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Abstract

We propose an extension of the classical Rényi divergences to quantum states through an opti-
mization over probability distributions induced by restricted sets of measurements. In particular,
we define the notion of locally-measured Rényi divergences, where the set of allowed measurements
originates from variants of locality constraints between (distant) parties A and B. We then derive
variational bounds on the locally-measured Rényi divergences and systematically discuss when these
bounds become exact characterizations. As an application, we evaluate the locally-measured Rényi
divergences on variants of highly symmetric data-hiding states, showcasing the reduced distinguish-
ing power of locality-constrained measurements. For n-fold tensor powers, we further employ our
variational formulae to derive corresponding additivity results, which gives the locally-measured
Rényi divergences operational meaning as optimal rate exponents in asymptotic locally-measured
hypothesis testing.

1 Introduction

In classical information theory, Rényi divergences [1] are fundamental quantities in one-shot informa-
tion theory with direct operational meaning in hypothesis testing [22]. They also serve as a parent
quantity to many other relevant entropic measures. Hence, it is natural to investigate quantum exten-
sions of these divergences. Due to the non-commutative nature of quantum physics, however, multiple
plausible extensions exist (cf. e.g. [14–16] and [21, Chapter 4]). In this work, we follow a measurement-
based approach to extend the classical Rényi divergence into the quantum domain. The particular
method based on restricted measurement sets was previously applied to the relative entropy [6] and
the Schatten one-norm [3]. The process works as follows: the measurement turns a given quantum
state ρ into a classical measure µM

ρ , to which we can apply the classical Rényi divergence. We then
maximize the outcome over the set of allowed measurements M ⊆ ALL. This leads us to define the
measured Rényi divergences for α > 0 as

DM
α (ρ‖σ) := sup

M∈M
Dα

(

µM
ρ

∥

∥

∥µM
σ

)

with the classical Dα(µ‖ν) :=
1

α − 1
log

∑

z∈Z

µ(z)αν(z)1−α, (1.1)

and the respective limits α → 1, +∞ (see Sec. 2 for precise definitions).

We put a particular focus on measurement sets defined by various levels of locality constraints, which
give rise to the locally-measured Rényi divergences. This definition is motivated by an operational
task that arises in quantum hypothesis testing. For this, consider two distant laboratories that want
to differentiate between two hypotheses modeled by bipartite quantum states. To achieve this, the
laboratories conduct measurements on the states. The implementation of global measurements, how-
ever, might not be feasible and, consequently, they are limited to local measurements, potentially
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supported by additional classical communication. Naturally, the question now arises as to how well
this restricted set performs compared to all measurements. A particularly interesting example of
states in this context are data-hiding states (cf. [25–28]). These are perfectly distinguishable under
global measurements but are locally almost indistinguishable. The study of this problem is an active
area of research in the field of quantum information (see, e.g., [3, 24, 45, 54–64]). Besides hypothesis
testing, one further motivation for the study of these quantities is that correlation measures based
on locally-measured quantities can be the crucial ingredient for lifting classical to quantum entropy
inequalities (see, e.g., [3, 5–7,43,49]).

In this work, we show that under certain additivity conditions the locally-measured Rényi divergences
attain operational significance as optimal rate exponents in the strong converse regime of restricted
hypothesis testing. We show that these conditions are satisfied for examples of highly symmetric
data-hiding states and compute the Stein’s as well as the strong converse exponent under locality-
constrained measurements for these states. The main technical tool we employ for this are exact
variational characterizations. In this context, the most useful result is the variational characterization
of the PPT-measured max-divergence given by (see Sec. 4 for precise definitions)

DPPT
max (ρ‖σ) = log sup

ω>0

ωΓ≥0

{

tr[ρω]

∣

∣

∣

∣

tr[σω] = 1

}

= log inf
λ>0

X,Y ∈P

{

λ

∣

∣

∣

∣

λσ − ρ = X + Y Γ
}

. (1.2)

The paper is structured as follows. In Sec. 2, we formally define the measured Rényi divergences and
make the connection to the existing literature. We then survey the mathematical properties of these
divergences in Sec. 3. In particular, we show that suitable modifications of the original axioms, used
by Rényi in [1] to derive the classical quantity, hold for the measured quantities. Sec. 4 is devoted
to the main technical result of this paper, which gives an upper bound on the divergences in terms
of variational formulae. This generalizes a result for α = 1 of [7, Lemma 3]. We then discuss the
conditions of when these bounds are tight and show that an exact characterization is available for
two classes. We further prove that in general there is a gap for the locality-constrained sets, which
answers a question left open even for α = 1 in [7, Section 2.2]. Moreover, we derive a dual program
at the point α = +∞. Lastly, in Sec. 5, we connect the locally-measured Rényi divergences to the
problem of restricted hypothesis testing. For two families of states, we then employ the variational
characterization to explicitly compute the measured Rényi divergences and use these results to give
the Stein’s and strong converse exponent (see Sec. 5.2 and App. C). As one example, we obtain for
isotropic states with q ≤ 1

d2 that

ζM
Stein (Φ, i(q); ε) = log

(

d + 1

qd + 1

)

and ζM
SC (Φ, i(q); r) = r − log

(

d + 1

qd + 1

)

(1.3)

for all ε ∈ (0, 1) and all r ≥ log
(

d+1
qd+1

)

(see Sec. 5 for precise definitions).

This shows in particular that the single-letter characterization of testing Φ⊗n against (Φ⊥)⊗n from
[45, Corollaries 11 & 13] stays stable when going (not too far) away from the extremal states. We
emphasize that the central insight is based on the additivity of the corresponding locally-measured
Rényi divergences – which we derive via its variational characterizations. Note that similar additivity
questions have also been asked in, e.g., [43,45,54].

2 Definitions

2.1 Notation

Let us first introduce some notation that will be used throughout this manuscript. We consider
quantum systems of finite1 dimension d ∈ N to which we associate a Hilbert space H ≃ C

d. If the

1The sole exception is App. A, where we discuss an infinite-dimensional extension in a self-contained manner.
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quantum system consists of N subsystems, the Hilbert space factors as H :=
⊗N

i=1 Hi, where Hi

denotes the space of the i-th subsystem. We use capital letters A, B, C, etc. to label these Hilbert
spaces. Further, any indices x, y, z we will use are always meant to be taken from some implicitly
defined finite alphabets X , Y and Z.

Linear operators X are labeled by subscripts to indicate which space they act on if its not clear from
context. Moreover, when we introduce an operator XAB acting on A ⊗ B we implicitly also introduce
its marginals XA and XB defined via the respective partial traces of XAB over B and A, respectively.
Further, we use H to denote the set of hermitian linear operators on H and extend real functions to
these operators in the usual way by applying them on the spectrum of the operator coinciding with
the domain of the function. Moreover, we use ≥ and > to denote the Löwner order on operators, e.g.
an operator X has full support if and only if X > 0 and is positive semi-definite if and only if X ≥ 0.
Let P denote the set of positive semi-definite operators acting on H and S the subset of states, i.e.
positive semi-definite operators with unit trace. Lastly, U denotes the set of unitary operators on H.

Another fundamental concept which we need in the following is that of a measurement on the quantum
system. These are described by a positive operator-valued measure (POVM) M over a finite alphabet
Z. Formally, M is a map from Z to P which satisfies Mz ≥ 0 and

∑

z∈Z Mz = 1H, where 1H
denotes the unit operator on H. If, additionally, all elements of the POVM are projectors, we call
it a projection-valued measure (PVM). We denote by ALL the set of all possible measurements that
can be performed on the quantum system. For a given ρ ∈ P, the POVM induces a positive measure
µM

ρ over Z according to the Born rule: µM
ρ (z) = tr[ρMz]. The measurement can also be viewed as a

completely positive map from the set of positive operators to measures via

M : ρ 7→
∑

z∈Z

|z〉〈z| Tr[ρMz] , (2.1)

where the measure is represented as an operator diagonal in the "label" basis {|z〉} of the space C|Z|.

2.2 Measured Rényi Divergence

Let us start by recalling the definition of the classical Rényi divergence. Given two probability distri-
butions µ and ν over a finite alphabet Z, we define the functional Qα in terms of an order parameter
α ∈ (0, 1) as

Qα (µ‖ν) :=
∑

z∈Z

µ(z)αν(z)1−α . (2.2)

Observe that if µ ⊥ ν, i.e. µ is orthogonal to ν,2 we have Qα(µ‖ν) = 0. For orders α > 1, Eq. (2.2)
diverges if µ 6≪ ν, i.e. µ is not absolutely continuous with respect to ν.3 Consequently, we employ Eq.
(2.2) to define Qα for orders α ∈ (1, ∞) if µ ≪ ν and else set Qα(µ‖ν) = +∞. Using this auxiliary
quantity, we then define the Rényi divergence [1] of order α ∈ (0, 1) ∪ (1, ∞) as

Dα (µ‖ν) :=
1

α − 1
log Qα(µ‖ν) , (2.3)

if either α ∈ (0, 1) and µ 6⊥ ν or α ∈ (1, ∞) and µ ≪ ν. Otherwise, we set Dα(µ‖ν) = +∞. This
definition is extended to the orders α = 1 and α = ∞ based on a continuity argument. In the limit
α → 1, Eq. (2.3) converges to the well-known Kullback-Leibler divergence [2] defined as

D (µ‖ν) :=

{

∑

z∈Z µ(z) log
(

µ(z)
ν(z)

)

if µ ≪ ν

+∞ else
. (2.4)

2µ ⊥ ν iff there exists Z ⊆ Z such that µ(Z) = 1 and ν(Z) = 0.
3µ ≪ ν iff for all z ∈ Z ν(z) = 0 implies µ(z) = 0.
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Therefore, we identify D1(µ‖ν) := D(µ‖ν). For α → ∞, we obtain the max-divergence defined as

Dmax (µ‖ν) := sup
z∈Z

log

(

µ(z)

ν(z)

)

(2.5)

and thus we set D∞(µ‖ν) := Dmax(µ‖ν).

We are now set to define the measured Rényi divergences by lifting the classical quantity.

Definition 1. For two quantum states ρ ∈ S and σ ∈ S, the measured Rényi divergence of order
α > 0 with respect to a subset of POVMs M ⊆ ALL is defined as

DM
α (ρ‖σ) := sup

M∈M
Dα

(

µM
ρ

∥

∥

∥µM
σ

)

. (2.6)

Mirroring the classical definition, we may also rewrite the measured Rényi divergence for orders
α ∈ (0, 1) ∪ (1, ∞) as

DM
α (ρ‖σ) =

1

α − 1
log QM

α (ρ‖σ) , (2.7)

where we defined QM
α for α ∈ (0, 1) as

QM
α (ρ‖σ) := inf

M∈M
Qα

(

µM
ρ

∥

∥

∥µM
σ

)

(2.8)

and for α ∈ (1, ∞) as the same expression but with the infimum replaced by a supremum.

2.3 Locally-Measured Rényi Divergences

If the quantum system under consideration consists of multiple parties, we can identify some special
classes of restricted measurements that are of particular interest in quantum information theory.
These are the ones that are defined by locality constraints, i.e. by the local operations and classical
communication (LOCC) paradigm. We focus our study on the special case of bipartite systems, where
only two parties A and B are involved. The extension of these classes to multiple parties is mostly
straightforward (see e.g. [3, 4]).

The most restrictive constraint that still has operational significance is given by the set LO(A : B).
Here, A and B are only allowed to perform a measurement on their part of the system and no classical
communication is permitted during the measurement procedure. A general POVM element of this
class is of product form, i.e. it may be written as

M
(x,y)
AB = Mx

A ⊗ My
B , (2.9)

where {Mx
A}x and {My

B}y are POVMs on the A and B system, respectively. We additionally consider
a subset of this set denoted as P-LO(A : B), where we only allow for projective measurements.

If we allow a single round of classical communication from A to B to aid the measurement process,
we obtain the set LOCC1(A → B). Here, A measures her system, communicates the outcome to B,
and, conditional on this outcome, B performs his measurement. Without loss of generality, we can
write a POVM element of this class in the following form

M
(x,y)
AB = Mx

A ⊗ M
y|x
B , (2.10)

where {Mx
A}x and {M

y|x
B }y are POVMs.4 As above, we can also define a projective version of this set,

denoted P-LOCC1(A : B), where we allow only for PVMs to be performed.

4See also [5, Lemma 4] for an equivalent definition.
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Now, allowing for ever more rounds of classical communication between the parties would yield ever
bigger sets of the LOCC type [4]. Generally, the set LOCC(A : B) is defined as all POVMs that
can be implemented by local operations and arbitrary amounts of classical communication. This set,
although operationally well-defined, is mathematically difficult to characterize (cf. also [4]). Therefore,
one often looks at relaxations that admit a simpler mathematical structure.

In this manuscript, we consider two such relaxations, namely the sets SEP(A : B) and PPT(A : B).
The set SEP(A : B) consists of POVMs whose elements are separable operators. Without loss of
generality, such an element is given by

Mz
AB = Mz

A ⊗ Mz
B , (2.11)

where Mz
A and Mz

B are positive semi-definite operators. Furthermore, the set PPT(A : B) consists of
POVMs whose elements have positive partial transpose (PPT), i.e. they satisfy

(Mz
AB)Γ ≥ 0 , (2.12)

where (·)Γ denotes the transposition w.r.t. the B-system.5

The following inclusions are trivial

LO ⊆ LOCC1 ⊆ LOCC ⊆ SEP ⊆ PPT ⊆ ALL , (2.13)

and all of them are known to be strict if the dimension of the system is large enough [4]. In the
following, we refer to the induced measured Rényi divergences of the LOCC type as locally-measured.
By the above inclusions, we also immediately get the chain of inequalities

DLO
α ≤ DLOCC1

α ≤ DLOCC
α ≤ DSEP

α ≤ DPPT
α ≤ DALL

α . (2.14)

2.4 Connection to Quantum Rényi Divergences

Before we continue, let us point out known connections of the measured Rényi divergence to other
quantum generalizations studied in the literature. The two most common extensions are the sand-
wiched Rényi divergence [14,15] defined as

D̃α(ρ‖σ) :=

{

1
α−1 log Tr

[(

σ
1−α

2α ρσ
1−α

2α

)α]

if (α ∈ (0, 1) ∧ ρ 6⊥ σ) ∨ ρ ≪ σ

+∞ else
(2.15)

and the one due to Petz [16] defined as

D̄α(ρ‖σ) :=

{

1
α−1 log Tr

[

ρασ1−α
]

if (α ∈ (0, 1) ∧ ρ 6⊥ σ) ∨ ρ ≪ σ

+∞ else
. (2.16)

In the limit α → 1, both of these converge to the Umegaki relative entropy [17] given by

D(ρ‖σ) :=

{

Tr[ρ(log ρ − log σ)] if ρ ≪ σ
+∞ else

(2.17)

and for α → ∞ we obtain the quantum max-divergence [18,19]

Dmax (ρ‖σ) := log inf
λ>0

{

λ

∣

∣

∣

∣

λσ − ρ ≥ 0

}

. (2.18)

5Note that since the partial transpositions w.r.t. the A and B system are related to each other via the full transposition,
this also implies positivity of the partial transpose on A.
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We can then write the measured Rényi divergence equivalently as

DM
α (ρ‖σ) = sup

M∈M
D̃α (M(ρ)‖M(σ)) or DM

α (ρ‖σ) = sup
M∈M

D̄α (M(ρ)‖M(σ)) , (2.19)

where the maximization is in terms of the measurement maps as defined in Eq. (2.1). To verify
this, note that the operators commute after application of the measurement map and both extensions
reduce to the classical quantity on commuting states. This gives a top-down approach to define the
measured Rényi divergence that complements our bottom-up approach of lifting the classical quantity.

The sandwiched Rényi divergence is known to satisfy a data-processing inequality under measurements
for α ≥ 1/2 [20, Appendix A],6 i.e. we have

D̃α(M(ρ)‖M(σ)) ≤ D̃α(ρ‖σ) , (2.20)

which immediately gives us

DM
α (ρ‖σ) ≤ D̃α(ρ‖σ) for α ≥ 1

2
. (2.21)

Moreover, the Petz divergence is known to be monotone under measurements for all α > 0 [20,
Appendix A], i.e. we get the analogous inequality DM

α ≤ D̄α for all orders α > 0. Let us emphasize
that the inequality in Eq. (2.21) is in general strict even if no restrictions on the measurements
are made. In fact, we know from [10, Theorem 6] that for α ∈ (1/2, ∞), the inequality is strict if
[ρ, σ] 6= 0 and D̃α(ρ‖σ) < +∞. This differs from the measured norms of [3], defined via the trace
norm ‖X‖1 := tr |X| as

‖ρ‖M := sup
M∈M

‖M(ρ)‖1 , (2.22)

where it is known that ‖·‖ALL = ‖·‖1 holds. There are, however, two noteworthy exceptions to this
rule. First, the measured Rényi divergence at order α = 1/2 is connected to the measured fidelity via
the relationship

DM
1/2 (ρ‖σ) = −2 log F M(ρ, σ) , (2.23)

where the measured fidelity is defined as

F M(ρ, σ) := inf
M∈M

Q1/2

(

µM
ρ

∥

∥

∥µM
σ

)

. (2.24)

It is known that F = F ALL holds for the quantum fidelity F (ρ, σ) := Q̃1/2(ρ‖σ) [20, Appendix A],

which in turn implies DALL
1/2 = D̃1/2. Second, the quantum max-divergence is known to be achievable

by a measurement as well [20, Appendix A], i.e. we also have the equality DALL
∞ = Dmax.

2.5 Related Concepts

Lastly, let us make some remarks about other connections to previously-studied quantities in the
literature. First, the definition of measured norms by Matthews et. al. in [3] motivated our definition
of the measured Rényi divergence. At α = 1, our definition recovers the measured relative entropy
DM introduced by Piani in [6] and further studied by Berta and Tomamichel in [7]. Here, the case of
unrestricted measurements, that is the quantity DALL

1 , corresponds to the most-well-known notion of
measured relative entropy, originally studied by Donald [8] as well as Hiai and Petz [9]. The quantity
DALL

α for α > 0 was investigated by Berta et. al. in [10]. Mosonyi and Hiai studied its restriction
to binary measurements in [11]. If the measurement set M consists only of a single POVM, we can
recover the generalized α-observational entropies of Sinha and Aravinda [12]. Moreover, note that
α = ∞ gives the measured max-divergence DM

max. We show in Sec. 4.3 that these are connected to
the cone-restricted max-divergence of George and Chitambar [13].

6It is not known whether this holds for α ∈ (0, 1/2).
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3 Mathematical Properties

In this section, we investigate the mathematical properties of the measured Rényi divergences. Al-
though the measured Rényi divergence is not a quantum divergence in the axiomatic sense defined
by Rényi [1] (cf. also [21, Chapter 4]), we show in the following that adapted versions of his axioms
do hold. Our proofs are based on properties of the classical Rényi divergence and for an overview of
them we refer to [21, Chapter 4] (see also [22]).

3.1 Positivity, Monotonicity, Convexity and Continuous Extension

Let us start with some basic properties that the measured Rényi divergences share with their classical
counterpart and that hold independent of the underlying measurement set M.

Lemma 2. Let ρ, σ ∈ S, M ⊆ ALL and α > 0. The following hold:

1. DM
α (ρ‖σ) ≥ 0,

2. DM
α (ρ‖σ) is a non-decreasing function in α,

3. DM
1 (ρ‖σ) = supα∈(0,1) DM

α (ρ‖σ) and DM
∞ (ρ‖σ) = supα∈(1,∞) DM

α (ρ‖σ),

4. QM
α (ρ‖σ) is jointly concave in (ρ, σ) for α < 1 and jointly convex for α > 1 and therefore

DM
α (ρ‖σ) is jointly convex for α ≤ 1 and jointly quasi-convex for α > 1.

Proof. These results follow by lifting the corresponding classical properties (see [21, Chapter 4]).

(1) This follows immediately from the positivity of the classical quantity.

(2) By monotonicity of the classical quantity, we have for all α, β with 0 < α ≤ β that

Dα

(

µM
ρ

∥

∥

∥µM
σ

)

≤ Dβ

(

µM
ρ

∥

∥

∥µM
σ

)

(3.1)

for an arbitrary measurement M ∈ M and it then directly follows that DM
α (ρ‖σ) ≤ DM

β (ρ‖σ).

(3) Note that we can write

DM
1 (ρ‖σ) = sup

M∈M
D1

(

µM
ρ

∥

∥

∥µM
σ

)

= sup
M∈M

sup
α∈(0,1)

Dα

(

µM
ρ

∥

∥

∥µM
σ

)

= sup
α∈(0,1)

DM
α (ρ‖σ) , (3.2)

where the second equality follows by the classical property7 and the last is an interchange of suprema.

The statement for α = ∞ follows by an analogous argument.

(4) Let us first consider the case α ∈ (0, 1). Note that by linearity of the trace, we have

µM
λρ1+(1−λ)ρ2

= λµM
ρ1

+ (1 − λ)µM
ρ2

, (3.3)

where the addition is understood element-wise. Joint concavity of QM
α is then a result of

QM
α

(

λρ1 + (1 − λ)ρ2

∥

∥λσ1 + (1 − λ)σ2
)

= inf
M∈M

Qα

(

λµM
ρ1

+ (1 − λ)µM
ρ2

∥

∥

∥λµM
σ1

+ (1 − λ)µM
σ2

)

(3.4)

≥ inf
M∈M

λQα

(

µM
ρ1

∥

∥

∥µM
σ1

)

+ (1 − λ)Qα

(

µM
ρ2

∥

∥

∥µM
σ2

)

(3.5)

≥ λQM
α (ρ1‖σ1) + (1 − λ)QM

α (ρ2‖σ2) , (3.6)

7Due to monotonicity and continuity in α, we may write the limit α → 1 as a supremum.
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where the first inequality stems from joint concavity of the classical quantity and the second one from
the superadditivity of the infimum.

Since f(t) := 1
α−1 log(t) is a non-increasing and convex function, it follows that DM

α is jointly convex

in (ρ, σ) for α ∈ (0, 1). Finally, DM
1 is jointly convex as the supremum of a family of jointly convex

functionals (cf. Property 3).

For α ∈ (1, ∞), we can similarly use joint convexity of the classical Qα and the subadditivity of the
supremum to show joint convexity of QM

α . Since f(t) := 1
α−1 log(t) is non-decreasing and quasi-convex

in this parameter range, it follows that DM
α is jointly quasi-convex. Further, DM

∞ as the supremum
of a family of jointly quasi-convex functions is jointly quasi-convex.

Property 1 of Lemma 2 shows that the measured Rényi divergence is indeed an information divergence
in the information-theoretic sense. In the rest of the manuscript, we will focus for the most part on sets
M that are informationally complete [23]. These sets contain at least one measurement M such that
for ρ 6= σ, we have that µM

ρ 6= µM
σ . Note, for instance, that since the set LO(A : B) is informationally

complete its supersets described in Sec. 2.3 are as well. This allows us to strengthen Property 1 to
DM

α (ρ‖σ) > 0 if ρ 6= σ for ρ, σ ∈ S, i.e. the measured Rényi divergences are faithful. We are then
justified to interpret them as a measure of distinguishability for quantum states.

Moreover, the convexity properties of the measured Rényi divergence enable us to derive an equivalent
characterization in terms of a continuous extension based on states that have full support.

Lemma 3. Let ρ, σ ∈ S, M ⊆ ALL and α > 0. Then, we can express the measured Rényi divergence
equivalently as

DM
α (ρ‖σ) = sup

ǫ∈(0,1]
DM

α

(

(1 − ǫ)ρ + ǫπ
∥

∥(1 − ǫ)σ + ǫπ
)

, (3.7)

where π := 1H/d is the completely mixed state.

Proof. In the following, we denote the objective function on the right-hand side of Eq. (3.7) as fα(ǫ) :=
DM

α (ρǫ‖σǫ) using the shorthand ρǫ := (1 − ǫ)ρ + ǫπ. Note that ρǫ has full support on H for ǫ ∈ (0, 1]
independent of ρ. It is also straightforward to verify that

ρλǫ1+(1−λ)ǫ2
= λρǫ1 + (1 − λ)ρǫ2 . (3.8)

Let α ∈ (0, 1] and ǫ1, ǫ2 ∈ (0, 1). Then, joint convexity of DM
α implies

fα (λǫ1 + (1 − λ)ǫ2) = DM
α (λρǫ1 + (1 − λ)ρǫ2‖λσǫ1 + (1 − λ)σǫ2) (3.9)

≤ λDM
α (ρǫ1‖σǫ1) + (1 − λ)DM

α (ρǫ2‖σǫ2) = λfα(ǫ1) + (1 − λ)fα(ǫ2) . (3.10)

Therefore, fα(ǫ) is convex which implies it is continuous on the interval (0, 1). For ǫ ∈ (0, 1), we have
fα(ǫ) ≥ fα(1) = 0, which further implies that fα(ǫ) is monotone decreasing in ǫ. The supremum thus
constitutes a limit ǫ → 0 in case of convergence.

For α ∈ (1, ∞), we have by Lemma 2 that

QM
α (λρǫ1 + (1 − λ)ρǫ2‖λσǫ1 + (1 − λ)σǫ2) ≤ λQM

α (ρǫ1‖σǫ1) + (1 − λ)QM
α (ρǫ2‖σǫ2) (3.11)

and thus gα(ǫ) := exp((α − 1)fα(ǫ)) is convex on ǫ ∈ (0, 1). Additionally, we have gα(ǫ) ≥ gα(1) =
1, which implies gα(ǫ) is monotone decreasing on (0, 1). The composition with a continuous non-
decreasing function preservers monotonicity and continuity. Thus, we can conclude that fα(ǫ) is
continuous and monotone decreasing in ǫ on (0, 1).

Finally, we have by Lemma 2 that

DM
∞ (ρ‖σ) = sup

α∈(1,∞)
DM

α (ρ‖σ) = sup
α∈(1,∞)

sup
ǫ∈(0,1]

DM
α (ρǫ‖σǫ) = sup

ǫ∈(0,1]
DM

∞ (ρǫ‖σǫ) . (3.12)
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We remark that Lemma 3 allows us to make the assumption that the states have full support and
then lift any result to the general case via Eq. (3.7).

3.2 Superadditivity and Regularization

Next, we discuss the additivity properties of the measured Rényi divergence on independent states.
For this, we denote the family of i.i.d. states

({ρ}, {ρ⊗2}, ...
)

as ρ and point out that ρ⊗n is a state
on the space H

⊗n. In order to discuss additivity questions then, we have to introduce a family of
measurements M := (M1, M2, ...), where Mn is a set of measurements on H

⊗n. Further, we assume
that this family of measurement satisfies some mild regularity condition. Namely, for any k, l and any
Mk ∈ Mk, Ml ∈ Ml, we have Mk ⊗ Ml ∈ Mk+l. Note that this is satisfied by the locality-constrained
measurement sets defined in Sec. 2.3, where we define e.g. LOn(A : B) = LO(A1...An : B1...Bn).

Given this assumption, we can show a general superadditivity result which in turn allows us to define
the regularized measured Rényi divergence of order α.

Lemma 4. Let M be a family of measurements and ρ, σ collections of i.i.d. states as defined above.
The measured Rényi divergence of order α > 0 is super-additive on i.i.d. states, i.e.

D
Mk+l
α

(

ρ⊗k+l
∥

∥

∥σ⊗k+l
)

≥ DMk
α

(

ρ⊗k
∥

∥

∥σ⊗k
)

+ DMl
α

(

ρ⊗l
∥

∥

∥σ⊗l
)

. (3.13)

Moreover, the regularized measured Rényi divergence is well-defined and given by

DM
α (ρ‖σ) := lim

n→∞

1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n) = sup
n∈N

1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n) . (3.14)

Proof. First, note that a product measurement on product states induces a measure that satisfies

µM1⊗M2
ρ1⊗ρ2

(x, y) = tr[(ρ1 ⊗ ρ2)(Mx
1 ⊗ My

2 )] = tr[ρ1Mz
1 ] tr[ρ2Mz

2 ] = µM1
ρ1

(x)µM2
ρ2

(y) . (3.15)

With this, we can show that

sup
M∈Mk+l

Dα

(

µM
ρ⊗k+l

∥

∥

∥µM
σ⊗k+l

)

≥ sup
Mk⊗Ml∈Mk+l

Dα

(

µMk⊗Ml

ρ⊗k+l

∥

∥

∥µ
Mk⊗Ml

σ⊗k+l

)

(3.16)

= sup
Mk∈Mk

Dα

(

µMk

ρ⊗k

∥

∥

∥µMk

σ⊗k

)

+ sup
Ml∈Ml

Dα

(

µMl

ρ⊗l

∥

∥

∥µMl

σ⊗l

)

, (3.17)

where the inequality step follows by restricting to product measurements w.r.t. to a cut of the system
in two blocks of k and l systems, respectively. The result then follows by the additivity of the classical
quantity on independent measures [21, Chapter 4]. Eq. (3.14) then follows by applying Fekete’s
lemma.

Notice that the above proof can be adapted straightforwardly to show that

DM2
α (ρ ⊗ τ‖σ ⊗ ω) ≥ DM1

α (ρ‖σ) + DM1
α (τ‖ω) , (3.18)

i.e. superadditivity holds also on general product states.

In the case M = ALL, the regularized measured Rényi divergence becomes single-letter and is equal
to the sandwiched Rényi divergence, i.e.

DALL

α (ρ‖σ) = D̃α(ρ‖σ) for α ≥ 1

2
, (3.19)

which is known in the literature as asymptotic achievability under measurements (cf. [20, Appendix
A]).8 Note that this result implies that the unrestricted measured Rényi divergence is strictly super-
additive on states for which the inequality in Eq. (2.21) is strict, i.e. for states with [ρ, σ] 6= 0 and

8It is not known if this property holds for α ∈ (0, 1/2).
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D̃α(ρ‖σ) < +∞. In the general case, however, it is unclear how to evaluate the regularized quantity.
We show in Sec. 5, that for some important examples of states they become single-letter and can be
computed explicitly.

Lastly, note that the regularized quantity for the order α = 1 already has found an operational
interpretation in the context of quantum hypothesis testing under restricted measurements as the
optimal Stein’s exponent (see [24, Theorem 16] and Sec. 5.1 for more details). Moreover, it was shown
in [20] that the sandwiched Rényi divergence has an operational interpretation for α > 1 in the strong
converse problem of unrestricted quantum hypothesis testing.

3.3 Data-Processing Inequality

An important property of the classical divergence is its data-processing inequality (DPI), i.e. the
classical Rényi divergence is contractive under the application of classical channels. Similarly, the
measured Rényi divergence satisfies a DPI under channels compatible with the respective measurement
set. For this, we call a quantum channel G compatible with a measurement set M if it satisfies
G†(M) ∈ M for all M ∈ M, where G† is applied to the individual POVM elements.

Lemma 5. Let ρ, σ ∈ S, M ⊆ ALL and α > 0. Then, DM
α is monotone decreasing under channels

compatible with M as defined above, i.e. we have

DM
α (ρ‖σ) ≥ DM

α (G(ρ)‖G(σ)) . (3.20)

Proof. The proof adapts the argument of [7, Lemma 2]. Observe that by the definition of the adjoint
of a quantum channel, we have

µM
G(ρ)(z) = tr[G(ρ)Mz ] = tr

[

ρG†(Mz)
]

= µG†(M)
ρ (z) . (3.21)

The monotonicity then directly follows from

DM
α (G(ρ)‖G(σ)) = sup

M∈M
Dα

(

µM
G(ρ)

∥

∥

∥µM
G(σ)

)

= sup
M∈M

Dα

(

µG†(M)
ρ

∥

∥

∥µG†(M)
σ

)

≤ DM
α (ρ‖σ) , (3.22)

where the inequality step results from a superset argument using the compatibility assumption.

Note that all quantum channels are compatible with the set M = ALL and thus DALL
α is contractive

under general channels. Moreover, Lemma 5 implies for the sets LOCC, SEP and PPT a DPI for the
respective measured Rényi divergence under applications of LOCC channels. For the sets LOCC1(A →
B), we can use the observation from [7, Lemma 2] to conclude that DLOCC1

α is monotone under
LOCC1(A → B) channels, i.e. local operations supported by one-way classical communication from A
to B. Similarly, DLO

α is contractive under local channels.

3.4 Unitary and Isometric Invariance

An immediate consequence of Lemma 5, is that DALL
α is unitarily invariant, i.e.

DALL
α

(

UρU †
∥

∥

∥UσU †
)

= DALL
α (ρ‖σ) for U ∈ U . (3.23)

To see this, note that the set of all measurements is invariant under unitary conjugation. A general
set M, however, does not satisfy this and as a result DM

α is in general not unitarily invariant.

Nevertheless, note that the locality-constrained measurement sets of Sec. 2.3 are closed under local
unitary conjugation, i.e. operators of the form UA ⊗ UB with UA ∈ UA and UB ∈ UB. Therefore, the
locally-measured Rényi divergences are invariant under local unitaries. Moreover, we have by the same
argument the stronger invariance under local isometries for the locally-measured Rényi divergences.
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3.5 Boundedness

It is straightforward to verify that the measured Rényi divergence is bounded whenever the quantum
divergence is bounded. This follows immediately from the observation that for all α > 0, we have

DM
α (ρ‖σ) ≤ D̄α (ρ‖σ) (3.24)

by the monotonicity under measurements of the latter. In the case M = ALL, the reverse statement
also holds, i.e. ρ ⊥ σ or ρ 6≪ σ for α ∈ (1, ∞) implies that DALL

α (ρ‖σ) = +∞. To verify this,
consider first the case ρ ⊥ σ. We can define a projective 2-outcome measurement using Psupp(ρ)

and its orthogonal complement P ⊥
supp(ρ) := 1H − Psupp(ρ), where Psupp(ρ) denotes the projector on the

support of ρ. Observe that the resulting measures

µP
ρ = {1, 0} and µP

σ = {0, 1} (3.25)

are orthogonal and thus DALL
α (ρ‖σ) = +∞. Similarly, if α ∈ (1, ∞) and ρ 6≪ σ we have by definition

supp(ρ) ∩ ker(σ) 6= ∅ and by considering a 2-outcome PVM based on a projector on that subspace, we
can reach the same conclusion as before.

Let us emphasize, however, that these conclusions do not hold for a general set M, as the PVMs we
defined above are not necessarily part of the set M under consideration. This highlights that the
distinguishing power of a restricted measurement set may be significantly diminished compared to the
unrestricted case. The prototypical example is the phenomenon of quantum data hiding (cf. [25–28]),
which asserts that there exist quantum states that can be perfectly distinguished if all measurements
are available but are almost indistinguishable using only local measurements and classical communi-
cation. In Sec. 5, we show that for such states the locally-measured Rényi divergences are bounded.

3.6 Remarks on Optimal Measurement

We can also make some general observations on the optimal measurement in Eq. (2.6). First, note
that for a given measurement coarse-graining can only reduce the divergence due to the classical data-
processing inequality. This implies for the PVM classes P-LO and P-LOCC1 that we may restrict the
optimization w.l.o.g. to rank-1 projectors since any PVM can be fine-grained into a rank-1 PVM.

We are able to say more if we assume additional mathematical structure in the measurement set. For
this, we define the convex combination of two POVMs M1 and M2 over Z element-wise as

Mz = λM z
1 + (1 − λ)Mz

2 .9 (3.26)

By linearity of the trace, we then have for the resulting measures

µλM1+(1−λ)M2
ρ = λµM1

ρ + (1 − λ)µM2
ρ , (3.27)

where the addition is understood element-wise. Now, if the set M is convex then Dα

(

µM
ρ

∥

∥

∥µM
σ

)

as a

function of the measurement is convex for α ∈ (0, 1] and quasi-convex for α ∈ (1, ∞]. This is a direct
result of the joint (quasi-)convexity of the classical quantity. Thus, given a convex measurement set,
the optimization can be restricted to extremal elements w.r.t. to that set.

3.7 Pinsker Inequality

Let us close out this section, by mentioning that the measured Rényi divergences for orders α ∈ (0, 1]
are connected to the measured Schatten norms of [3] via a Pinsker-type inequality

DM
α (ρ‖σ) ≥ α

2
‖ρ − σ‖2

M . (3.28)

9This definition can be extended to two POVMs over different alphabets Z1 and Z2 by mapping them on POVMs
over a common alphabet Z with |Z| = max{|Z1|, |Z2|} extending the smaller set by zero elements.
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This follows directly by lifting the corresponding classical result from [29, Corollary 6],

Dα(µ‖ν) ≥ α

2
T V 2(µ, ν) , (3.29)

where T V (µ, ν) :=
∑

z∈Z |µ(z) − ν(z)| is the total variational distance.

4 Variational Characterizations

Variational characterizations of divergences offer a versatile tool in various applications of quantum
information theory. Building on the work of Berta and Tomamichel in [7, Lemma 3], who established
a variational bound on the measured relative entropy in order to prove entanglement monogamy
inequalities, we extend their results to the measured Rényi divergences. This may also be seen as a
generalization of [10, Lemma 3], which derived an exact variational characterization in the case M =
ALL. We then treat the locality-constrained measurement sets in detail and derive tight variational
characterizations for the classes LO and LOCC1. We further take a closer look at the measured
max-divergence and derive a dual variational characterization. Lastly, we additionally discuss an
infinite-dimensional extension of our main result on variational characterizations in App. A.

4.1 Generic Upper Bound

In the following, we will prove the main technical result, which is a generic upper bound on DM
α in

terms of a variational formula. For this, let us first define the cone associated to the set M as

CM :=
⋃

M∈M

cone (M) , (4.1)

where cone (M) denotes the conical hull of the elements of the POVM M , i.e.,

cone(M) :=

{

∑

z∈Z

λzMz : λz ≥ 0

}

. (4.2)

We can then summarize our result compactly as

DM
α (ρ‖σ) ≤ V M

α (ρ, σ) , (4.3)

where V M
α (ρ, σ) denotes the variational bound given by

V M
α (ρ, σ) := sup

ω>0

{

να ((ρ, σ); ω)

∣

∣

∣

∣

ω ∈ CM

}

= sup
ω>0

{

ηα ((ρ, σ); ω)

∣

∣

∣

∣

ω ∈ CM

}

. (4.4)

Here, we introduced some compact notation for the two types of objective functions we get. The first
class of objective function is given by

να
(

(ρ, σ); ω
)

:=































1
α−1 log

(

α tr[ρω] + (1 − α) tr
[

σω
α

α−1

])

for α ∈ (0, 1/2)

1
α−1 log

(

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω]
)

for α ∈ [1/2, 1) ∪ (1, ∞)

tr[ρ log ω] + 1 − tr[σω] for α = 1

log tr[ρω] + 1 − tr[σω] for α = ∞

(4.5)

and the second is defined as

ηα
(

(ρ, σ); ω
)

:=



































1
α−1 log

(

tr[ρω]α tr
[

σω
α

α−1

]1−α
)

for α ∈ (0, 1/2)

1
α−1 log

(

tr
[

ρω
α−1

α

]α
tr[σω]1−α

)

for α ∈ [1/2, 1) ∪ (1, ∞)

tr[ρ log ω] − log tr[σω] for α = 1

log tr[ρω] − log tr[σω] for α = ∞

. (4.6)
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We remark that the objective function να is concave in ω. Furthermore, the second class of objective
function ηα exhibits a scaling invariance in ω. The variational characterizations thus have a particularly
appealing form. Moreover, the variational program corresponding to ηα can be interpreted as a
generalization of Alberti’s theorem for the fidelity [32] to general orders α and sets M. Utilizing the
connection of the measured Rényi divergence at α = 1/2 to the measured fidelity from Eq. (2.23), we
additionally get a direct generalization of this theorem as

F M(ρ, σ) ≥ inf
ω>0

ω∈CM

√

tr[ρω−1] tr[σω] . (4.7)

The following subsections are devoted to proving this result (see also App. A for a treatment of the
infinite-dimensional case). In Sec. 4.1.3, we additionally give some insights on sufficient conditions for
when the variational bound is tight.

4.1.1 Proof for General Orders

Our main theorem gives variational bounds on QM
α . Recalling Eq. (2.7), this then immediately gives

the claimed upper bound on DM
α for α ∈ (0, 1) ∪ (1, ∞).

Theorem 6. For ρ, σ ∈ S and nonempty M ⊆ ALL, we have

1. for α ∈ (0, 1/2)

QM
α (ρ‖σ) ≥ inf

ω>0
ω∈CM

α tr[ρω] + (1 − α) tr
[

σω
α

α−1

]

= inf
ω>0

ω∈CM

tr[ρω]α tr
[

σω
α

α−1

]1−α
, (4.8)

2. for α ∈ [1/2, 1)

QM
α (ρ‖σ) ≥ inf

ω>0
ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] = inf
ω>0

ω∈CM

tr
[

ρω
α−1

α

]α
tr[σω]1−α , (4.9)

3. for α ∈ (1, ∞)

QM
α (ρ‖σ) ≤ sup

ω>0
ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] = sup
ω>0

ω∈CM

tr
[

ρω
α−1

α

]α
tr[σω]1−α . (4.10)

Proof. The first part of the proof adapts the proof idea of [7, Lemma 3].

1) Case of ρ, σ with full support

Let us assume first that both ρ and σ have full support. We then have for an arbitrary M ∈ M
that µM

ρ (z), µM
σ (z) > 0 for all z ∈ Z and thus µM

ρ (z)/µM
σ (z) ∈ (0, +∞). Further, let us define the

shorthand symbol QM
α (ρ‖σ) := Qα

(

µM
ρ

∥

∥

∥µM
σ

)

for a fixed M ∈ M.

Let α ∈ (0, 1/2). Here, we can bound QM
α for any M ∈ M as

QM
α (ρ‖σ) =

∑

z

µM
σ (z)

(

µM
ρ (z)

µM
σ (z)

)α

= tr

[

σ
∑

z

√
Mz

(

µM
ρ (z)

µM
σ (z)

)α √
Mz

]

(4.11)

≥ tr






σ





∑

z

(

µM
ρ (z)

µM
σ (z)

)α−1

Mz





α

α−1






, (4.12)

13



where the inequality follows from an application of the operator Jensen inequality [30, Theorem 2.1]

using the operator convexity of f(t) := t
α

α−1 for α ∈ (0, 1/2) [31, Section V]. For any M ∈ M, we
further have by definition of CM that

ωM :=
∑

z

(

µM
ρ (z)

µM
σ (z)

)α−1

Mz ∈ CM . (4.13)

Observe that ωM > 010 and tr[ρωM ] = QM
α (ρ‖σ). With this, we obtain the desired lower bound on

QM
α as follows

QM
α (ρ‖σ) = inf

M∈M
αQM

α (ρ‖σ) + (1 − α)QM
α (ρ‖σ) ≥ inf

M∈M
α tr[ρωM ] + (1 − α) tr

[

σω
α

α−1

M

]

(4.14)

≥ inf
ω>0

ω∈CM

α tr[ρω] + (1 − α) tr
[

σω
α

α−1

]

, (4.15)

where the final inequality step follows by a superset argument.

We can apply the same proof strategy to show the claim for the remaining cases of α. For α ∈ [1/2, 1),
we can bound QM

α for any M ∈ M as

QM
α (ρ‖σ) =

∑

z

µM
ρ (z)

(

µM
ρ (z)

µM
σ (z)

)α−1

= tr



ρ
∑

z

√
Mz

(

µM
ρ (z)

µM
σ (z)

)α−1 √
Mz



 (4.16)

≥ tr



ρ

(

∑

z

(

µM
ρ (z)

µM
σ (z)

)α

Mz

)
α−1

α



 , (4.17)

where the last line follows from the operator convexity of f(t) := t
α−1

α for α ∈ [1/2, 1) [31, Section V].
For any M ∈ M, we further have that

ωM :=
∑

z

(

µM
ρ (z)

µM
σ (z)

)α

Mz ∈ CM (4.18)

with ωM > 0 and tr[σωM ] = QM
α (ρ‖σ). This then allows us to lower bound QM

α as

QM
α (ρ‖σ) ≥ inf

M∈M
α tr

[

ρω
α−1

α

M

]

+ (1 − α) tr[σωM ] ≥ inf
ω>0

ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] . (4.19)

Finally, for α ∈ (1, ∞) the function f(t) := t
α−1

α is operator concave [31, Section V] and Eq. (4.17)
becomes an upper bound on QM

α in this parameter range. Defining ωM as for α ∈ [1/2, 1) then leads
to the desired upper bound

QM
α (ρ‖σ) ≤ sup

ω>0
ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] . (4.20)

2) Extension to general case

Next, we employ Lemma 3 to lift the obtained bounds to states that do not have full support. Accord-
ingly, we consider full-support extensions ρǫ := (1 − ǫ)ρ + ǫπ for ρ ∈ S. Additionally, let us introduce
a shorthand symbol for the obtained objective function

fα
(

(ρ, σ), ω
)

:=







α tr[ρω] + (1 − α) tr
[

σω
α

α−1

]

for α ∈ (0, 1/2)

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] for α ∈ [1/2, 1) ∪ (1, ∞)
. (4.21)

10This follows from the completeness relation of POVMs and the strict positivity of all coefficients.
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Note that fα is a linear function in the pair (ρ, σ). For α ∈ (0, 1), we define

gα(ǫ) := inf
ω>0

ω∈CM

fα
(

(ρǫ, σǫ), ω
)

(4.22)

and observe that for ǫ1, ǫ2 ∈ (0, 1) we have

gα(λǫ1 + (1 − λ)ǫ2) = inf
ω>0

ω∈CM

λfα
(

(ρǫ1, σǫ1), ω
)

+ (1 − λ)fα
(

(ρǫ2 , σǫ2), ω
)

(4.23)

≥ λ inf
ω>0

ω∈CM

fα
(

(ρǫ1, σǫ1), ω
)

+ (1 − λ) inf
ω>0

ω∈CM

fα
(

(ρǫ2 , σǫ2), ω
)

, (4.24)

where we used the superadditivity of the infimum in the inequality step. Therefore, gα(ǫ) is a concave
function in ǫ on the interval (0, 1).

Note that at ǫ = 1, we have ρ1 = σ1 = π. Further, since ω > 0 we can parameterize the optimization
variable by the spectral theorem as ω =

∑d
i=1 λiPi, where λi > 0 are the eigenvalues of ω corresponding

to the eigenvectors given by rank-1 projectors Pi. With this, we have for an arbitrary ρ ∈ S that

fα
(

(ρ, ρ), ω
)

=







∑d
i=1 αλi tr[ρPi] + (1 − α)λ

α

α−1

i tr[ρPi] for α ∈ (0, 1/2)
∑d

i=1 αλ
α−1

α

i tr[ρPi] + (1 − α)λi tr[ρPi] for α ∈ [1/2, 1)
. (4.25)

Minimizing both expressions w.r.t. λi yields the optimizer ω⋆ = 1H with the corresponding optimal
value f

(

(ρ, ρ), 1H
)

= tr[ρ] = 1. Note that 1H ∈ CM holds for all nonempty sets M and thus gα(1) = 1.
Since gα(ǫ) is upper-bounded by 1,11 we conclude that gα(ǫ) is a monotone increasing function in ǫ.

With this, we obtain

QM
α (ρ‖σ) = inf

ǫ∈(0,1]
QM

α (ρǫ‖σǫ) ≥ inf
ǫ∈(0,1]

inf
ω>0

ω∈CM

fα
(

(ρǫ, σǫ), ω
)

= inf
ω>0

ω∈CM

fα
(

(ρ, σ), ω
)

, (4.26)

where the inequality step applies the bound for states with full support.

For α ∈ (1, ∞), we similarly define

gα(ǫ) := sup
ω>0

ω∈CM

fα
(

(ρǫ, σǫ), ω
)

. (4.27)

By the subadditivity of the supremum, we can conclude as above that gα(ǫ) is a convex function on
(0, 1). An analogous argument to the one above then yields that gα(1) = 1 provides a lower bound on
gα(ǫ). Thus, gα(ǫ) is monotone decreasing in ǫ. The desired claim then follows by

QM
α (ρ‖σ) = sup

ǫ∈(0,1]
QM

α (ρǫ‖σǫ) ≤ sup
ǫ∈(0,1]

sup
ω>0

ω∈CM

fα
(

(ρǫ, σǫ), ω
)

= sup
ω>0

ω∈CM

fα
(

(ρ, σ), ω
)

. (4.28)

3) Equivalence of expressions

It remains to show the equivalence of the given variational expressions. For this, let us note that for
each positive ω ∈ CM there exists a λ > 0 such that λω ∈ CM ∩ S by the cone property. We can thus
reformulate the optimization problem for α ∈ (0, 1) as follows

inf
ω>0

ω∈CM

fα
(

(ρ, σ), ω) = inf
λ>0

inf
ω>0

ω∈CM ∩ S

fα
(

(ρ, σ), λω) (4.29)

and for α ∈ (1, ∞) we have the same expression with suprema instead of infima.

11For any ρ, σ ∈ S , we can pick ω⋆ = 1H to obtain the upper bound fα((ρ, σ), 1H) = α tr[ρ] + (1 − α) tr[σ] = 1.
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We now carry out the optimization over the scaling parameter λ analytically. For α ∈ (0, 1/2), we

obtain the global optimizer λ⋆ := tr[ρω]α−1 tr
[

σω
α

α−1

]1−α
> 0. The remaining variational expression

is given by

inf
ω>0

ω∈CM∩S

tr[ρω]α tr
[

σω
α

α−1

]1−α
. (4.30)

For α ∈ [1/2, 1) ∪ (1, ∞), the optimization over λ yields the optimizer λ⋆ := tr
[

ρω
α−1

α

]α
tr[σω]−α > 0.

The remaining variational expression is then given for α ∈ [1/2, 1) by

inf
ω>0

ω∈CM∩S

tr
[

ρω
α−1

α

]α
tr[σω]1−α (4.31)

and for α ∈ (1, ∞) by the same expression but with the infimum replaced by a supremum.

The resulting objective functions are invariant under scaling of ω, so we may relax the constraint and
optimize over the whole cone CM without changing the optimal value. This completes the proof.

4.1.2 Proofs for Extended Orders

We complete our proof of the claim in Eq. (4.3) via two corollaries of Theorem 6 that extend the result
to the orders α = 1 and α = ∞. At α = 1, we reproduce the bound obtained in [7, Lemma 3] for the
measured relative entropy. We also give an equivalent characterization that was not shown there.

Corollary 7. For ρ, σ ∈ S and nonempty M ⊆ ALL, we have

DM (ρ‖σ) ≤ sup
ω>0

ω∈CM

tr[ρ log ω] + 1 − tr[σω] = sup
ω>0

ω∈CM

tr[ρ log ω] − log tr[σω] . (4.32)

Proof. Slightly modifying the proof for Property 3 in Lemma 2 allows us to write

DM (ρ‖σ) = sup
α∈[1/2,1)

DM
α (ρ‖σ) ≤ sup

α∈[1/2,1)
sup
ω>0

ω∈CM

1

α − 1
log

(

tr
[

ρω
α−1

α

]α
tr[σω]1−α

)

(4.33)

= sup
α∈[1/2,1)

sup
ω>0

ω∈CM

α

α − 1
log tr

[

ρω
α−1

α

]

− log tr[σω] , (4.34)

where we used Theorem 6 for the inequality step. By the spectral theorem, we can decompose the
optimization variable as ω =

∑d
i=1 λiPi. Then, for α ∈ [1/2, 1) we have

α

α − 1
log tr

[

ρω
α−1

α

]

=
α

α − 1
log

(

d
∑

i=1

λ
α−1

α

i tr[ρPi]

)

(4.35)

≤ α

α − 1

d
∑

i=1

log

(

λ
α−1

α

i

)

tr[ρPi] = tr[ρ log ω] , (4.36)

where the inequality step follows from the convexity of f(t) := α
α−1 log(t) using the Jensen inequality

and
∑

i tr[ρPi] = tr[ρ] = 1. With this, we conclude

DM (ρ‖σ) ≤ sup
ω>0

ω∈CM

tr[ρ log ω] − log tr[σω] . (4.37)

The equivalence of the two variational expressions can be shown similar as it was done in Theorem 6.
We use the same parameterization for the optimization variable to obtain

sup
ω>0

ω∈CM

tr[ρ log ω] + 1 − tr[σω] = sup
λ>0

sup
ω>0

ω∈CM ∩ S

tr[ρ log(λω)] + 1 − tr[σ(λω)] (4.38)
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A straightforward calculation shows that the expression is maximized for λ⋆ = 1
tr[σω] > 0. This results

in the remaining variational expression

sup
ω>0

ω∈CM∩S

tr[ρ log ω] − log tr[σω] . (4.39)

Since the new objective function is scaling invariant, we can optimize over the whole cone CM without
changing the optimal value.

At α = ∞, we similarly obtain the following characterization of the measured max-divergence.

Corollary 8. For ρ, σ ∈ S and nonempty M ⊆ ALL, we have

DM
max (ρ‖σ) ≤ sup

ω>0
ω∈CM

log tr[ρω] + 1 − tr[σω] = sup
ω>0

ω∈CM

log

(

tr[ρω]

tr[σω]

)

. (4.40)

Proof. Using Property 3 of Lemma 2, we obtain

DM
max (ρ‖σ) = sup

α∈(1,∞)
DM

α (ρ‖σ) ≤ sup
α∈(1,∞)

sup
ω>0

ω∈CM

log
(

tr
[

ρω
α−1

α

]α
tr[σω]1−α

)

(4.41)

= sup
α∈(1,∞)

sup
ω>0

ω∈CM

α

α − 1
log tr

[

ρω
α−1

α

]

− log tr[σω] , (4.42)

where we used Theorem 6 for the inequality step. Using the decomposition ω =
∑d

i=1 λiPi, we have
for α ∈ (1, ∞) that

α

α − 1
log tr

[

ρω
α−1

α

]

=
α

α − 1
log

(

d
∑

i=1

λ
α−1

α

i tr[ρPi]

)

≤ log

(

d
∑

i=1

λi tr[ρPi]

)

= log tr[ρω] , (4.43)

where the inequality step follows from the concavity of f(t) := t
α−1

α with the Jensen inequality. This
allows us to conclude that

DM
max (ρ‖σ) ≤ sup

ω>0
ω∈CM

log

(

tr[ρω]

tr[σω]

)

. (4.44)

The equivalence of the two variational expressions can again be shown similar as it was done in
Theorem 6. We use the same parameterization of the optimization variable to obtain

sup
ω>0

ω∈CM

log tr[ρω] + 1 − tr[σω] = sup
λ>0

sup
ω>0

ω∈CM ∩ S

log tr[ρ(λω)] + 1 − tr[σ(λω)] (4.45)

A straightforward calculation shows that the expression is maximized for λ⋆ = 1
tr[σω] > 0. This results

in the remaining variational expression

sup
ω>0

ω∈CM ∩ S

log tr[ρω] − log tr[σω] = sup
ω>0

ω∈CM ∩ S

log

(

tr[ρω]

tr[σω]

)

. (4.46)

Since the new objective function is scaling invariant, we can optimize over the whole cone CM without
changing the optimal value.
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4.1.3 Discussion of Proof

Let us conclude this section with some observations about sufficient conditions for when the given
variational characterization is exact. Note that the proof of Theorem 6 essentially boils down to two
inequality steps. The first is an application of the operator Jensen inequality. A sufficient condition
for this step to become tight is when the cone CM is closed under power functions. The second step
relates the cone CM to the measurement set M. A sufficient condition for equality is that the cone
has the same mathematical structure as the measurement set. Note that both of these conditions are
satisfied in the unrestricted case. Here, CALL is equal to the cone of positive semi-definite operators
P. It was shown in [10, Lemma 3] that in this case we do have equality in Eq. (4.3).

4.2 Locally-Measured Rényi Divergence

Let us now take a closer look at the locality-constrained measurements sets introduced in Sec. 2.3.
Here, we are able to derive an exact variational characterization for the two sets LO(A : B) and
LOCC1(A → B). These results generalize [7, Lemma 4] for the measured relative entropy. We obtain
these characterizations by embedding the states in a larger Hilbert space. We further provide an
argument for why this is required and why the variational bound is not tight for α ∈ (0, ∞) in general.
In App. B, we then give explicit counterexamples where the gap between the measured divergence and
the variational characterization is strict.

4.2.1 LO Measurements

We start with the set of local measurements. Before we consider the general case, however, let us
initially focus on the special case of projective local measurements. Here, the measurement cone is
given by

CP-LO(A:B) =







dA
∑

x=1

dB
∑

y=1

λx,yP x
A ⊗ P y

B

∣

∣

∣

∣

∣

∣

λx,y ≥ 0 ∧ P x
AP x′

A = δx,x′P x
A ∧ P y

BP y′

B = δy,y′P y
A







. (4.47)

Notice that this is the set of all operators that are classical in some basis on A ⊗ B. In this case, the
variational bound is tight.

Lemma 9. Let ρ, σ ∈ SAB and α > 0. With definitions as above, we have

DP-LO(A:B)
α (ρ‖σ) = V P-LO(A:B)

α (ρ, σ) . (4.48)

Proof. We only need to prove that

sup
ω>0

{

να
(

(ρ, σ); ω
)

∣

∣

∣

∣

ω ∈ CP-LO(A:B)

}

≤ DP-LO(A:B)
α (ρ‖σ) . (4.49)

Let us illuminate the argument with the case α ∈ (0, 1/2). First, note that by definition any ω ∈
CP-LO(A:B) decomposes into

ω =
dA
∑

x=1

dB
∑

y=1

λx,yP x
A ⊗ P y

B . (4.50)

Since these are diagonal operators, we can rewrite the objective function as

exp
(

(α − 1)να

(

(ρ, σ), ω
))

=
dA
∑

x=1

dB
∑

y=1

αλx,yµP
ρ (x, y) + (1 − α)λ

α

α−1
x,y µP

σ (x, y) . (4.51)
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Here, we identified the measurement statistics of a local rank-1 PVM with elements P
(x,y)
AB = P x

A ⊗P y
B .

An analytical minimization of the expression w.r.t. the coefficients λx,y yields the optimizer

λ⋆
x,y =

(

µP
ρ (x, y)

µP
σ (x, y)

)α−1

≥ 0 . (4.52)

With this, we can see that the variational expression is upper bounded by

sup
ω>0

ω∈CP-LO(A:B)

να
(

(ρ, σ); ω
) ≤ sup

P =PA⊗PB

Dα

(

µP
ρ

∥

∥

∥µP
σ

)

= DP-LO(A:B)
α (ρ‖σ) . (4.53)

An analogous argument can then be used to show the claim for the remaining orders α.

With this in place, we turn to the general case. On first look, the set CLO consists of separable positive
semi-definite operators of the form

ω =
∑

x∈X

∑

y∈Y

λx,yMx
A ⊗ My

B , (4.54)

where λx,y ≥ 0 and {Mx
A}x∈X and {My

B}y∈Y are POVMs over finite alphabets X and Y, respectively.
That is, the cone CLO is clearly a subset of the cone of separable operators. It turns out, however,
that CLO is equal to the complete cone of separable operators.

Lemma 10. CLO as defined in Eq. (4.1) is equal to the cone of separable operators.

Proof. To see this consider an arbitrary separable operator which we can write without loss of gener-
ality as ω =

∑

z∈Z Xz ⊗ Y z for some finite set of positive semi-definite operators {Xz}z and {Y z}z,
respectively.

Now, observe that we can always associate a two-outcome measurement to any positive semi-definite
operator X using the elements MX := X/ tr[X] and 1H − MX . If we do this for each individual Xz

and re-scale all POVM elements by |Z|, we obtain a valid POVM on A with 2|Z| outcomes since

∑

z∈Z

Xz

|Z| tr[Xz]
+

1

|Z|

(

1A − Xz

tr[Xz]

)

=
∑

z∈Z

1A

|Z| = 1A . (4.55)

Similarly, we define a valid POVM on B with 2|Z| outcomes corresponding to the set of operators Y z.

It is then easy to see that the separable operator ω lies in the conic hull of the product POVM. For this,
we take only the POVM elements Xz/(|Z| tr[Xz ]) ⊗ Y z/(|Z| tr[Y z]) and scale them by the positive
coefficients λz = |Z|2 tr[Xz ] tr[Xz]. Then, we have

∑

z∈Z

|Z|2 tr[Xz ] tr[Y z]

(

Xz

|Z| tr[Xz ]
⊗ Y z

|Z| tr[Y z]

)

=
∑

z∈Z

Xz ⊗ Y z = ω . (4.56)

As a result, the cone CLO is a strict superset to LO. This suggests that the inequality in the variational
characterization of Eq. (4.3) is strict in the general case (see App. B for examples). We can, however,
adapt the proof idea of [7, Lemma 4] to obtain an exact characterization. The main idea is to use
Naimark’s dilation theorem to map the problem of optimizing over general POVMs to one of optimizing
over PVMs on a larger Hilbert space. For this, let us introduce the spaces A′ isomorphic to A ⊗ A
and B′ isomorphic to B ⊗ B. We then have the following result for the set LO that generalizes a
corresponding result from [7, Equation 47] for the measured relative entropy.
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Proposition 11. Let ρAB, σAB ∈ SAB and α > 0. Further, let A′⊗B′ as defined above and ρA′B′ , σA′B′

be local embeddings of ρAB and σAB in this space, respectively. We then have with notation as defined
above that

DLO(A:B)
α (ρAB‖σAB) = V P-LO(A′:B′)

α (ρA′B′ , σA′B′) (4.57)

Furthermore, the optimal local measurements are (rank-1) POVMs with at most d2
A and d2

B outcomes
on A and B, respectively.

Proof. We adapt the proof idea of [7, Lemma 4].

Note that the set LO(A : B) is convex on the A system and thus we can conclude that the optimal
measurement on A must be extremal (cf. Sec. 3.6). These extremal POVMs have at most d2

A rank-1
elements by [33, Theorem 2.21]. Moreover, Naimark’s dilation theorem states that there exists a rank-
1 projective measurement on A′ that produces the same measurement statistics. Furthermore, since
the set LO(A : B) is convex on the B system as well, the same conclusions hold for the measurement
on the B system.

The local isometric invariance of the locally-measured Rényi divergence gives

DLO(A:B)
α (ρAB‖σAB) = DLO(A′:B′)

α (ρA′B′‖σA′B′) (4.58)

and by the above observation we can restrict w.l.o.g. to projective measurements in the latter opti-
mization. The claim then follows by an application of Lemma 9.

4.2.2 LOCC Measurements

We obtain a similar result for the class LOCC1(A → B). Note that Lemma 10 implies that the cone
CLOCC1 is also equal to the separable cone by a superset argument. (In fact, it implies this for the
cone CLOCC as well.) Recalling the sufficient conditions in Sec. 4.1.3, the cone thus does not share the
same structure as the measurement set. As for the set LO, this gives an intuition why the variational
characterization in Eq. (4.3) is strict in the general case as we show in App. B.

Nevertheless, if we restrict again the measurements to projective ones we obtain an exact characteri-
zation as in Lemma 9 in terms of an optimization over the cone

CP-LOCC1(A→B) =







dA
∑

x=1

P x
A ⊗ ωx

B

∣

∣

∣

∣

∣

∣

ωx
B ≥ 0 ∧ P x

AP x′

A = δx,x′P x
A







. (4.59)

Note that this is the set of operators that are classical-quantum in some basis on A. This claim can
be shown similar to Lemma 9 by introducing the eigendecomposition ωx

B =
∑dB

y=1 λy|xP y|x and then
carrying out the optimization over λy|x analytically.

Applying the Naimark’s dilation argument from Proposition 11 then similarly yields an exact char-
acterization for the class LOCC1 as well. The proof boils down to the observation that the optimal
measurement is comprised of a (rank-1) POVM on A with at most d2

A outcomes followed by a condi-
tional projective measurement on B. Therefore, we have with local embeddings of ρA′B and σA′B of
ρAB and σAB in A′ ⊗ B, respectively, that

DLOCC1(A→B)
α (ρAB‖σAB) = V P-LOCC1(A′→B)

α (ρA′B , σA′B) . (4.60)

For the general class LOCC, we do not know how to obtain an exact characterization since no good
mathematical characterization of the set is available.
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4.2.3 SEP and PPT Measurements

For the sets SEP(A : B) and PPT(A : B), note that CSEP and CPPT are simple and just consist
of separable positive semi-definite operators and positive semi-definite operators with positive partial
transpose, respectively. That is, the cones have the same mathematical structure as the respective
measurement set. However, these sets are not closed under power functions and thus do not satisfy
the second sufficient condition given in Sec. 4.1.3 (see App. B for examples).

4.3 Measured Max-Divergence

We conclude our investigation into variational characterizations of the measured Rényi divergence by
taking a closer look at the order α = ∞, i.e. the max-divergence. Here, we show that the obtained
variational characterization is in fact exact for the classes SEP and PPT. Moreover, the obtained
variational upper bound can be re-written as a conic program in standard form under some mild
assumptions on the measurement set. This enables us to derive a dual variational characterization
that is crucial for our application to restricted hypothesis testing (cf. Sec. 5 for details).

4.3.1 SEP and PPT Measurements

Recalling the sufficient conditions for equality, we outlined in Sec. 4.1.3, we can see that both of these
hold at α = ∞ for the sets SEP(A : B) and PPT(A : B). For this, note that the relevant power for
α → ∞ is the identity for which the closure property trivially holds. We are then able to show that
the variational bound is tight.

Proposition 12. For ρ, σ ∈ SAB and M = SEP or PPT, we have

DM
max (ρ‖σ) = sup

ω>0
ω∈CM

log tr[ρω] + 1 − tr[σω] = sup
ω>0

ω∈CM

log

(

tr[ρω]

tr[σω]

)

. (4.61)

Proof. Let M = SEP or PPT. The proof then essentially boils down to the fact that CM has the
same mathematical structure as the measurement set.

Namely, we can define for any ω ∈ CM a 2-outcome POVM as {Mω , 1H − Mω} ∈ M via the element
Mω = ω/ tr[ω]. Thus, for any ω ∈ CM we have

log

(

tr[ρω]

tr[σω]

)

= log

(

tr[ρMω]

tr[σMω]

)

≤ Dmax

(

µMω

ρ

∥

∥

∥µMω

σ

)

≤ DM
max (ρ‖σ) . (4.62)

4.3.2 Dual Variational Expression

If the cone CM is a proper cone12 and the set M contains more than just the trivial measurement
M = 1H, we can rewrite the variational expression for the measured max-divergence into a conic
program in standard form (cf. Watrous’ lecture notes [34, Lecture 1]). Proceeding from there, we
obtain the dual program.

Proposition 13. For ρ, σ ∈ S and nontrivial M ⊆ ALL such that CM is a proper cone, we have

DM
max (ρ‖σ) ≤ sup

ω>0
ω∈CM

log

(

tr[ρω]

tr[σω]

)

= inf
λ>0

λσ−ρ∈C†
M

log λ , (4.63)

12A cone is called proper if it is closed, convex, pointed and has nonempty interior.
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with the dual cone C†
M given by

C†
M :=

{

γ ∈ H
∣

∣ tr[γω] ≥ 0 ∀ω ∈ CM
}

. (4.64)

Proof. By Corollary 8, we have

exp
(

DM
max(ρ‖σ)

)

≤ sup
ω>0

ω∈CM

{

tr[ρω]

∣

∣

∣

∣

tr[σω] = 1

}

, (4.65)

where we introduced w.l.o.g. the constraint tr[σω] = 1 by using the scaling invariance of the objective
function together with tr[σω] > 0 for ω > 0.

Note that per our assumption CM is a proper cone. Moreover, we can define a linear map φ : H → R

via φ(γ) = tr[σγ] for γ ∈ H. Its adjoint is then given by φ†(λ) = λσ for λ ∈ R. With this, the primal
problem is given in standard form (cf. [34, Problem 1.1]) and the dual problem is

inf
λ∈R

{

λ

∣

∣

∣

∣

λσ − ρ ∈ C†
M

}

. (4.66)

Moreover, since by picking the primal feasible ω⋆ = 1H the primal is lower-bounded by 1, we can
restrict the optimization in the dual w.l.o.g. to λ > 0 due to weak duality.

Lastly, we can show that strong duality holds using the version of Slater’s theorem stated in [34,
Theorem 1.3]. For this, assume first that the dual feasible set is empty,13 i.e. for each λ > 0 there
exists at least one ω ∈ CM such that tr[(λρ − σ)ω] < 0 by the definition of the dual cone. This implies
that for all λ > 0, we can find a ω ∈ CM such that

λ <
tr[ρω]

tr[σω]
. (4.67)

Therefore, in this case the primal problem is unbounded as well. If the dual problem is feasible, Slaters
theorem applies with 1H ∈ relint(CM).

Observe that in the case of unrestricted measurements, we have CALL = P which is known to be self
dual. The given dual program then yields the definition of the quantum max-divergence which shows
again that the quantum max-divergence is indeed achievable by a measurement.

The cones CSEP and CPPT are known to be proper cones (cf. Watrous’ lecture notes [35, Lecture
14 & 18]). The dual cone of the separable operators is the cone of block-positive operators (cf.
e.g. [36]). Moreover, the dual cone of PPT operators admits an explicit characterization as we show
in the following corollary. This characterization of the dual PPT cone is known in the literature (cf.
e.g. [37]), but we provide a proof here for completeness.

Corollary 14. For ρ, σ ∈ SAB, we have

DPPT
max (ρ‖σ) = log sup

ω>0

ωΓ≥0

{

tr[ρω]

∣

∣

∣

∣

tr[σω] = 1

}

= log inf
λ>0

X,Y ∈P

{

λ

∣

∣

∣

∣

λσ − ρ = X + Y Γ
}

. (4.68)

Proof. By Propositon 12, we have that

exp
(

DPPT
max (ρ‖σ)

)

= sup
ω>0

{

tr[ρω]

∣

∣

∣

∣

tr[σω] = 1 ∧ ωΓ ≥ 0

}

, (4.69)

13By definition the dual optimal value then is +∞.
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where we introduced w.l.o.g. the additional constraint tr[σω] = 1 using the scaling invariance of the
problem. Based on this expression, we proceed to find its dual using the Lagrangian formalism (cf.
e.g. [38, Chapter 5]). The Lagrangian L of the problem is given by

L(ω, X, Y, λ) = tr[ρω] + tr[Xω] + tr
[

Y ωΓ
]

+ λ (1 − tr[σω]) = λ + tr
[(

ρ − λσ + X + Y Γ
)

ω
]

(4.70)

with the dual variables X, Y ∈ P and λ ∈ R. In order to obtain the dual program, this has to
be maximized over all Hermitian operators ω without any constraints. The result is +∞ unless
ρ − λσ + X + Y Γ = 0. In such a case, the maximum is simply given by λ. Thus, we can conclude that
the dual program is given by

inf
λ∈R

X,Y ∈P

{

λ

∣

∣

∣

∣

λσ − ρ = X + Y Γ
}

. (4.71)

Analogous to the proof of Proposition 13, we can restrict the optimization to λ > 0 due to weak
duality and show that strong duality holds using the strictly primal feasible point ω = 1H.

Lastly, we remark that Proposition 13 shows that the measured max-divergence is upper-bounded
by the cone-restricted max divergences DCM

max of George and Chitambar [13]. Combining this with
Proposition 12 shows that in the cases of SEP and PPT measurements the measured max-divergence
is in fact equal to the cone-restricted one.

As a final remark, note that the quantum fidelity also possesses a dual variational characterization (cf.
e.g. [35, Lecture 8]). The standard derivation of this, however, does rely on the closure under inverses
of the positive semi-definite cone, which does not hold for the separable or PPT cone.

5 Restricted Hypothesis Testing

As our application of the locally-measured Rényi divergences, we use them to study the hypothesis
testing problem under restricted measurements. For this, we develop in the following section an
operational interpretation of the regularized locally-measured Rényi divergence in the strong converse
regime. In Sec. 5.2 and App. C, we then show that the regularized locally-measured Rényi divergences
become single-letter and can be evaluated analytically on examples of data hiding states. As argued
in the introduction, these states are natural to consider since they are characterized by a reduced
distinguishability under LOCC measurements. Moreover, we can use these states to provide explicit
counterexamples for when the variational bounds of Sec. 4.2 are not tight (see App. B). In the following,
we always consider a bipartite system A ⊗ B with equal local dimension dA = dB = d.

5.1 Locally-Measured Hypothesis Testing

We study in the following the simple hypothesis testing problem under restricted measurements.
Here, the task is to decide whether the null hypothesis ρ⊗n or its alternative σ⊗n is true based on the
outcome of a quantum measurement on H

⊗n. In the hypothesis testing problem, it is sufficient to treat
only binary measurements, so-called tests {Tn(0), Tn(1)}, where the outcomes 0 and 1 indicate the
acceptance of the null and alternative hypothesis, respectively. Since the test is uniquely determined
by the element Tn = Tn(0), we will use with some abuse of notation Tn to denote the POVM element
and its associated test. In the restricted measurement scenario, we are not allowed to perform all
possible quantum tests but only the ones from a subset Mn.

To each test Tn ∈ Mn, we can associate two types of error probabilities, namely

αn(Tn) := 1 − tr
[

ρ⊗nTn
]

and βn(Tn) := tr
[

σ⊗nTn
]

. (5.1)
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The error probability of the first kind αn(Tn) gives the likelihood to wrongly reject the null hypothesis,
whereas the error probability of the second kind βn(Tn) characterizes the probability of erroneously
accepting the null hypothesis. In general there exists a trade-off between these error probabilities and
different scenarios are studied in the literature.

5.1.1 Stein’s Lemma

In the Stein scenario, we enforce a constant constraint on the error probability of the first kind, i.e. we
require αn(Tn) ≤ ε with ε ∈ (0, 1). The task is then to minimize the error of the second kind among
all tests Tn ∈ Mn that satisfy the constraint, i.e. we are interested in

βMn

n (ε) := inf
Tn∈Mn

{

βn(Tn)

∣

∣

∣

∣

αn(Tn) ≤ ε

}

. (5.2)

A Stein’s lemma then makes a statement about the asymptotic behavior of this error probability as
n → ∞, i.e. it characterizes the rate exponent

ζM
Stein(ρ, σ; ε) := lim

n→∞
− 1

n
log βMn

n (ε) (5.3)

if the limit exists. The quantum Stein’s lemma [9, 39] states that under no restrictions on the mea-
surements we have for all ε ∈ (0, 1) that

ζALL
Stein(ρ, σ; ε) = DALL (ρ‖σ) = D(ρ, σ) . (5.4)

Moreover, the weak version of Stein’s lemma for restricted measurements has been proven by Brandao
et. al. as a special case of [24, Theorem 16]. Namely, their result implies

lim
ε→0

ζM
Stein(ρ, σ; ε) = DM (ρ‖σ) . (5.5)

Here, we want to investigate the strong version of the Stein’s lemma for restricted measurements.
Observe that in the proof of [24, Theorem 16], it was shown

lim inf
n→∞

− 1

n
log βMn

n (ε) ≥ DM (ρ‖σ) for all ε ∈ (0, 1). (5.6)

This can be regarded as the achievability part of Stein’s lemma and for the optimality part, we make
use of the measured Rényi divergences for α > 1 to prove the following lemma.

Lemma 15. With definitions as above and ε ∈ (0, 1), we have

lim sup
n→∞

− 1

n
log βMn

n (ε) ≤ inf
α>1

DM
α (ρ‖σ) . (5.7)

Proof. Let α > 1 and ε ∈ (0, 1) and consider a test Tn ∈ Mn. We then have by a standard argument
(cf. e.g. [40]) that

DMn

α

(

ρ⊗n
∥

∥σ⊗n) (5.8)

≥ 1

α − 1
log

(

tr
[

ρ⊗nTn

]α
tr
[

σ⊗nTn

]1−α
+
(

1 − tr
[

ρ⊗nTn

])α (
1 − tr

[

σ⊗nTn

])1−α
)

(5.9)

≥ 1

α − 1
log

(

tr
[

ρ⊗nTn
]α

tr
[

σ⊗nTn
]1−α

)

(5.10)

=
α

α − 1
log(1 − αn(Tn)) − log βn(Tn) , (5.11)
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which after rewriting shows the following relationship between the two error probabilities

− 1

n
log βn(Tn) ≤ 1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n)+
1

n

α

α − 1
log

(

1

1 − αn(Tn)

)

. (5.12)

Recall that in the Stein’s scenario, we consider tests Tn that satisfy the constraint αn(Tn) ≤ ε. For
such tests, the above bound turns into

− 1

n
log βn(Tn) ≤ 1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n)+
1

n

α

α − 1
log

(

1

1 − ε

)

. (5.13)

Next, taking the supremum over such tests on the left-hand side, we get

− 1

n
log βMn

n (ε) ≤ 1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n)+
1

n

α

α − 1
log

(

1

1 − ε

)

(5.14)

and then taking the limit superior over n on both sides, we get by Lemma 4 that

lim sup
n→∞

− 1

n
log βMn

n (ε) ≤ DM
α (ρ‖σ) . (5.15)

Finally, taking the infimum over α > 1 on the right-hand side completes the proof.

In Sec. 5.2 and App. C, we show that for examples of data hiding states the locally-measured Rényi
divergences are additive. The regularized terms then become single letter, which in turn enables us
to show that the optimality part becomes tight, i.e. for these examples we have

ζM
Stein(ρ, σ; ε) = DM (ρ‖σ) (5.16)

and we can explicitly compute the Stein’s exponent for the restricted hypothesis testing problem (see
Sec. 5.2.3 and App. C.3 for these results).

5.1.2 Strong Converse Exponent

In the strong converse scenario, we aim to minimize the decay rate of the success probability of the first
kind given an exponential constraint on the error probability of the second kind, i.e. we are interested
in the rate exponent

ζM
SC(ρ, σ; r) := inf

{Tn}n

Tn∈Mn

{

lim sup
n→∞

− 1

n
log(1 − αn(Tn))

∣

∣

∣

∣

lim inf
n→∞

− 1

n
log βn(Tn) ≥ r

}

. (5.17)

The following lemma gives a universal lower bound, i.e. an optimality result, on the strong converse
exponent.

Lemma 16. Let r ≥ 0. With definitions as above, we have

lim inf
n→∞

− 1

n
log(1 − αn(Tn)) ≥ sup

α>1

α − 1

α

[

r − DM
α (ρ‖σ)

]

(5.18)

for all sequences of tests {Tn}n with Tn ∈ Mn that satisfy the rate constraint

lim sup
n→∞

1

n
log βn(Tn) ≤ −r . (5.19)
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Proof. Let r ≥ 0, α > 1 and consider a test Tn ∈ Mn. We can rewrite Eq. (5.12) into

1

n
log(1 − αn(Tn)) ≤ α − 1

α

[

1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n)+
1

n
log βn(Tn)

]

. (5.20)

Per our assumption, we consider sequences of tests Tn that satisfy the constraint

lim sup
n→∞

1

n
log βn(Tn) ≤ −r . (5.21)

That is, for each δ > 0 there exists a nδ such that for all n ≥ nδ, we get the bound

1

n
log

(

1 − αn(Tn)
) ≤ α − 1

α

[

1

n
DMn

α

(

ρ⊗n
∥

∥σ⊗n)− r + δ

]

. (5.22)

To conclude, we take the limit superior over n to obtain

lim sup
n→∞

1

n
log(1 − αn(Tn)) ≤ α − 1

α

[

DM
α (ρ‖σ) − r + δ

]

(5.23)

and then taking the limit δ → 0 and the infimum over α > 1 on the right-hand side results in

lim sup
n→∞

1

n
log(1 − αn(Tn)) ≤ − sup

α>1

α − 1

α

[

r − DM
α (ρ‖σ)

]

. (5.24)

For the achievability direction, we prove the following lemma which gives upper bounds on the strong
converse exponent.

Lemma 17. Let r ≥ 0 and k ∈ N. With definitions as above, given a measurement Mk ∈ Mk, there
exists a sequence of test {Tn}n with Tn ∈ Mn that achieves

lim sup
n→∞

1

n
log βn(Tn) ≤ −r (5.25)

and

lim sup
n→∞

− 1

n
log(1 − αn(Tn)) ≤ sup

α>1

α − 1

α

[

r − 1

k
Dα

(

µMk

ρ⊗k

∥

∥

∥µMk

σ⊗k

)

]

. (5.26)

Proof. Consider a measurement Mk ∈ Mk over an alphabet Z. The classical strong converse result of
Han-Kobayashi [41] implies the existence of a sequence of acceptance regions {Ak,m}m with Ak,m ⊆
Z⊗m for the hypothesis testing problem between the i.i.d. distributions

(

µMk

ρ⊗k

)⊗m
and

(

µMk

σ⊗k

)⊗m
such

that

lim sup
m→∞

1

m
log

[

(

µMk

σ⊗k

)⊗m
(Ak,m)

]

≤ −kr (5.27)

and

lim inf
m→∞

1

m
log

[

(

µMk

ρ⊗k

)⊗m
(Ak,m)

]

= inf
α>1

α − 1

α

[

Dα

(

µMk

ρ⊗k

∥

∥

∥µ
Mk

σ⊗k

)

− kr

]

. (5.28)

Hence, given an arbitrary δ > 0 there exists mδ such that for m ≥ mδ, we have for the error probability
of the second kind

1

m
log

[

(

µMk

σ⊗k

)⊗m
(Ak,m)

]

≤ −kr + δ (5.29)
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and for the success probability of the first kind

1

m
log

[

(

µMk

ρ⊗k

)⊗m
(Ak,m)

]

≥ inf
α>1

α − 1

α

[

Dα

(

µMk

ρ⊗k

∥

∥

∥µMk

σ⊗k

)

− kr

]

− δ . (5.30)

Let us define the quantum test Tn := (M †
k)⊗m(Ak,m)⊗1l ∈ Mn for n = km+l with l = {0, 1, ..., k−1}.

With this sequence of tests {Tn}, we get for n ≥ kmδ the bound

1

n
log tr

[

Tnσ⊗n] =
1

n
log

[

(

µMk

σ⊗k

)⊗m
(Ak,m)

]

≤ − km

km + l
r +

m

km + l
δ , (5.31)

which in turn implies

lim sup
n→∞

1

n
log βn(Tn) ≤ −r +

δ

k
. (5.32)

Moreover, we also have for n ≥ kmδ the bound

− 1

n
log(1 − αn(Tn)) = − 1

n
log tr

[

Tnρ⊗n] (5.33)

= − 1

km + l
log

[

(

µMk

ρ⊗k

)⊗m
(Ak,m)

]

(5.34)

≤ m

km + l

(

sup
α>1

α − 1

α

[

kr − Dα

(

µMk

ρ⊗k

∥

∥

∥µMk

σ⊗k

)

])

+
m

km + l
δ , (5.35)

which implies

lim sup
n→∞

− 1

n
log(1 − αn(Tn)) ≤ 1

k

(

sup
α>1

α − 1

α

[

kr − Dα

(

µMk

ρ⊗k

∥

∥

∥µMk

σ⊗k

)

])

+
1

k
δ (5.36)

= sup
α>1

α − 1

α

[

r − 1

k
Dα

(

µMk

ρ⊗k

∥

∥

∥µ
Mk

σ⊗k

)

]

+
δ

k
(5.37)

Taking the limit δ → 0, we obtain our claim.

In Sec. 5.2 and App. C, we show that for examples of data hiding states the optimal sequence of mea-
surements is given by the i.i.d.-version of the single copy optimal measurement, which is independent
of α. Lemma 17 then enables us to give a tight bound on the strong converse exponent and compute
it explicitly for the these states (see Sec. 5.2.3 and App. C.3 for these results). For these special cases,
we then have the relationship

ζM
SC(ρ, σ; r) = sup

α>1

α − 1

α

[

r − DM
α (ρ‖σ)

]

. (5.38)

5.2 Isotropic States

The first family of states for which we study the hypothesis testing problem under restricted measur-
ments are the isotropic states [42]. Their defining property is that they are invariant under unitaries
of the form U ⊗ Ū , where the bar denotes complex conjugation. A general isotropic state can be
characterized completely by a single parameter p ∈ [0, 1] as

i(p) := pΦ + (1 − p)Φ⊥ , (5.39)

where Φ denotes the maximally entangled state and Φ⊥ is its orthogonal complement. Using the
canonical basis {|i〉}d

i=1 on A and B, respectively, these extremal isotropic states are given w.l.o.g. by

Φ =
1

d

d
∑

i,j=1

|i〉〈j|A ⊗ |i〉〈j|B and Φ⊥ =
1AB − Φ

d2 − 1
. (5.40)

It is well-known that i(p) is separable and has PPT for p ∈ [0, 1/d] and else it is entangled [42]. This
class of states was previously studied in the context of LOCC distinguishability e.g. in [43–45].
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5.2.1 Local Distinguishability

We start with the most simple scenario of ρ = Φ and σ = Φ⊥. Notice that these states are orthogonal,
so following the discussion in 3.5 we can perform the test TΦ := {Φ, 1AB − Φ} to obtain

µTΦ
Φ = {1, 0} and µTΦ

Φ⊥ = {0, 1} , (5.41)

and therefore DALL
α

(

Φ
∥

∥

∥Φ⊥
)

= +∞ for all orders α > 0.

However, it is important to note that the test TΦ employs the POVM element Φ which has a negative
partial transpose and as such is not a member of any of the locally-measured classes introduced in Sec.
2. It turns out that if we restrict the available measurements to any of these classes they all perform
equally poorly.

Proposition 18. Let M = {LO, LOCC1, LOCC, SEP, PPT} and α > 0. With definitions as above,
we have

DM
α

(

Φ
∥

∥

∥Φ⊥
)

= log(d + 1) . (5.42)

Proof. Note that the case α = 1 was originally proven in [43, Proposition 4]. The general idea of
the proof is to lower-bound DLO

α and then find a matching upper-bound on DPPT
α via the variational

formula. This strategy follows the meta idea that was used in [43–45] for similar computations.

Let us start with the lower bound on DLO
α . For this, we pick the local basis measurement with POVM

elements L(i,j) := |i〉〈i|A ⊗ |j〉〈j|B. Clearly, we have L ∈ LO. The induced probability distributions are
given by

µL
Φ(i, j) =

δi,j

d
and µL

Φ⊥(i, j) =
1

d2 − 1

(

1 − δi,j

d

)

, (5.43)

where δi,j is the Kronecker delta. This yields by direct calculation the lower bound of

DLO
α

(

Φ
∥

∥

∥Φ⊥
)

≥ Dα

(

µL
Φ

∥

∥

∥µL
Φ⊥

)

= log(d + 1) . (5.44)

For the second part, we employ the variational characterization to compute a bound on DPPT
α . Since

the bound is independent of α, we can focus on the case α = +∞ due to the monotonicity in α. Here,
we showed in Proposition 12 that the following holds

DPPT
max

(

Φ
∥

∥

∥Φ⊥
)

= sup
ω>0

{

log tr[Φω]
∣

∣

∣ tr
[

Φ⊥ω
]

= 1 ∧ ωΓ ≥ 0
}

. (5.45)

Since we test two isotropic states against each other there is an inherent symmetry in the problem.
We can take advantage of this similar to the approaches used in [43–45]. Namely, we have that
tr[i(p)ω] = tr[i(p)I(ω)] for any ω ∈ P, whereby I denotes the isotropic twirling operation. Its action
on a linear operator XAB is given by

I (XAB) =

∫

U(d)

(

U ⊗ Ū
)

XAB

(

U ⊗ Ū
)†

dµH(U) , (5.46)

where the integration is with respect to the Haar measure dµH(U) on the unitary group U(d). More-
over, we note that the PPT property is preserved under application of the twirling channel.14

Thus, we may restrict the optimization w.l.o.g. to isotropic PPT operators. We can decompose these as
a conic combination of the projector on the maximally entangled state and its orthogonal complement,
i.e. we can write

I(ω) = c1Φ + c2(1AB − Φ) (5.47)

14This follows from local unitary invariance and convexity of the set of PPT operators.
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for coefficients c1, c2 ≥ 0. Note that these have the PPT property if c1 ≤ (d + 1)c2.

This allows us to rewrite the optimization problem as

maximize log c1 s.t. c2 = 1 ∧ 0 < c1 ≤ (d + 1)c2 . (5.48)

This clearly has the solution log(d + 1) with gives us the matching upper bound.

Our proof strategy generalizes to the scenario of testing ρ = Φ against an arbitrary isotropic state
σ = i(q). Note that since the states commute the optimal measurement in the unrestricted case is
again TΦ, which yields

DALL
α (Φ‖i(q)) = − log(q) . (5.49)

There then exists a finite gap to the locally-measured Rényi divergences.

Proposition 19. Let M = {LO, LOCC1, LOCC, SEP, PPT}, q ∈ [0, 1] and α > 0. With definitions
as above, we have

DM
α (Φ‖i(q)) = log

(

d + 1

qd + 1

)

. (5.50)

Proof. We apply the same proof strategy as for Proposition 18. First, observe that for q = 1 the
claim reduces to DM

α (Φ‖Φ) = 0 which trivially holds. Thus, we assume q 6= 1 in the following. Next,
observe that the local basis measurement L defined in the proof of Proposition 18 applied on a general
isotropic state i(q) yields the probability distribution

µL
i(q)(i, j) = qµL

Φ(i, j) + (1 − q)µL
Φ⊥(i, j) = q

δi,j

d
+

1 − q

d2 − 1

(

1 − δi,j

d

)

. (5.51)

By direct calculation, we then get the lower bound

Dα

(

µL
Φ

∥

∥

∥µL
i(q)

)

= − log

(

q +
1 − q

d + 1

)

= log

(

d + 1

qd + 1

)

. (5.52)

For the upper bound, we use the twirling technique to rewrite the variational bound into

maximize log c1 s.t. qc1 + (1 − q)c2 = 1 ∧ 0 < c1 ≤ (d + 1)c2 . (5.53)

The constraints can be recast into 0 < c1 ≤ d+1
qd+1 and this shows that the solution gives the matching

upper bound.

In Proposition 23 of App. B, we additionally prove a result for the most general case of testing ρ = i(p)
against σ = i(q).

5.2.2 Additivity on I.I.D. States

Up to now, we only discussed comparing single copies of isotropic states. In order to apply our results
to the problem of hypothesis testing, however, we need to consider the n-copy case as well. Here, the
dual variational characterization of DPPT

max (ρ‖σ) comes in handy and enables us to compute the i.i.d.
case in an elegant way. The following proposition states our result that the locally-measured Rényi
divergences are additive on tensor powers of ρ = Φ and σ = Φ⊥.

Proposition 20. Let M = {LO, LOCC1, LOCC, SEP, PPT} and α > 0. With definitions as above,
we have

DM
α

(

Φ⊗n

∥

∥

∥

∥

(

Φ⊥
)⊗n

)

= n log(d + 1) . (5.54)
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Proof. For the lower bound, we simply observe that measuring with the product POVM L⊗n, with L
defined as in the proof of Proposition 18, directly gives the desired lower bound n log(d + 1) on DLO

α .

For the upper bound, we use the dual characterization of DPPT
max . Note that any dual-feasible point

gives an upper bound on the primal problem. The point we pick is λ = (d + 1)n, X = 0 and

Y =
1

(d − 1)n

[

(

1AB − F

d

)⊗n

− (d − 1)n
(

F

d

)⊗n
]

, (5.55)

where F :=
∑

i,j |i〉〈j|A ⊗ |j〉〈i|B denotes the swap operator. The feasibility of λ and X is clear. We
have to check that Y is positive semi-definite and that the side constraint is satisfied.

For this, note that Y has eigenvalues

1

(d − 1)n

[(

1 ∓ 1

d

)n

− (d − 1)n
(±1

d

)n]

≥ 1

(d − 1)n

[(

1 − 1

d

)n

− (d − 1)n
(

1

d

)n]

= 0 , (5.56)

and thus Y is positive semi-definite. Further, observe that

Y Γ =
1

(d − 1)n

[

(1AB − Φ)⊗n − (d − 1)nΦ⊗n
]

(5.57)

= (d + 1)n
(

1AB − Φ

d2 − 1

)⊗n

− Φ⊗n = λ
(

Φ⊥
)⊗n

− Φ⊗n . (5.58)

Therefore, the point is indeed dual-feasible. With this, we obtain the matching upper bound.

We can generalize this proof technique to prove an additivity result for the locally-measured max-
divergence in the most general case ρ = i(p) and σ = i(q).

Proposition 21. Let M = {LO, LOCC1, LOCC, SEP, PPT}, p ∈ [0, 1] and q ∈ [0, 1]. With definitions
as above, we have

DM
max

(

i(p)⊗n
∥

∥i(q)⊗n) = n log

(

pd + 1

qd + 1

)

, (5.59)

provided one of the following conditions is satisfied:

1. p ≤ 1
d (separable), q ≤ 1

d (separable) and q ≤ p,

2. p ≥ 1
d (entangled), q ≤ 1

d (separable) and qp ≤ 1
d2 .

3. p ≥ 1
d (entangled), q ≥ 1

d (entangled) and p = q, i.e. they have to be equal.

Proof. For the lower bound, consider the tensor product measurement L⊗n as used in Proposition 20.
This gives the bound

DLO
max

(

i(p)⊗n
∥

∥i(q)⊗n) ≥ nDmax

(

µL
i(p)

∥

∥

∥µL
i(q)

)

= n log

(

pd + 1

qd + 1

)

(5.60)

where the final equality holds under the condition that q ≤ p.

For the upper bound, we use the dual characterization of DPPT
max from Corollary 14. We pick the dual

point given by

λ =

(

pd + 1

qd + 1

)n

, X = 0, Y Γ = λi(q)⊗n − i(p)⊗n . (5.61)
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We have to show that Y is positive semi-definite in order to prove that this is indeed dual-feasible.
For this, note that we have

Y =
1

dn(d2 − 1)n

(

λ
(

(1 − q)d1H + (d2q − 1)F
)⊗n

−
(

(1 − p)d1H + (d2p − 1)F
)⊗n

)

(5.62)

The eigenvalues of Y are given by

λ

dn

(1 + qd)k

(d + 1)k

(1 − qd)n−k

(d − 1)n−k
− 1

dn

(1 + pd)k

(d + 1)k

(1 − pd)n−k

(d − 1)n−k
for 0 ≤ k ≤ n . (5.63)

The non-negativity requirement of the eigenvalues for 0 ≤ k ≤ n translates into
(

pd + 1

qd + 1

)n−k

(1 − qd)n−k ≥ (1 − pd)n−k . (5.64)

We then have the following cases:

1. If p ≤ 1
d and q ≤ 1

d , these conditions are satisfied if q ≤ p.

2. If p ≥ 1
d and q ≤ 1

d , they reduce to the requirement that pq ≤ 1
d2 .

3. If p ≥ 1
d and q ≥ 1

d , they only hold in the case p = q.

Hence, under the conditions stated in the proposition, we have by weak duality that

DPPT
max

(

i(p)⊗n
∥

∥i(q)⊗n) ≤ n log λ = n log

(

pd + 1

qd + 1

)

, (5.65)

which gives the matching upper bound and completes the proof.

We remark that it is possible to adapt an idea in the proof of [45, Proposition 7] to extend the twirling
technique we use in App. B to compute the primal programs for general orders α and general single-
letter isotropic states to the n-copy case. This offers a potential route to investigate the additivity of
the locally-measured Rényi divergences on isotropic states when the single-letter characterization is
α-dependent. Note, however, that this has the caveat that the variational bounds do not necessarily
give tight bounds in the general case — as we show in App. B.

5.2.3 Application to Hypothesis Testing

Building on our work in Sec. 5.1, we can use these results to generalize a result of Cheng et. al.
in [45, Corollary 11]. There they computed the optimal Stein’s exponent for testing the maximally
entangled state versus its orthogonal complement

ζM
Stein

(

Φ, Φ⊥; ε
)

= log(d + 1) . (5.66)

The additivity result of Proposition 20 then allows us to re-derive this hypothesis testing result in a
simple manner since the regularized measured relative entropy becomes single-letter for ρ = Φ, σ = Φ⊥

and the strong converse part becomes tight. Moreover, combining the results of Propositions 19 and
21 allows us to extend this result to

ζM
Stein (Φ, i(q); ε) = log

(

d + 1

qd + 1

)

if q ≤ 1

d2
. (5.67)

Along similar lines, we can generalize the result of Cheng et. al. for q = 0 of the strong converse
exponent [45, Corollary 13]. We obtain

ζM
SC (Φ, i(q); r) = r − log

(

d + 1

qd + 1

)

if q ≤ 1

d2
(5.68)

for all rates r ≥ log
(

d+1
qd+1

)

.
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6 Outlook

We left open the problem of the Chernoff and Hoeffding exponents for the restricted hypothesis
testing problem on data-hiding states (cf. again the results in [45, Table 1]). Here, we already have
an achievability result in terms of the regularized measured Rényi divergences but the converse part
remains open. In that respect, Brandao et. al. offered in [24, Conjecture 17] a possible expression
for the Chernoff exponent under restricted measurements. This is a rather subtle point though since
in the unrestricted case, we know that the regularized measured Rényi divergence does not give the
optimal error exponent.

Another possible research direction is to investigate further operational uses of the measured Rényi
divergence in quantum information theory, e.g. , in the direction of [46]. On the technical side, it would
be interesting if an exact variational characterization can be obtained for the measurement classes SEP
and PPT for general orders α and especially for the special case α = 1. Moreover, one could consider
measured versions of other divergences, a possible example being the Hilbert α-divergences [47] (see
also [48]).
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A Infinite-Dimensional Extension

Here, we generalize Theorem 6 to the infinite-dimensional case. This result can be seen as a general-
ization of [50, Lemma 20], which discussed the special case α = 1 and M = ALL, and was helpful for
studying continuous variable resource theories.

First, we need to introduce some notation. Consider a separable Hilbert space H, and quantum density
operators ρ, σ on H. A positive operator-valued measure (POVM) M over a finite set Z is a map from
Z to P which satisfies

∑

z∈Z Mz = 1H. For a given ρ ∈ P, the POVM induces a positive measure µM
ρ

over Z according to the Born rule: µM
ρ (z) = tr[ρMz]. With this, the measured Rényi divergences can

be defined as in the finite-dimensional case. Moreover, let

CM :=

{

ω : ω =
∑

z∈Z

λzMz, λz ≥ 0, ∀ z ∈ Z, M ∈ M
}

(A.1)

be the cone of positive definite operators corresponding to M. Note that CM is a subset of the space
of bounded positive definite operators on H.

Theorem 22. For ρ ∈ S, σ ∈ S and M ⊆ ALL, we have
1) for α ∈ (0, 1/2) that

QM
α (ρ‖σ) ≥ inf

ω>0
ω∈CM

α tr[ρω] + (1 − α) tr
[

σω
α

α−1

]

= inf
ω>0

ω∈CM

tr[ρω]α tr
[

σω
α

α−1

]1−α
, (A.2)

2) for α ∈ [1/2, 1) that

QM
α (ρ‖σ) ≥ inf

ω>0
ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] = inf
ω>0

ω∈CM

tr
[

ρω
α−1

α

]α
tr[σω]1−α , (A.3)

and 3) for α ∈ (1, ∞) that

QM
α (ρ‖σ) ≤ sup

ω>0
ω∈CM

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] = sup
ω>0

ω∈CM

tr
[

ρω
α−1

α

]α
tr[σω]1−α . (A.4)

If M = ALL, we have equality in the above.

Proof. Note that any POVM M = {Mz}z∈Z ∈ M has |Z| finite by definition. Hence, the proof of
the inequalities above follows via analogous steps to the finite dimensional case using the operator
Jensen’s inequality. Moreover, the equalities between the two variational expressions also follow by
the same arguments. Hence, we only need to show the reverse inequality when M = ALL, i.e.,
1) for α ∈ (0, 1/2):

QALL
α (ρ‖σ) ≤ inf

ω>0
ω∈CALL

α tr[ρω] + (1 − α) tr
[

σω
α

α−1

]

, (A.5)

2) for α ∈ [1/2, 1):

QALL
α (ρ‖σ) ≤ inf

ω>0
ω∈CALL

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω], (A.6)

and 3) for α ∈ (1, ∞):

QALL
α (ρ‖σ) ≥ sup

ω>0
ω∈CALL

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω]. (A.7)
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We first show (A.7). Note that if ρ 6≪ σ, then there exists a projector Pi such that tr[ρPi] > 0 and
tr[σPi] = 0. Hence, QALL

α (ρ‖σ) = +∞ and there is nothing to prove. Hence, assume that ρ ≪ σ.
We will first show that the supremum in (A.7) can be restricted to be over finite rank operators in
CALL without changing the value of the supremum. Consider any ω ∈ CALL. Since ω is a bounded
operator, there exists m > 0 such that ω ≤ m1H. Since ρ and σ are density operators, for any ǫ > 0,
there exists a finite rank projector Pǫ such that ‖PǫρPǫ − ρ‖1 ≤ ǫ and ‖PǫσPǫ − σ‖1 ≤ ǫ. Then, we
have

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] ≤ α tr
[

PǫρPǫω
α−1

α

]

+ (1 − α) tr[PǫρPǫω] + mǫ

≤ α tr

[

ρ
(

PǫωPǫ
)

α−1
α

]

+ (1 − α) tr[σPǫωPǫ] + mǫ,

where the final inequality follows by operator Jensen’s inequality applied to the concave map x 7→
x(α−1)/α for α > 1. Since ǫ > 0 is arbitrary, the claim follows.

Now consider any ω ∈ CALL of finite rank, and let ω =
∑r

i=1 λiPi be its spectral decomposition. Then,
we have

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] =
r
∑

i=1

αλ
α−1

α

i tr[ρPi] + (1 − α)λi tr[σPi] (A.8)

Consider the supremum of each term in the summation in the RHS over λi. When tr[σPi] = tr[ρPi] = 0,
λi can be chosen arbitrarily and the supremum is zero. When tr[ρPi] = 0 and tr[σPi] > 0, the
supremum is 0 since 1 − α < 0 (approached as λi ↓ 0). For i such that tr[σPi] > 0 and tr[ρPi] > 0,
the supremum is achieved at λi = (tr[ρPi]/ tr[σPi])

α. From this, we obtain

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] =
r
∑

i=1

αλ
α−1

α

i tr[ρPi] + (1 − α)λi tr[σPi] (A.9)

≤
∑

i

(tr[ρPi])
α(tr[σPi])

1−α (A.10)

≤ sup
M∈ALL

Qα

(

µM
ρ

∥

∥

∥µM
σ

)

, (A.11)

where the sum in the penultimate equation is over all indices i such that tr[σPi] > 0 and tr[ρPi] > 0.
Taking supremum over all ω ∈ CALL with finite rank then proves the claim for α ∈ (1, ∞).

The proof of (A.5) and (A.6) are similar. Hence, we only show the former. Note that for α ∈ (0, 1)

and ω > 0, both the terms α tr[ρω] and (1 − α) tr
[

σω
α

α−1

]

are non-negative. Fix an arbitrary

ǫ > 0. Considering the spectral decomposition ω =
∑∞

i=1 λiPi, choose a finite rank projector
Pǫ =

∑

i Pi of rank r constructed from the projectors in the spectral decomposition of ω such that
(tr[ρ(1H − Pǫ)ρ]α(tr[σ(1H − Pǫ)])

1−α ≤ ǫ. Then, we have

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] =
∞
∑

i=1

αλ
α−1

α

i tr[ρPi] + (1 − α)λi tr[σPi] (A.12)

≥
r
∑

i=1

αλ
α−1

α

i tr[ρPi] + (1 − α)λi tr[σPi], (A.13)

where the inequality follows since the omitted terms are positive. For a fixed i, the infimum over λi

37



for each term within the sum is achieved at λi = (tr[ρPi]/ tr[σPi])
α. Substituting this yields that

α tr
[

ρω
α−1

α

]

+ (1 − α) tr[σω] (A.14)

≥
r
∑

i=1

(tr[ρPi])
α(tr[σPi])

1−α (A.15)

≥
r
∑

i=1

(tr[ρPi])
α(tr[σPi])

1−α + (tr[ρ(1H − Pǫ)ρ]α(tr[σ(1H − Pǫ)])
1−α − ǫ

≥ inf
M∈ALL

Qα

(

µM
ρ

∥

∥

∥µM
σ

)

− ǫ.

Taking infimum over ω ∈ CALL and noting that ǫ > 0 is arbitrary completes the proof of the claim.

Moreover, it would be neat to extend the concept of measured Rényi divergences to general, continuous
POVMs described by measure spaces. Many of the steps in the proof of Theorem 22 still go through
and we would like to point to a Jensen inequality for operator-valued measures [51]. It seems, however,
that an extension of this inequality would be needed [52].

B Variational Bounds for Isotropic States

Recalling our discussion in Sec. 4.2, we argued that in general the variational bounds do not give tight
bounds. In fact, as we show in the following, we can find parameters p and q such that testing the
isotropic states ρ = i(p) and σ = i(q) yields bounds that are not tight (see Sec. 5.2 for definitions).

In order to make this argument we have to compute the locally-measured Rényi divergence via a
different strategy then in Sec. 5.2.1. Let us first consider the case of unrestricted measurements. Since
the states commute, the optimal measurement is the measurement in the eigenbasis, i.e. the test TΦ

as defined above. This gives for α ∈ (0, 1) ∪ (1, ∞) the result

DALL
α

(

i(p)
∥

∥i(q)
)

=
1

α − 1
log
(

pαq1−α + (1 − p)α(1 − q)1−α
)

(B.1)

with the limiting cases

DALL (
i(p)

∥

∥i(q)
)

= p log

(

p

q

)

+ (1 − p) log

(

1 − p

1 − q

)

(B.2)

and

DALL
max

(

i(p)
∥

∥i(q)
)

= log max

{

p

q
,

1 − p

1 − q

}

. (B.3)

For the locality-constrained measurement classes, we adapt the proof strategy of [43, Proposition 4]
to obtain the optimal measurement for the set PPT. The proof is then completed by the observation
that the local basis measurement achieves the same Rényi divergence. That is, as in the special cases
discussed above, the locality-constrained measurement sets all perform equally well on isotropic states.

Proposition 23. Let M = {LO, LOCC1, LOCC, SEP, PPT}, p ∈ [0, 1], q ∈ [0, 1] and α ∈ (0, 1) ∪
(1, +∞). With the definitions as above, we have

QM
α

(

i(p)
∥

∥i(q)
)

=
d

d + 1

[

(

p +
1

d

)α (

q +
1

d

)1−α

+ (1 − p)α(1 − q)1−α

]

. (B.4)

Additionally, we have the limiting cases

DM (

i(p)
∥

∥i(q)
)

=
d

d + 1

[(

p +
1

d

)

log

(

1 + pd

1 + qd

)

+ (1 − p) log

(

1 − p

1 − q

)]

(B.5)

DM
max

(

i(p)
∥

∥i(q)
)

= log max

{

1 + pd

1 + qd
,
1 − p

1 − q

}

. (B.6)
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Proof. The claim for the measured relative entropy was originally proven in [44, Lemma 24] using the
proof strategy of [43, Proposition 4]. We adapt the proof idea to the general α-orders.

We can compute QPPT
α

(

i(p)
∥

∥i(q)
)

exactly by taking advantage of symmetry. We start with the case
α ∈ (1, +∞). Since we have tr[i(p)M ] = tr[i(p)I(M)] for any M ∈ P, we can restrict the optimization
over POVMs w.l.o.g. to isotropic PPT measurements. Moreover, an arbitrary isotropic PPT operator
can be decomposed into a conic combination of the extremal PPT operators

I1 = Φ +
1

d + 1
Φ⊥ and I2 =

d

d + 1
Φ⊥ . (B.7)

Due to the joint-convexity of QPPT
α , we can fine-grain each of the POVMs into operators proportional

to the extremal ones and then join them back together into a binary measurement by using that

(ax)α(ay)1−α + (bx)α(by)1−α =
(

(a + b)x
)α(

(a + b)y
)1−α

. (B.8)

The optimal measurement is thus seen to be the binary measurement I := {I1, I2}. The induced
probability distribution of this binary measurement on an arbitrary isotropic state is given by

µI
i(p) =

{

p +
1 − p

d + 1
,

d

d + 1
(1 − p)

}

(B.9)

which then yields

Qα

(

µI
i(p)

∥

∥

∥µI
i(q)

)

=

(

p +
1 − p

d + 1

)α (

q +
1 − q

d + 1

)1−α

+
d

d + 1
(1 − p)α (1 − q)1−α (B.10)

=
d

d + 1

[

(

p +
1

d

)α (

q +
1

d

)1−α

+ (1 − p)α(1 − q)1−α

]

. (B.11)

The case α ∈ (0, 1) can be proven analogously by using the joint concavity of QPPT
α . Then, we have

by Property 3 of Lemma 2 that

DPPT (
i(p)

∥

∥i(q)
)

= sup
α∈(0,1)

Dα

(

µI
i(p)

∥

∥

∥µI
i(q)

)

= D
(

µI
i(p)

∥

∥

∥µI
i(q)

)

(B.12)

and
DPPT

max

(

i(p)
∥

∥i(q)
)

= sup
α∈(1,∞)

Dα

(

µI
i(p)

∥

∥

∥µI
i(q)

)

= Dmax

(

µI
i(p)

∥

∥

∥µI
i(q)

)

, (B.13)

where the final equalities follow by the continuity of the classical quantity.

The proof is completed by observing that the local basis measurement L defined as L(i,j) := |i〉〈i|A ⊗
|j〉〈j|B achieves the same Dα. The d2 probabilities µL

i(p)(i, j) can be grouped naturally into two classes.
If i = j, we compute

d
∑

k=1

(

p

d
+

1 − p

d(d + 1)

)α (q

d
+

1 − q

d(d + 1)

)1−α

=

(

p +
1 − p

d + 1

)α (

q +
1 − q

d + 1

)1−α

(B.14)

and else we have

d2−d
∑

k=1

(

1 − p

d2 − 1

)α ( 1 − q

d2 − 1

)1−α

=
d

d + 1
(1 − p)α(1 − q)1−α . (B.15)

Combining these results, we get

QLO
α

(

i(p)
∥

∥i(q)
) ≥ Qα

(

µL
i(p)

∥

∥

∥µL
i(q)

)

= Qα

(

µI
i(p)

∥

∥

∥µI
i(q)

)

. (B.16)

This concludes the proof.

We are now in the position to show that the variational bounds on the locally-measured Rényi diver-
gences are not tight for the orders α ∈ (0, +∞) on general isotropic states. We develop this argument
in the following four propositions by providing explicit counterexamples for each range of orders α.
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B.1 Example for α ∈ (0, 1/2)

Proposition 24. Let M := {SEP, PPT}, q ∈ [0, 1] and α ∈ (0, 1/2). With definitions as above, we
have

V M
α (Φ, i(q)) = DALL

α (Φ‖i(q)) (B.17)

Consequently, for q ∈ [0, 1) the gap between the measured Rényi divergence and the variational bound
is strict, i.e.

DM
α (Φ‖i(q)) < V M

α (Φ, i(q)) . (B.18)

Proof. Since the objective function ηα is scaling invariant in ω, we have the relation

exp
(

−V M
α (Φ, i(q))

)

= inf
ω>0

{

tr
[

i(q)ω
α

α−1

] ∣

∣

∣ tr[Φω] = 1 ∧ ω ∈ CM

}

. (B.19)

We show now that we can restrict w.l.o.g. to an optimization over isotropic operators ω ∈ CM. For
this, note that for any feasible ω ∈ CM, I(ω) is a feasible point as well since tr[Φω] = tr[ΦI(ω)] and
I(ω) ∈ CM.15 Moreover, the objective value corresponding to I(ω) is always smaller due to

tr
[

i(q)ω
α

α−1

]

= tr
[

i(q)I
(

ω
α

α−1

)]

≥ tr
[

i(q)I(ω)
α

α−1

]

, (B.20)

where the inequality step follows by operator convexity of f(t) := t
α

α−1 for α ∈ (0, 1/2) [31, Section
V] together with the Jensen inequality [51].

Since isotropic operators are separable if and only if they have PPT, the program we have to evaluate
in each case is given by

minimize q + (1 − q)c
α

α−1

2 s.t. c2 ≥ 1

d + 1
(B.21)

Notice that the objective function is monotone decreasing on c2 ∈ (0, ∞) and thus its minimal value
is given by q. We then conclude with Eq. (B.1) that V M

α (Φ, i(q)) = DALL
α (Φ, i(q)).

Lastly, we have with Proposition 23 for q ∈ [0, 1) that

DM
α (Φ‖i(q)) = log

(

d + 1

qd + 1

)

< − log q = V M
α (Φ, i(q)) . (B.22)

B.2 Example for α ∈ [1/2, 1)

Proposition 25. Let M := {SEP, PPT}, p ∈ [0, 1] and α ∈ [1/2, 1). With definitions as above, we
have

V M
α (i(p), Φ) = DALL

α (i(p)‖Φ) (B.23)

Therefore, for p ∈ [0, 1), the gap between the measured Rényi divergence and the variational bound is
strict, i.e.

DM
α (i(p)‖Φ) < V M

α (i(p), Φ) . (B.24)

Proof. By scaling invariance, the variational bound is given by

exp
(

−V M
α (i(p), Φ)

)

= inf
ω>0

{

tr
[

i(p)ω
α−1

α

] ∣

∣

∣ tr[Φω] = 1 ∧ ω ∈ CM

}

. (B.25)

15This follows from local unitary invariance and convexity of the respective cones.
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By an analogous argument as in the proof for Proposition 24, we can restrict w.l.o.g. to isotropic
operators I(ω) since for any ω ∈ CM, we have

tr
[

i(p)ω
α

α−1

]

= tr
[

i(p)I
(

ω
α−1

α

)]

≥ tr
[

i(p)I(ω)
α−1

α

]

(B.26)

due to the operator convexity of the function f(t) := t
α−1

α [31, Section V]. The resulting program is

minimize p + (1 − p)c
α

α−1

2 s.t. c2 ≥ 1

d + 1
. (B.27)

Its minimal value is p and comparing with Eq. (B.1) we thus have V M
α (i(p), Φ) = DALL

α (i(p), Φ).

Lastly, by Proposition 23 we have for p < 1 that

DM
α (i(p), Φ) =

α

α − 1
log

(

pd + 1

d + 1

)

<
α

α − 1
log p = DALL

α (i(p), Φ) . (B.28)

B.3 Example for α = 1

Proposition 26. Let M := {SEP, PPT}, p ∈ [0, 1] and q ∈ [0, 1]. With definitions as above, we have

V M
1 (i(p), i(q)) = DALL

1 (i(p)‖i(q)) (B.29)

if the coefficients satisfy the constraint

q ≥ p

d + 1 − pd
. (B.30)

The gap between the measured Rényi divergence and the variational bound is then strict for p ∈ [0, 1)
and q as in Eq. (B.30), i.e. we have

DM
1 (i(p)‖i(q)) < V M

1 (i(p), i(q)) . (B.31)

Proof. The variational bound is given by

V M
1 (i(p), i(q)) = sup

ω>0

{

tr[i(p) log ω]

∣

∣

∣

∣

tr[i(q)ω] = 1 ∧ ω ∈ CM

}

. (B.32)

As in the proofs above, we can restrict to an optimization over isotropic operators since

tr[i(p) log ω] = tr[i(p)I (log ω)] ≤ tr[i(p) log I(ω)] (B.33)

by the operator concavity of f(t) := log t [31, Section V]. We then have to solve the following program

maximize p log c1 + (1 − p) log c2 s.t. qc1 + (1 − q)c2 = 1 ∧ 0 < c1 ≤ (d + 1)c2 . (B.34)

Its easy to see that if q = 1, the optimal value is given by +∞. Assuming q 6= 1, we can rewrite the
constraints into

c2 =
1 − c1q

1 − q
and 0 < c1 ≤ d + 1

qd + 1
. (B.35)

The objective function is then

p log c1 + (1 − p) log(1 − c1q) − (1 − p) log(1 − q) . (B.36)
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By the derivative test, we obtain the optimal point of the unconstrained problem as c⋆
1 = p

q . This is
also the optimal point of the constrained problem if

p

q
≤ d + 1

qd + 1
which is satisfied if q ≥ p

d + 1 − pd
. (B.37)

Comparing with Eq. (B.2), we obtain the claimed equality V M
1 (i(p), i(q)) = DALL

1 (i(p)‖i(q)).

Finally, note that with D(x‖y) := x(log x − log y) for x, y ∈ R, we have

D

(

p +
1 − p

d + 1

∥

∥

∥

∥

q +
1 − q

d + 1

)

= D

(

1

d + 1
+ p

d

d + 1

∥

∥

∥

∥

1

d + 1
+ q

d

d + 1

)

≤ d

d + 1
D(p‖q) (B.38)

by the joint convexity of D(x‖y) in the pair (x, y) and D(1‖1) = 0. This shows that

DM
1 (i(p)‖i(q)) ≤ d

d + 1
V M

1 (i(p), i(q)) < V M
1 (i(p), i(q)) . (B.39)

B.4 Example for α ∈ (1, +∞)

Proposition 27. Let M := {SEP, PPT}, p ∈ [0, 1], q ∈ [0, 1] and α ∈ (1, +∞). With definitions as
above, we have

V M
α (i(p), i(q)) = DALL

α (i(p), i(q)) (B.40)

if the coefficients satisfy

q ≥ p

(d + 1)
1
α − p

(

(d + 1)
1
α − 1

) (B.41)

So for p ∈ (0, 1), we have a finite gap

DM
α (i(p)‖i(q)) < V M

α (i(p), i(q)) . (B.42)

Proof. The variational bound is given by

exp
(

−V M
α (i(p), i(q))

)

= sup
ω>0

{

tr
[

i(p)ω
α−1

α

] ∣

∣

∣ tr[i(q)ω] = 1 ∧ ω ∈ CM

}

(B.43)

Using the operator concavity of f(t) := t
α−1

α for α ∈ (1, ∞) [31, Section V], we can conclude as above
that the we can restrict w.l.o.g. to an optimization over isotropic operators. We then have to solve
the following program

maximize pc
α−1

α

1 + (1 − p)c
α−1

α

2 s.t. qc1 + (1 − q)c2 = 1 ∧ 0 < c1 ≤ (d + 1)c2 . (B.44)

If q = 1 it is easy to verify that the optimal value is +∞. Otherwise, we can recast the constraints
into

c2 =
1 − c1q

1 − q
and 0 < c1 ≤ d + 1

qd + 1
(B.45)

and the objective function then reads

pc
α−1

α

1 + (1 − p)(1 − q)
1−α

α (1 − c1q)
α−1

α . (B.46)
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By the derivative test, the optimal point of the unconstrained problem is given by

c⋆
1 =

1

q +
(

q
p

)α
(1 − p)α(1 − q)1−α

(B.47)

which is the optimal point of the constrained problem if the coefficients satisfy

(

q

p

)α

(1 − p)α(1 − q)1−α ≥ 1 − q

d + 1
, (B.48)

which we can reformulate as
q ≥ p

(d + 1)
1
α − p

(

(d + 1)
1
α − 1

) . (B.49)

Under this constraint, we get the claimed equality V M
α (i(p), i(q)) = DALL

α (i(p)‖i(q)) by comparing
with Eq. (B.1).

Lastly, we have that

(

p +
1 − p

d + 1

)α (

q +
1 − q

d + 1

)1−α

=

(

1

d + 1
+ p

d

d + 1

)α ( 1

d + 1
+ q

d

d + 1

)1−α

(B.50)

≤ 1

d + 1
+

d

d + 1
pαq1−α (B.51)

by the joint convexity of xαy1−α in the pair (x, y). The inequality is strict if p 6= q. Finally, using the
quasi-convexity of the function f(t) := 1

α−1 log t we get

DM
α (i(p)‖i(q)) < V M

α (i(p), i(q)) . (B.52)

C Werner States

The second family of highly symmetric states we consider are the Werner states [53]. These are defined
by their invariance under conjugation with unitaries of the form U ⊗U . As for isotropic states, a single
parameter p ∈ [0, 1] suffices to characterize them completely. A general Werner states is given by

w(p) := pΘ + (1 − p)Θ⊥ , (C.1)

where Θ is the completely symmetric and Θ⊥ the completely anti-symmetric state. These states are
defined as

Θ :=
1AB + F

d(d + 1)
and Θ⊥ :=

1AB − F

d(d − 1)
(C.2)

with the swap operator F :=
∑

i,j |i〉〈j|A ⊗|j〉〈i|B . It is well-known that the Werner states are separable
and have PPT for p ∈ [1/2, 1] and otherwise are entangled [53]. This class of states was studied
previously in the context of local distinguishability e.g. in [3, 45,54].

C.1 Local Distinguishability

We start with the case ρ = Θ⊥ and σ = Θ. Similar to testing the extremal isotropic states against each

other, these are perfectly distinguishable if we allow all measurements, i.e. DALL
α

(

Θ⊥
∥

∥

∥Θ
)

= +∞ for

all orders of α > 0. Their distinguishability under local measurements, however, is strongly reduced.
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Proposition 28. Let M = {LO, LOCC1, LOCC, SEP, PPT} and α > 0. With definitions as above,
we have

DM
α

(

Θ⊥
∥

∥

∥Θ
)

= log

(

d + 1

d − 1

)

. (C.3)

Proof. We prove the claim with the proof strategy used for Proposition 18.

The lower bound on DLO
α using the local basis measurement L(i,j) = |i〉〈i|A ⊗ |j〉〈j|B yields the proba-

bility distributions

µL
Θ =

1 + δi,j

d(d + 1)
and µL

Θ⊥ =
1 − δi,j

d(d + 1)
(C.4)

with which we immediately get the desired lower bound.

For the upper bound, we focus on the case α = ∞ due to the monotonicity in α. Here, we have to
evaluate the optimization problem

DPPT
max

(

Θ⊥
∥

∥

∥Θ
)

= sup
ω>0

{

log tr
[

Θ⊥ω
] ∣

∣

∣ tr[Θω] = 1 ∧ ωΓ ≥ 0
}

. (C.5)

As before, we can take advantage of the symmetry inherent to the Wener states. For this, we use that
tr[w(p)ω] = tr[w(p)T (ω)] holds for any ω ∈ P, where T denotes the twirling channel. Its action on a
linear operator XAB is given by

T (XAB) =

∫

U(d)
(U ⊗ U) XAB (U ⊗ U)† dµH(U) . (C.6)

Since the channel T preserves the PPT property of ω, we can thus restrict the optimization w.l.o.g.
to PPT Werner operators. These are characterized completely by two scalar coefficients by

T (ω) = c1
1AB + F

2
+ c2

1AB − F

2
. (C.7)

The PPT condition translates into the constraint c2(d − 1) ≤ c1(d + 1). As a result of the twirling
technique, we are left to evaluate the following optimization problem

maximize log c2 s.t. c1 = 1 ∧ 0 < c2 ≤ d + 1

d − 1
c1 . (C.8)

Its solution is log
(

d+1
d−1

)

which completes the proof.

Notice that when testing the extremal isotropic operators, the local measurement sets were able to
perform better for larger system dimensions. This is not the case when testing the extremal Werner
states against each other. Here, we can see that as d → ∞ the distinguishing power, as quantified by
the measured Rényi divergence, decreases to zero.

We can generalize our proof to the case ρ = Θ⊥ and σ = w(q).

Proposition 29. Let M = {LO, LOCC1, LOCC, SEP, PPT}, q ∈ [0, 1] and α > 0. With definitions
as above, we have

DM
α

(

Θ⊥
∥

∥

∥w(q)
)

= log

(

d + 1

d + 1 − 2q

)

. (C.9)

Proof. For q = 0, the claim holds trivially so we assume in the following q 6= 0. Then, we can show
the lower bound by applying the same arguments as in the proof of Proposition 28. For the upper
bound, we simplify the variational upper bound

DPPT
max

(

Θ⊥
∥

∥

∥w(q)
)

= sup
ω>0

{

log tr
[

Θ⊥ω
] ∣

∣

∣ tr[w(q)ω] = 1 ∧ ωΓ ≥ 0
}

(C.10)
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via the twirling technique. This enables us to rewrite this program as follows

maximize log c2 s.t. c1q + (1 − q)c2 = 1 ∧ 0 < c2 ≤ d + 1

d − 1
c1 . (C.11)

The constraints can be rephrased into

0 < c2 ≤ d + 1

d + 1 − 2q
, (C.12)

which shows that Eq. (C.11) gives the matching upper bound.

C.2 Additivity on I.I.D. States

As we want to solve the hypothesis testing problem, we additionally need to consider the i.i.d. be-
haviour for these states. For this, we may take advantage of the dual characterization of DPPT

max . The
locally-measured Rényi divergences are additive on tensor powers of ρ = Θ⊥ and σ = Θ.

Proposition 30. Let M = {LO, LOCC1, LOCC, SEP, PPT} and α > 0. With definitions as above,
we have

DM
α

(

(

Θ⊥
)⊗n

∥

∥

∥

∥

Θ⊗n
)

= n log

(

d + 1

d − 1

)

. (C.13)

Proof. We use the same proof strategy as for Proposition 20.

For the lower bound, we just note that the product POVM L⊗n, where L is defined as in the proof of
Proposition 28, achieves the given value.

For the upper bound, we use the dual characterization of DPPT
max . For this example, we pick the

dual-feasible point

λ =

(

d + 1

d − 1

)n

, X = 0, Y =
1

dn(d − 1)n

[

(1AB + dΦ)⊗n − (1AB − dΦ)⊗n
]

(C.14)

to obtain the matching upper bound. The feasibility of λ and X is clear. Moreover, observe that Y
has eigenvalues

1

dn(d − 1)n

[

(1 + d)k − (1 − d)k
]

≥ 0 for 0 ≤ k ≤ n (C.15)

and thus Y is positive semi-definite. Lastly, we have that

Y Γ =
1

dn(d − 1)n

[

(1AB + F )⊗n − (1AB − F )⊗n
]

(C.16)

=

(

d + 1

d − 1

)n (1AB + F

d(d + 1)

)⊗n

−
(

1AB − F

d(d − 1)

)⊗n

= λΘ⊗n − (Θ⊥)⊗n . (C.17)

Therefore, this point is indeed dual feasible and the proof is complete.

We can generalize this proof technique to investigate the additivity properties of the locally-measured
max-divergence for the general case ρ = w(p) and σ = w(q).

Proposition 31. Let M = {LO, LOCC1, LOCC, SEP, PPT}, p ∈ [0, 1] and q ∈ [0, 1]. With definitions
as above, we have

DM
max

(

w(p)⊗n
∥

∥w(q)⊗n) = n log

(

d + 1 − 2p

d + 1 − 2q

)

, (C.18)

provided one of the following conditions
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1. p ≥ 1
2 (separable), q ≥ 1

2 (separable), and p ≤ q

2. p ≤ 1
2 (entangled), q ≥ 1

2 (separable), and (2p − 1)(2q − 1) ≤ d(p + q − 1)

3. p ≤ 1
2 (entangled), q ≤ 1

2 (entangled), and p = q, i.e. they have to be equal.

Proof. The proof works similar to that of Proposition 21.

For the lower bound, we consider the tensor product measurement L⊗n as used in Proposition 30.
This gives the bound

DLO
max

(

w(p)⊗n
∥

∥w(q)⊗n) ≥ nDmax

(

µL
w(p)

∥

∥

∥µL
w(q)

)

= n log

(

d + 1 − 2p

d + 1 − 2q

)

, (C.19)

where the final equality holds under the condition that p ≤ q.

For the upper bound, we use the dual characterization of DPPT
max from Corollary 14. We pick the dual

point is given by

λ =

(

d + 1 − 2p

d + 1 − 2q

)n

, X = 0, Y Γ = λw(q)⊗n − w(p)⊗n . (C.20)

Let us investigate when Y is positive semi-definite. For this, note that we have

Y = λ

(

(d + 1 − 2q)1H + (2qd − (d + 1))dΦ

d(d2 − 1)

)⊗n

−
(

(d + 1 − 2p)1H + (2pd − (d + 1))dΦ

d(d2 − 1)

)⊗n

(C.21)

The eigenvalues of Y are of the form

1

dn(d2 − 1)n−k

(

λ(2q − 1)k(d + 1 − 2q)n−k − (2p − 1)k(d + 1 − 2p)n−k
)

with 0 ≤ k ≤ n . (C.22)

The requirement of non-negativity then translates into
(

d + 1 − 2p

d + 1 − 2q

)k

(2q − 1)k ≥ (2p − 1)k for 0 ≤ k ≤ n (C.23)

We have the following cases:

1. If p ≥ 1
2 and q ≥ 1

2 , these conditions are satisfied if p ≤ q.

2. If p ≤ 1
2 and q ≥ 1

2 , they reduce to the requirement that (2p − 1)(2q − 1) ≤ d(p + q − 1)

3. If p ≤ 1
2 and q ≤ 1

2 , they only hold in the trivial case p = q.

Hence, under the conditions given in the proposition we have by weak duality that

DPPT
max

(

w(p)⊗n
∥

∥w(q)⊗n) ≤ n log λ = n log

(

d + 1 − 2p

d + 1 − 2q

)

, (C.24)

which gives the matching upper bound and completes the proof.

C.3 Application to Hypothesis Testing

Combining the results of Propositions 29 and 31 then allows us to extend results for the extremal
Werner states obtained in [54] (see also [45, Table 1]). Namely, we have by similar arguments as for
the isotropic states that

ζM
Stein

(

Θ⊥,w(q); ε
)

= log

(

d + 1

d + 1 − 2q

)

if q ≥ d + 1

d + 2
(C.25)

and

ζM
SC

(

Θ⊥,w(q); ε
)

= r − log

(

d + 1

d + 1 − 2q

)

if q ≥ d + 1

d + 2
(C.26)

for all r ≥ log
(

d+1
d+1−2q

)

.
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