian
phonon-bath on the dynamic of the dipole moment of
the same 4-site Cavity-Fermi-Hubbard model (U = 0.1)
subsequent to a quench induced by a charge fluctuation
Vi(0

+) = 4
5(i+1) . As the nuclei move closer together

(further apart) their effective hopping rate increases (de-
creases), which we model by coupling the phonon-bath
to the hopping operator:

Lphon =
∑
σ

N∑
i=1

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ. (19)

The corresponding phonon spectral density Jphon(ω) is
illustrated in the inset, comprising a superohmic back-
ground that provides a simplified model for the linear
dispersion of the acoustic phonon branch of the crystal as
well as additional discrete modes. Neglecting the phonon
bath (gray dashed) leads to a strong misrepresentation,
which is much larger than the possible deviations caused

by the BBGKY approximation (recall Fig. 2), and clearly
shows why a holistic approach to the many-body dynam-
ics of the system and the system-bath interaction is cru-
cial for a predictive description.

IV. CONCLUSION

No quantum system is perfectly isolated and the de-
scription of its environment can be essential for our phys-
ical understanding. Confined optical or plasmonic modes
and vibrational or phononic modes might even challenge
the dynamic of a subsystem of interest by strongly cou-
pling to the internal degrees of freedom. Energy de-
posited in the environment will then not simply decohere
but act back on the system, resulting in non-Markovian,
or memory dependent, system-bath interaction. The dy-
namic of the system has often been simplified to the de-
gree that the many-body character inherited by every
molecule or solid-state impurity has been lost.

In this study, we presented a rigorous hierarchical ap-
proach based on the combination of the reduced density-
matrix (BBGKY) and system-bath (HEOM) hierarchy.
BBGKY-HEOM is flexible enough to tackle typical quan-
tum optical and condensed matter problems, striking a
balance between high accuracy and good performance.
In particular, we demonstrated that correlated (super-
radiant) emission and spin squeezing, i.e., dynamic that
extends beyond the capabilities of meanfield theory, is
accurately captured. We then leveraged the ability to
describe many-body electronic systems, here in the form
of the Fermi-Hubbard model, to illustrate the interplay
between correlated system dynamic and structured baths
by simulating different forms of charge noise. We ob-
served again excellent performance for as long as the on-
site repulsion U and the electronic dynamic remain mod-
erate. Finally, we demonstrated the major strength of
the BBGKY-HEOM by simulating the interplay between
the vibro-phononic bath of an organic crystal coupled to
the many-body dynamic of the Cavity-Fermi-Hubbard
model. Both contributions, i.e., non-Markovian system-
bath coupling and many-body dynamics are equally im-
portant – clearly stressing the need for a more holistic
perspective on solid-state quantum emitters.

ACKNOWLEDGMENTS

We thank Walter Strunz and Göran Johansson for
insightful discussions. C.S. acknowledges support from
the Swedish Research Council through Grant No. 2016-
06059 and funding from the Horizon Europe research and
innovation program of the European Union under the
Marie Sk lodowska-Curie grant agreement no. 101065117.

Partially funded by the European Union. Views and
opinions expressed are, however, those of the author(s)
only and do not necessarily reflect those of the Euro-
pean Union or REA. Neither the European Union nor



10

the granting authority can be held responsible for them.

Appendix A: Spin squeezing

The spin squeezing parameter is defined as ξ2(t) =
N(∆Sn1

)2/(⟨Sn2
⟩2 + ⟨Sn3

⟩2), where n1(t)⊥⟨S⟩(t) is ob-
tained, by calculating the vector perpendicular to the
current spin direction that has the minimal associated
variance (∆Sn1

)2.

Appendix B: Derivation of the BBGKY-HEOM
equations

In the following we detail the derivation of the
BBGKY-HEOM equation. For the sake of readability
we focus on the case of a scalar index, corresponding to
the case where the environment is a damped cavity mode.
The extension to a vector index is trivial. Starting from
the HEOM equation (9) with the auxiliary density matrix

ρ(m,p) = (ig)m(−ig)p TrC
(
(a†)pamρtot

)
, (B1)

where ρtot is the total state of system and cavity mode.
We now want to employ the BBGKY hierarchy to reduce
the dimension of the system.
We use the same normalization for the reduced density
matrices as in the known BBGKY hierarchy,

F123 =N(N − 1)(N − 2) TrC(ρ123C),

F12 =N(N − 1) TrC(ρ12C),

F1 =N TrC(ρ1C).

(B2)

Following Eq. (B1) we define the auxiliary matrices as

F
(m,p)
1..N = (ig)m(−ig)p TrC

(
(a†)pamF1..N,C

)
. (B3)

Their evolution equation can be derived from the HEOM
Eq. (9) by tracing over all but N particles and assum-
ing that the density matrix is invariant under particle
exchange:

Ḟ
(m,p)
12 =∂tN(N − 1)(ig)n(−ig)m Tr3...N,C

(
(a†)manρ

)
,

=N(N − 1) Tr3..N (ρ̇(n,m)),

= − i[H1 + H2, F
(n,m)
12 ]

− [(n−m)i∆ + (m + n)κ]F
(n,m)
12

+ g2
(
n(L1 + L2)F

(n−1,m)
12 + Tr3(L3F

(m−1,p)
123 )

mρ(n,m−1)(L†
1 + L†

2) + Tr3(L†
3F

(m,p−1)
123 )

)
+
[
F

(n+1,m)
12 , L†

1 + L†
2

]
+
[
L1 + L2, F

(n,m+1)
12

]
.

(B4)

Above we used that

Tr3...N ([

N∑
i=1

Hi, ρ] =[H1 + H2, ρ12]

+

N∑
i=3

Tr3...N (Hiρ) − Tr3...N (ρHi),

=[H1 + H2, ρ12]

+

N∑
i=3

Tr3...N (Hiρ) − Tr3...N (Hiρ),

=[H1 + H2, ρ12].

(B5)

In the next step we use a cluster expansion to express

the term F
(m,p)
123 in terms of the reduced density one- and

two-body matrices. The key approximation that enables
this is the neglect of higher order correlations. The clus-
ter expansion amounts to expressing the 3-body density
matrix including the cavity as:

ρ123C =ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρC

+ ρ1 ⊗ ρ2 ⊗ Γ3C + ρ1 ⊗ Γ23 ⊗ ρC + Γ12 ⊗ ρ3 ⊗ ρC

+ Γ13 ⊗ ρ2 ⊗ ρC + Γ1C ⊗ ρ2 ⊗ ρ3 + ρ1 ⊗ Γ2C ⊗ ρ3

+ Γ12 ⊗ Γ3C + Γ1C ⊗ Γ23 + Γ13 ⊗ Γ2C

+ ρ1 ⊗ Γ23C + Γ13C ⊗ ρ2 + Γ12C ⊗ ρ3 + Γ123 ⊗ ρC

+ Γ1234C

(B6)

We now neglect 3-body correlations within the system
Γ123 = 0 as well as four body correlations Γ123C = 0 to
obtain

F̃
(m,n)
123 = 4

(N − 1)(N − 2)

N3
Tr(F

(m,n)
1 )F1F2F3

+
N − 2

N

(
F12F

(m,n)
3 + F

(m,n)
2 F13 + F

(m,n)
1 F23

)
+

N − 2

N

(
F1F

(m,n)
23 + F

(m,n)
13 F2 + F

(m,n)
12 F3

)
− N − 2

N2
Tr(F

(m,n)
1 ) (F12F3 + F13F2 + F1F23)

− 2
(N − 2)(N − 1)

N2

(
F

(m,n)
1 F2F3

+ F1F
(m,n)
2 F3 + F1 + F2F

(m,n)
3

)
.

(B7)

This now leaves us with a reconstruction functional for
all auxiliary matrices and enables us to truncate the
BBGKY-HEOM equation by neglecting higher order cor-
relations.
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Appendix C: Multipolar gauge

Electric and magnetic fields can be expressed in terms
of the vector and scalar potentials

E = −∇ϕ−∇ ·A, (C1)

B = ∇×A, (C2)

where Ȧ := ∂
∂tA [73]. The E and B fields are invariant

with respect to gauge transformations

A′ = A−∇χ, ϕ′ = ϕ + χ̇. (C3)

We define the Green’s function for the divergence opera-
tor as

∇ · g∥(x, x′) = −δ(x− x′). (C4)

We can add to g∥(x, x′) any transversal vector field
g⊥(x, x′) and define

gµ(x, x′) = g∥(x, x′) + µg⊥(x, x′). (C5)

The parallel Greens function has the well known repre-
sentation

g∥(x, x′) = ∇ 1

4π|x− x′|
. (C6)

A possible choice for the perpendicular Green’s function
is

g⊥(x, x′) =

∫ t

0

dλx′ · δ⊥(λx′ − x), (C7)

which corresponds straight line from the origin to the
point x′. This particula choice is motivated by the con-
struction of the multipolar gauge [74]. We define a gauge
function χµ as

χµ(x) = µ

∫
dx′ g⊥(x′, x)A⊥(x′). (C8)

We can thus define new vector potential as

Aµ(x) = A⊥(x) − µ∇χ(x). (C9)

We can define a polarization field also with the help of
the Greens function

Pµ(x) =

∫
dx gµ(x, x′)ρ(x′), (C10)

where ρ(x) is the charge distribution. We see immedi-
ately that ∇ · Pµ(x) = −ρ(x). The choice µ = 0 cor-
responds to a Coulomb gauge and µ = 1 to the mul-
tipolar gauge [74]. We may derive the Hamiltonian in
arbitrary µ-gauge from a Lagrangian formalism and we
find that [43]

H =
∑
i

1

2mi
(pi − qAµ(ri))

2 + V

+
1

2

∫
dx (Πµ(x) + P⊥

µ (x))2 + (∇×A⊥(x))2),

(C11)

where pi, xi and A⊥,Πµ are canonically conjugate and
satisfy the commutation relations [xi,a, pj,b] = iℏδijδab
and [A⊥

a (x),Πµ,b(x
′)] = iℏδ⊥ab(x− x′).

We assume that the center of mass of the system is at
the origin and do the electric dipole approximation [43].
The Hamiltonian simplifies to

H =
∑
i

(pi − (1 − µ)Aµ(0)2)2

2m
+ V (C12)

+
∑
i

µdi · Πµ(0) +
1

2
µ2

∑
i

diδ
⊥(0)di (C13)

+
1

2

∫
dx (Πµ(x)2 + (∇×A⊥(x))2). (C14)

In the Coulomb gauge (µ = 0) we obtain that the
coupling to the electromagnetic field is provided by the
term (pi −Aµ(0))2 leading to the diamagnetic A2 term.

On the other hand, in the multipolar gauge (µ = 1)
the transition dipole of the system di couples to the field
Π1. Physically this means that the system couples to
the field which is the differnce of the transverse electric
field generated bu the transverse vector potential and the
polarization field

Π1 = E⊥ − P⊥. (C15)

In addition a self-polarization term arises.
The choice of the gauge leads to different types of in-

terpretation of the physical nature of the electric field the
system couples to. We refer further discussions on this
subtle points to literature [43, 73–75]

Appendix D: Derivation of the HEOM

We sketch here a derivation of the HEOM equations.
We assume that the system is coupled to the environment
via operator q. The response of the system to the envi-
ronment is given by the bath correlation function α(t).
For HEOM we need that the bath correlation function is
of the form

α(t) = Ge−Wt, (D1)

where G and W may be complex numbers. The reduced
dynamics of the system can be written in the path inte-
gral form

ρt(q, q
′) =

∫
dq0

∫
dq′0

∫
Dq

∫
Dq′

× ei(S[q]−S[q′])F [q, q′]ρ0(q0, q0), (D2)

where S[q] is the action of the closed system and
ρt(q, q

′) = ⟨q| ρt |q′⟩. The influence functional contains
all information about the coupling of the open system to
the environment. In this case it reads

F [q, q′] = e−
∫ t
0
ds

∫ s
0
ds′ (qs−q′s)(α(s−s′)qs′−α∗(s−s′)q′

s′).
(D3)
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We define auxiliary states

ρn,mt (q, q′) = =

∫
dq0

∫
dq′0

∫
Dq

∫
Dq′

× ei(S[q]−S[q′])F [q, q′]ρ0(q0, q0)Qn
t Q

′m
t ,
(D4)

where Qt =
∫ t

0
ds α(t − s)qs and Q′

t =
∫ t

0
ds α∗(t − s)q′s.

Then by directly computing the time derivative of the
auxiliary state and by using the exact expression for the
open system dynamics together with the special form of
the bath correlation function we directly arrive to

ρ̇n,mt = − i[H, ρn,mt ] − (nW + mW ∗)ρn,mt

+ [ρn+1,m
t , q] + [q, ρn,m+1

t ]

+ nGqρn+1,m
t + mG∗ρn,m+1

t q. (D5)

The equations presented in the main text are a general-
ization of the above equations in two respects. First, we
allow for multiple exponential terms in the expansion for

the bath correlation function, and second we allow for
the case q ̸= q†.

Appendix E: Numerical details

Numerical simulations were performed with the python
packages numpy[76], scipy[77] and qutip[78]. The
BBGKY-HEOM equation (11) with the approximation
for the three-body reduced density matrix given in
Eq. (12) were solved with the scipy implementation of
the explicit Runge-Kutta method of order 5(4), with an
absolute tolerance of 1e−10 and dynamical timestepping.
We checked for the convergence with respect to the hi-
erarchy depth, which justifies a hierarchy depth of 5 for
the Tavis-Cummings model and 3 for the Cavity-Fermi-
Hubbard model. The benchmark simulations for the
quantum master equation were performed using qutips
mesolve function with default parameters.
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S. Götzinger, Z. Ristanović, M. Colautti, P. Lombardi,
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[65] R. Härtle, G. Cohen, D. R. Reichman, and A. J. Mil-
lis, Decoherence and lead-induced interdot coupling in
nonequilibrium electron transport through interacting
quantum dots: A hierarchical quantum master equation
approach, Phys. Rev. B 88, 235426 (2013).

[66] M. Bonitz, Quantum Kinetic Theory (Springer Interna-
tional Publishing, Cham, Switzerland, 2016).

[67] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu,
The hubbard model, Annual review of condensed matter
physics 13, 239 (2022).

[68] J. Li, D. Golez, G. Mazza, A. J. Millis, A. Georges, and
M. Eckstein, Electromagnetic coupling in tight-binding
models for strongly correlated light and matter, Phys.
Rev. B 101, 205140 (2020).

[69] U. Mordovina, C. Bungey, H. Appel, P. J. Knowles,
A. Rubio, and F. R. Manby, Polaritonic coupled-cluster
theory, Phys. Rev. Res. 2, 023262 (2020).
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