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We investigate how quantum information, encoded in a quantum field, evolves during the ex-
pansion of spacetime. Due to information loss across the horizon, a local observer experiences
this evolution as a nonunitary quantum channel. We obtain this channel in the case of de Sitter
spacetime by assuming the initial global state encodes a signal state via fluctuations of the Bunch-
Davies vacuum. Notably, de Sitter evolution exhibits intriguing cloning properties, establishing a
connection between the curvature of spacetime and the propagation of quantum information.

I. INTRODUCTION

Cosmological observations currently favor the hypoth-
esis that we live in an asymptotically de Sitter (dS) uni-
verse [1–4], implying that it will approach a state of ac-
celerated expansion for late times. Thus, it is crucial to
understand the properties of dS in the context of quan-
tum gravity. This presents significant challenges because
the boundaries of dS are located at timelike infinity so to
understand the quantum evolution of fields in dS there
are still many mysteries to be understood [5–13].

The quantum nature of de Sitter has received growing
attention in recent years, with new input from quantum
information theory and tensor networks in the context of
the AdS/CFT correspondence [14–20]. Here, toy models
[21–24] have provided fertile ground for new ideas lead-
ing to the hypothesis that time evolution for expand-
ing spacetimes is isometric and nonunitary [25, 26]. The
physical justification for this hypothesis arises from the
belief that there are no degrees of freedom localized on
lengthscales smaller than the Planck length, so the di-
mension of Hilbert space in an expanding spacetime in-
creases with time [27]. It is now an intriguing question
to study how quantum information is created and prop-
agates in such a setting.

Here, we investigate the nonunitary evolution of a
quantum state as spacetime expands. In particular, we
consider the proposal that, as spacetime expands, pre-
existing quantum information is redundantly “copied”
into emerging degrees of freedom. While the no-cloning
theorem [28] forbids the copying of unknown quantum
states, it is possible to approximately clone quantum in-
formation, and there is extensive literature on such opti-
mal cloning channels [29–33]. In the context of quantum
fields in dS, we discover that, indeed, time evolution real-
izes such an approximate cloning channel. Our analysis
draws inspiration from and is strongly informed by ex-
tensive investigations of the Unruh effect in Minkowski
spacetime, thanks to the strong parallel between the Un-
ruh setting and dS: local observers in dS are unavoidably
accelerating away from each other. There is one cru-
cial difference, however: in the case of the Unruh effect,
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spacetime is flat, and the horizon witnessed by an ac-
celerated observer is artificial, whereas in dS, all local
observers agree that there is a horizon.

The nonunitary nature of local quantum mechanical
evolution in dS is a consequence of the locally thermal
character of vacuum states in curved spacetime, which, in
turn, directly arises from entanglement between causally
disconnected regions [34]. This phenomenon was first
studied for flat spacetime in [35–37], and further inves-
tigated in many references such as [38] and [39]. The
case of dS has been taken up in numerous studies [40–
57], where the Unruh effect was used to assign thermal
properties to dS.

The Unruh effect in flat spacetime has also been the
focus of recent research investigating the fate of quan-
tum information encoded in logical qubits arising from
fluctuations of quantum fields [58–60]. These works led
to the striking discovery that such encoded information,
as witnessed by an accelerated observer, is modeled by
the output of a quantum Unruh channel, interpreted as
a block-diagonal sum of optimal cloning channels. This
remarkable observation is the basis for the present work;
we study the properties of the analogous channel in the
dS setting and find that it exhibits similar cloning prop-
erties. The core novelty here, however, is that the dS
quantum channel enjoys a fundamentally different phys-
ical interpretation: The cloning property can be directly
associated with the expansion of spacetime.

This paper is organized as follows: In Sec. II, we char-
acterize a local observer in dS spacetime and introduce
the static coordinate system best suited to describe local
physics in de Sitter. We then review the quantization
of a scalar field in dS in Sec. III, including the Bunch-
Davies vacuum state. In Sec. IV, we describe how logical
quantum information is encoded via perturbations of the
Euclidean vacuum state. We then derive the correspond-
ing Unruh channel in Sec. V, which describes the evolu-
tion of the initial state as perceived by a local observer.
Finally, in Sec. VI, we relate the Unruh channel to opti-
mal cloning channels. The appendices present additional
calculational details.

ar
X

iv
:2

40
5.

04
96

5v
1 

 [
gr

-q
c]

  8
 M

ay
 2

02
4

mailto:laura.niermann@itp.uni-hannover.de


2

II. LOCAL OBSERVERS IN DE SITTER

There are several different ways to quantize de Sit-
ter spacetime. The physics accessible to a local observer
can be conveniently described in static coordinates as ar-
gued, e.g., in [61]. In this paper, we work with static
coordinates, where 2+1 dimensional de Sitter spacetime
with de Sitter radius ℓ is embedded in 3 + 1 dimensional
Minkowski space:

z0 =
√
ℓ2 − r2 sinh(t/ℓ),

z1 =(−1)patch
√
ℓ2 − r2 cosh(t/ℓ),

z2 =r cos θ,

z3 =r sin θ.

(1)

Here, the physics experienced by a local observer is sim-
ilar to what we are familiar with from flat spacetime. A
crucial reason for this coordinate choice is that there is
no globally timelike Killing field in de Sitter, however,
there is a timelike Killing field in a single static patch,
as shown in Fig. 1. The timelike Killing field in a static
patch makes it possible to define a notion of time for the
local observer living in one static patch, however, this
differs between static patch I and II. While time runs
forward in one patch, it runs backward in the other, as
emphasised, e.g., in [61, p. 20]. Time running in different
directions in different parts of spacetime does not cause
conflict for a local observer because both static patches
are causally disconnected.

The causal structure of de Sitter spacetime is similar
to that of the Rindler setting, where the static patches
in de Sitter are analogous to the Rindler wedges for flat
space. A key difference, however, is that in the flat space-
time setting, the Killing trajectories of inertial observers
are also geodesics, while for dS this is only the case for
the trajectory with r = 0, which can be seen from the
absolute value of the proper acceleration of an observer
following a Killing trajectory (see App. A):

aµa
µ =

1

ℓ2 − r2
r2

ℓ2
. (2)

The closer the trajectory is to the horizon, the larger its
proper acceleration becomes, diverging for |r| → |ℓ|. For
simplicity, for the rest of this paper we only consider the
case of de Sitter radius ℓ = 1. The generalization to other
radii is straightforward.

III. QUANTUM FIELDS IN DS

The quantization of scalar fields in dS has been com-
prehensively described in numerous references. Here, we
only supply a brief review following Bousso, Maloney,
and Strominger [8], as well as Higuchi and Yamamoto
[34].

There is an ambiguity in the choice of vacuum state
in curved spacetime [62]. We use a quantization of dS
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Figure 1. Comparision between Killing fields in de Sitter
spacetime (left) in static coordinates and flat spacetime with
an accelerated observer (insert): Killing fields in the Pen-
rose diagram of dS3 where the left and the right boundary
are timelike lines associated with the poles in static patch I
and II respectively. The static patches are bounded by the
dashed line at r2 = ℓ2. A horizontal slice of the dS3 Penrose
diagram is associated with a sphere, which is de Sitter space
at that given time slice, and each point is associated with a
circle. The Killing field of a uniformly accelerated observer in
Minkowski spacetime take a similar form.

where the positive-frequency mode operators âkω, ω ≥ 0,
annihilate the Bunch-Davies vacuum state [34, Eq. (88)]:

|Ω⟩ =N exp

[∑
k

∫ ∞

0

dωe−πω(âIkω)
†(âIIkω)

†
]
|ΩI⟩ ⊗ |ΩII⟩ ,

(3)

where âIkω and âIIkω are the annihilation operators associ-
ated with static patches I and II, respectively, with |ΩI⟩
and |ΩII⟩ the corresponding local vacuum states. The
choice of the Bunch-Davies vacuum state is reasonable as
de Sitter Unruh detectors respond thermally, it is invari-
ant under the full de Sitter group, and it can be expressed
as a linear combination of creation operators associated
with the static patches I and II as derived in [8, section
6]. (The continuation to the lower Euclidean hemisphere
associated with the past of de Sitter is analytic. This is
why the Bunch-Davies vacuum is also referred to as the
Euclidean vacuum state.)

The positive-frequency mode functions associated to
the Bunch-Davies vacuum state can be expressed as a
linear combination of the mode functions of both static
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patches as shown in [8]:

ϕkω =ϕIkω + e−πω(ϕIIkω)
∗. (4)

Note that the role of positive and negative frequencies in
static patch II are flipped with respect to static patch I.
The global mode functions in Eq. (4) are a combination
of positive and negative frequency modes from different
static patches. The corresponding annihilation operators
annihilating the Bunch-Davies vacuum state are thus

âkω =
1√

1− e−2πω

(
âIkω − e−πω(âIIkω)

†) . (5)

A second linearly independent set of positive frequency
modes can be defined by interchanging static patches.

IV. THE INITIAL STATE OF THE DE SITTER
UNIVERSE

To analyse the propagation of quantum information
in dS we encode an initial “signal” or “message” logical
quantum state into perturbations of the Bunch-Davies
state. These fluctuations are mediated by globally cre-
ated particles. Thus the initial state of the universe is
given by the following multi-rail state:

|ψ⟩ =
d∑

j=1

cj(âkjωj
)† |Ω⟩ , (6)

where ki are the temporal frequencies for i = 1, . . . , d,
which label the d angular harmonic modes at fixed fre-
quency ω. One interpretation of this state is that it is
created by a superobserver so that at the bottleneck of
dS (occurring at t = 0) the state is encoded across the
entire temporal slice. A similar procedure was described
in [59] in the case of flat spacetime to encode a logical
qubit for use as an initial state of the Unruh channel.

As a consequence of the squeezed-state structure of
the Bunch-Davies vacuum we can express the multi-rail
state purely in terms of static patch modes (the detailed
derivation is provided in App. B):

|ψ⟩ =
d∑

j=1

cj
√
1− e−2πωj (âIkjωj

)† |Ω⟩ . (7)

Exploiting the multinomial theorem and multi-index no-
tation, we find

|ψ⟩ =
d∑

j=1

cj

√
1− z2j

∞∑
n=0

(∏
ω

√
1− z2zn

)
·
∑
Ln

√
lj + 1 |L(j)⟩I |L⟩II , (8)

where z = e−πω, lj are occupation numbers, and |L(j)⟩I
and |L⟩II are certain multimode Fock states (for the pre-
cise definitions, and derivation, see App. C).

V. UNRUH CHANNEL

In this section we derive the quantum channel (a
nonunitary completely positive map) which describes
how the initial state |ψ⟩ of the scalar field in dS appears
to local observers in a single static patch. On a superfi-
cial mathematical level the calculations follow the com-
parable situation for accelerated observers in Minkowski
spacetime: To calculate the Unruh channel, we trace out
from |ψ⟩ all the modes from static patch II, which are
precisely those which cannot influence the channel for an
inertial observer in static patch I:

E(ψ) = trII(|ψ⟩ ⟨ψ|) = ρI ⊗ ρresidualI (9)

Here the residual part ρresidualI is the state of the sub-
system defined by those modes satisfying one of the two
following conditions: (i) the temporal frequency ki is not
equal to ω (ii) the temporal frequency is equal to ω, but
k ̸= ki. By neglecting the residual part we are left with
a subsystem comprised of only a finite number of modes.
Physically, this can be interpreted as the state perceived
by a detector tuned to exactly these output modes. This
situation is similar to that encountered when studying
Rindler quantization [58]. The action of the Unruh chan-
nel is then obtained according to the following additional
assumption, namely, that the frequencies ωk are chosen
so close that all zi = e−πω are approximately equal (to
z). Accordingly, the output density operator ρI, derived
in App. D, is given by

ρI =(1− z2)d+1
∞⊕

n=0

z2nσ
(n)
I , (10)

with

σ
(n)
I =

d∑
j=1

|cj |2(lj + 1)
∑
Ln

|L(j)⟩ ⟨L(j)|I

+

d∑
j,j̃=1
j ̸=j̃

cjcj̃
√
lj + 1

√
lj̃ + 1

∑
Ln

|L(j)⟩ ⟨L(j̃)|I .

(11)

It is noteworthy that the output state is realised by the
action of a direct sum of channels. As we explain in the
next section these each realise n-dimensional (approxi-
mate) cloning channels.

VI. CLONING PROPERTIES OF THE
CHANNEL

The Unruh channel derived in the previous section has
a block-diagonal structure, with the output state com-
prised of the blocks Eq. (11). As described in [60] in
the Rindler context, each block density operator can be
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interpreted as an instance of a 1 → n cloning channel
acting on the initial state.

Cloning, in general, refers to the process of creating
identical copies of an arbitrary unknown state. In quan-
tum mechanics, it is impossible to create a perfect copy
of an unknown state due to the no-cloning theorem [28].
Although perfect cloning is impossible, it is nevertheless
possible to make imperfect copies. This is why we always
refer to optimal cloning when speaking about cloning in
the context of quantum mechanics. A quantum cloning
machine thus acts on an unknown quantum state and
performs a transformation to generate (imperfect) copies
of the original state. Optimal cloning machines were in-
troduced in [29] for arbitrary states from a quantum me-
chanical spin- 12 system. These were shown to be optimal
in the following years in [30, 31, 33] and further general-
ized in [32] to higher-dimensional systems. In general, a
cloning machine is specified by the following conditions,
as characterized in [32]: After the quantum cloning ma-
chine has performed the transformation, both the initial
state and its copy are in the same state. All pure initial
states have to be copied equally well, and even though the
copies cannot be perfect, they have to be as close to the
initial state as possible to ensure optimal cloning. To re-
alise this, an N -dimensional cloning machine is prepared
in an initial state |X⟩c. The cloning transformation is
then described by a unitary operator acting on a basis
|ψi⟩a of the original quantum system, an N -dimensional
quantum system prepared in some fiducial state |0⟩b, and
the quantum cloner internal state |X⟩c as described in
[32, Eq. (9)]):

|ψi⟩a |0⟩b |X⟩c
U−→ α |ψi⟩a |ψi⟩b |xi⟩c

+ β

N∑
j ̸=i

(
|ψi⟩a |ψj⟩b + |ψj⟩a |ψi⟩b

)
|xj⟩c

(12)

where the parameter α and β are real parameters that
have to fulfill α2 + 2(N − 1)β2 = 1 to ensure a unitary
cloning transformation. After tracing out the cloner in-
ternal subsystem, this cloning transformation then gen-
erates the following output state for each subsystem:

ρ̂(out)a =s |ψ⟩ ⟨ψ|a +
1− s

M
1 (13)

=

N∑
i=1

|γi|2
(
α2 + (d− 2)β2

)
|ψi⟩ ⟨ψi|

+

N∑
i,j=1
i ̸=j

γiγ
∗
j

(
2αβ + (d− 2)β2

)
|ψi⟩ ⟨ψj |+ β21,

(14)

where the scaling factor s = N+2
2(N+1) characterizes the

quality of the clones depending on the dimension. To
bring the output state in the scaled form from Eq. 13,
the parameter has to satisfy further conditions.

The blocks σn
I in Eq. (11) have a structure identical to

ρ̂outa in Eq. (14) and can therefore may be interpreted as
instances of the action of n-dimensional cloning channels.

There is a compelling physical interpretation of these
observations. According to the key assumption refer-
enced in the introduction, namely, that the dimension of
Hilbert space in an expanding spacetime increases with
time, we must determine which states the emerging de-
grees of freedom find themselves in. There are a couple
of naive options, e.g., maybe the new degrees of freedom
are initialised in some vacuum-type state, or perhaps in
some thermal state. This is natural enough, but it only
explains the vacuum situation. What if the state of a
quantum field is not in the vacuum (as is presumably
the case for our universe)? In this case, adding in new
degrees of freedom in some independent product state is
unlikely to be compatible with basic symmetries (it would
break translation invariance, etc.) However, by filling the
new degrees of freedom emerging from the expansion of
spacetime with (approximate) copies of an initial state
|ψ⟩ we are able to preserve symmetries, e.g., translation
invariance.

VII. CONCLUSION

In this paper, we have investigated how a global ini-
tial state, realised via perturbations of the Bunch-Davies
vacuum, for a scalar quantum field evolves in a static
patch, associated with a local observer. The acceleration
intrinsic to de Sitter spacetime results in an Unruh chan-
nel, which acts as an approximate cloning channel on the
logical input state.

There are many questions to be explored: One option
for future research would be to study more properties of
the channel and thus relate the curvature of dS to the
channel capacity of the Unruh channel. In particular,
does the flat limit somehow reduce to the Rindler case
in a natural way? Another would be to use the Unruh
channel as a building block for tensor-network models of
dS, such as those introduced in [24].
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APPENDIX

Appendix A: Properties of Killing trajectories

The static metric in 2+ 1 dimensional de Sitter space-
time is

ds2 = −
(
1− r2

ℓ2

)2

dt2 +
ℓ2

ℓ2 − r2
dr2 + r2dθ2 (A1)

We consider trajectories in static coordinates with con-
stant r coordinate:

xr(s) =

t(s)r(s)
θ(s)

 =

 s
ri
θ0

 (A2)

where ri is constant and the choice of ri determines the
trajectory. The tangent vector (since the only change

happens in the time coordinate) is tµ =

1
0
0

 which gives

us the proper time

τ =

∫ √
−gabtatbdt =

∫ √−gttdt

=

∫ √
1− r2i

ℓ2
dt =

√
1− r2i

ℓ2
t (A3)

where t is the coordinate time in static coordinates. It
needs to be noted that the proper time differs for different
trajectories. We can parametrize the trajectories using
the proper time as follows:

xr(τ) =

(
τ/
√
1− r2i /ℓ

2

ri

)
(A4)

These trajectories experience the following proper ac-
celeration, which are different for the different choices of

ri:

uµ =∂τx
µ =

(
1/
√

1− r2i /ℓ
2

0

)
aµ =∂τu

µ + Γµ
λνu

λuν

at =2Γt
tru

tur = 0

ar =Γr
ttu

tut + Γr
rru

rur

=
ri
ℓ4
(r2i − ℓ2)

1

1− r2i /ℓ
2
= − ri

ℓ2

|a|2(r) =aµaµ = gµνa
µaν = grra

rar =
1

ℓ2 − r2
r2

ℓ2

where the non-vanishing Christoffel symbols in static co-
ordinates are Γt

tr = Γt
rt = r

r2−ℓ2 , Γr
tt = r

ℓ4 (r
2 − ℓ2)

and Γr
rr = − r

r2−ℓ2 . For the absolute value of the proper
acceleration, we are interested in two special cases:

|a|2(r) r→±ℓ−−−−→ ∞ (A5)

|a|2(0) = 0 (A6)

We can look at the proper acceleration of the same
set of trajectories from the embedding space (where all
Christoffel symbols vanish identically):

xµi (τ) =

√ℓ2 − r2i sinh(τ/
√
ℓ2 − r2i )√

ℓ2 − r2i cosh(τ/
√
ℓ2 − r2i )

ri

 (A7)

uµi (τ) =

cosh(τ/
√
ℓ2 − r2i )

sinh(τ/
√
ℓ2 − r2i )

0

 (A8)

aµi (τ) =
1√

ℓ2 − r2i

sinh(τ/
√
ℓ2 − r2i )

cosh(τ/
√
ℓ2 − r2i )

0

 (A9)

aµa
µ =ηµνa

µ
i a

ν
i =

1

ℓ2 − r2i
(A10)

Appendix B: Express the multi-rail state with static patch operators

Here, we derive an equivalent expression of the initial state of the universe where we use the commutation relation:[
â, eλâ

†b̂†
]
= λb̂† eλâ

†b̂† (B1)

The vacuum state takes the following form:

|Ω⟩ =N exp

[∑
k

∫ ∞

0

dωe−πω(âIkω)
†(âIIkω)

†
]
|ΩI⟩ ⊗ |ΩII⟩ (B2)

=N
∞∏

ω=0

exp

[∑
k

e−πω(âIkω)
†(âIIkω)

†
]
|ΩI⟩ ⊗ |ΩII⟩ (B3)



6

We can express the multi-rail state as follows:

|ψ⟩ =
d∑

j=1

cj(âkjωj
)† |Ω⟩

=

d∑
j=1

cj
1√

1− e−2πωi

[
(âIkjωj

)† − e−πωi âIIkjωj

]
|Ω⟩

=

d∑
j=1

cj
1√

1− e−2πωi

[
(âIkjωj

)† − e−πωi âIIkjωj

]
N

∞∏
ω=0

e
∑

k e−πω(âI
kω)†(âII

kω)† |ΩI⟩ ⊗ |ΩII⟩

=

d∑
j=1

cj(â
I
kjωj

)†
√
1− e−2πωj

N
∞∏

ω=0

e
∑

k e−πω(âI
kω)†(âII

kω)† |ΩI⟩ ⊗ |ΩII⟩

−
d∑

j=1

cje
−πωj

√
1− e−2πωj

N
∞∏

ω=0

{
e
∑

k e−πω(âI
kω)†(âII

kω)† âIIkjωj
+
[
âIIkjωj

, ee
−πω(âI

kω)†(âII
kω)†

]}
|ΩI⟩ ⊗ |ΩII⟩

=
d∑

j=1

cj(â
I
kjωj

)†
√
1− e−2πωj

N
∞∏

ω=0

e
∑

k e−πω(âI
kω)†(âII

kω)† |ΩI⟩ ⊗ |ΩII⟩

−
d∑

j=1

cje
−πωj

√
1− e−2πωj

N
∞∏

ω=0

[
(âIkjωj

)†e−πωje
∑

k e−πω(âI
kω)†(âII

kω)†
]
|ΩI⟩ ⊗ |ΩII⟩

=

d∑
j=1

cj(â
I
kjωj

)†
(
1− e−2πωj

)
√
1− e−2πωj

|Ω⟩

=

d∑
j=1

cj(â
I
kjωj

)†
√
1− e−2πωj |Ω⟩

Appendix C: Multi-Index notation

To further simplify the expression of the multi-rail state, we introduce the abbreviation z = e−πω and expand the
exponential function:

|ψE⟩ =
d∑

j=1

cj
√
1− e−2πωj (âIkjωj

)†N
∏
ω

exp

[∑
k

e−πω(âIkω)
†(âIIkω)

†
]
|ΩI⟩ ⊗ |ΩII⟩

=

d∑
j=1

cj

√
1− z2j (â

I
kjωj

)†N
∞∑

n=0

1

n!

(∑
ω

z(âIkω)
†(âIIkω)

†
)n

|ΩI⟩ ⊗ |ΩII⟩

=

d∑
j=1

cj

√
1− z2j

∞∑
n=0

∑
Ln

N

 d∏
j=1

zlj

 (âIkjωj
)† |l1l2 . . . ld⟩I︸ ︷︷ ︸

=
√

lj+1|L(j)⟩I

⊗ |l1l2 . . . ld⟩II︸ ︷︷ ︸
=|L⟩II

=

d∑
j=1

cj

√
1− z2j

∞∑
n=0

znN
∑
Ln

√
lj + 1 |L(j)⟩I |L⟩II (C1)
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We used the following relations:

|li⟩ =
1√
li!

(â†kiωi
)li |Ω⟩

|L⟩ = |l1l2 . . . ld⟩
|L(i)⟩I =(li + 1)−1/2(âIkiωi

)† |l1l2 . . . ld⟩I∑
Ln

=
∑

l1+···ld=n

After expanding the exponential function, we applied the multinomial theorem:

1

k!

(
d∑

i=1

â†i b̂
†
i

)k

=
∑

l1+l2+···+ld=k

1

l1!l2! . . . ld!
(â1

†b̂†1)
l1 · · · (âd†b̂†d)ld (C2)

Appendix D: Unruh cloning channel

We take the initial state from eq. (8) where we consider all z to be equal. The resulting state is:

|ψ⟩ =
d∑

j=1

cj(1− z2)(d+1)/2
∞∑

n=0

zn
∑
Ln

√
lj + 1 |L(j)⟩I |L⟩II (D1)

With this expression of |ψ⟩ we derive the Unruh channel from 9

E(ψ) = trII(|ψ⟩ ⟨ψ|) = ρI.

In doing so, we split the channel into two parts: the diagonal part, where identical frequencies are excited, and the
off-diagonal part, where different frequencies are excited. This distinction affects the index we call k, which is the
mode excited in the multi-rail state.

ρI =trII


d∑

j=1

cj(1− z2)(d+1)/2
∞∑

n=0

zn
∑
Ln

√
lj + 1 |L(j)⟩I |L⟩II

 (D2)

·


d∑

j̃=1

c∗
j̃
(1− z2)(d+1)/2

∞∑
n=0

zn
∑
Ln

√
lj̃ + 1 ⟨L(j̃)|I ⟨L|II


 (D3)

=(1− z2)d+1
∞∑

n=0

z2nσ
(n)
I (D4)

with

σ
(n)
I =

d∑
j=1

|cj |2(lj + 1)
∑
Ln

|L(j)⟩ ⟨L(j)|I +
d∑

j,j̃=1
k ̸=j̃

cjcj̃
√
lj + 1

√
lj̃ + 1

∑
Ln

|L(j)⟩ ⟨L(j̃)|I (D5)
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