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In this work, we consider the imaginary time evolution of matrix product states. We present a
novel quantum-inspired classical method that, when combined with time evolving block decimation
(TEBD), is able to potentially speed-up the convergence to a ground state compared to TEBD
alone. Our method, referred to as boosted imaginary time evolution, relies on the use of reflections
to boost to lower energy states. Interleaving TEBD steps with boosts reduces the total number
of TEBD steps and potentially the computational cost required to imaginary time evolve a matrix
product state to a ground state. We give the mathematical details of the method followed by an
algorithmic implementation and finally some results for a simple test case.

I. INTRODUCTION

Understanding interacting quantum many-body sys-
tems is of key interest in physics. Simulating these sys-
tems even in seemingly simple cases can quickly become
computationally intractable as the amount of information
that must be stored and processed grows exponentially
with system size. Tensor networks have emerged as a
powerful tool to efficiently approximate quantum states
in certain regimes [1, 2]. For example, Matrix product
states (MPS) are able to efficiently and accurately ap-
proximate the state of 1D quantum systems that exhibit
low entanglement [3–7]. A common task in the study of
quantum many-body systems is to prepare and estimate
the energy of a ground state. It is well known that find-
ing the exact ground state of a k-local Hamiltonian for
k ≥ 2 is NP-hard (in fact it is QMA-complete) [8]. De-
spite this, there are many approximate methods that aim
to efficiently find approximate ground states e.g. density
matrix renormalisation group (DMRG) [9, 10].

In this work we will focus on the preparation of ground
states of 1D nearest-neighbour quantum systems, repre-
sented by matrix product states, using imaginary time
evolution (ITE). In principle ITE can be applied in an
exact setting, in which case the computational cost is
exponential in both space and time. However, an MPS
can be approximately imaginary time evolved using time
evolving block decimation (TEBD) [11]. In this paper we
will detail a novel ‘quantum-inspired’ heuristic method
that, when combined with TEBD, can reduce the com-
putational cost of imaginary time evolving an MPS to
the ground state compared to TEBD alone. We begin
by giving some background on imaginary time evolution
and matrix product states before describing our method.
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A quantum system with Hamiltonian Ĥ is evolved
through imaginary time τ = it under the action of the

non-unitary ITE operator, T̂ = e−Ĥτ . Note that imagi-
nary time is an un-physical concept but is nonetheless a
useful mathematical tool. Applying the ITE operator to
a state gives,

|ψ(τ)⟩ = A(τ)e−Ĥτ |ψ(0)⟩ , (1)

where A(τ) = ⟨ψ(0)| e−2Ĥτ |ψ(0)⟩−1/2
is a prefactor

required to ensure normalisation. Expanding Equation 1
in terms of eigenstates of Ĥ gives,

|ψ(τ)⟩ = A(τ)
∑
j

e−Ejτaj |ϕj⟩ , (2)

where Ej is the energy of the eigenstate |ϕj⟩. The
right-hand side of Equation 2 provides the crucial insight
as to why imaginary time evolution is useful. The coeffi-
cient of each state |ϕj⟩ decays exponentially in imaginary
time. The rate of decay is determined by the energy of
the state. The higher the energy of the state, the more
quickly it decays. As such, the lowest energy state will
decay the slowest. Assuming that the initial state |ψ(0)⟩
has a non-zero overlap with the ground state then, in
the limit τ → ∞, only the ground state will remain i.e.
|ψ(τ → ∞)⟩ = |ϕ0⟩ where |ϕ0⟩ is the ground state.
Matrix product states are a useful way of approxi-

mately representing a quantum state efficiently. Consider
a 1D quantum lattice system with N sites, each with site
dimension d. A general pure state |ψ⟩ can be written as
follows,

|ψ⟩ =
d∑

i1i2...in

Ci1i2...iN |i1⟩ ⊗ |i2⟩ ⊗ ...⊗ |iN ⟩ , (3)

The tensor C in Equation 3 grows exponentially with
the number of sites. However, it is possible to approxi-
mate C as a product of lower rank tensors that can be
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obtained by Schmidt decomposition. A matrix product
state is written,

|ψ⟩ =
d∑

i1i2...iN

Tr
(
Ai1Ai2 ... AiN

)
|i1i2...iN ⟩ , (4)

where the matrices Ain are of maximum dimension
χ × χ and χ is a parameter known as the bond dimen-
sion. While an MPS can be an exact representation of
a state, the true usefulness of matrix product states is
as a tool for approximately representing quantum states.
Provided a given state is only weakly entangled (specifi-
cally it obeys a 1D area law), an approximate MPS can
be made arbitrarily close to the true state by increasing
χ, with only polynomial cost [12].

An MPS can be (imaginary) time evolved using time
evolving block decimation [13]. Given a 1D nearest neigh-
bour Hamiltonian, the core idea of TEBD is to Trotterise
the time evolution operator and exploit the locality of the
Hamiltonian such that the MPS can be updated using
only local operations. This approach avoids the full ex-
ponential cost that would otherwise be associated with
time evolving a state. A 1D nearest neighbour Hamil-
tonian, can be decomposed into even and odd terms
Ĥ = Ĥeven + Ĥodd where the even (odd) terms act on
even (odd) indexed sites j and a neighbour j + 1. While

Ĥeven and Ĥodd do not commute, each of the terms con-
tained within the even (odd) sum mutually commute.
The resulting first order Trotterised evolution operator
is given by,

U(∆τ) = e−Ĥodd∆τe−Ĥeven∆τ , (5)

where ∆τ is a step in imaginary time. An evolution of
duration τ = Ns∆τ can be achieved by applying the op-
erator Ns times i.e., U(∆τ)Ns . Equation 5 contains only
local terms and can therefore be implemented efficiently.

II. BOOSTED IMAGINARY TIME EVOLUTION

In this paper we present a novel quantum-inspired clas-
sical algorithm that combines the concept of amplitude
amplification [14] with imaginary time evolution. We re-
fer to this method as ‘boosted imaginary time evolution’
(BITE) because it augments standard imaginary time
evolution with a sequence of ‘boosts’ that jump from
a given state to a lower energy state. The boosts are
achieved by a sequence of reflections similar to those used
in amplitude amplification. We will begin by illustrating
the method in a simple case before giving a more general
picture. We then develop an efficient method of imple-
menting boosts that avoids the need to explicitly perform
reflections.

We begin by considering a 2D Hilbert space H2

spanned by {|ϕ0⟩ , |ϕ1⟩} with corresponding energies

E0 < E1. For simplicity we initialise the system in a
uniform superposition |s⟩ = 1√

2
(|ϕ0⟩+ |ϕ1⟩) but, we note

that the method generalises to an arbitrary initial state.
Evolving the system forward in imaginary time by a step

∆τ results in a state |t⟩ = e−Ĥ∆τ |s⟩. Expanding out |t⟩
gives,

|t⟩ = A(∆τ)√
2

(
e−E0∆τ |ϕ0⟩+ e−E1∆τ |ϕ1⟩

)
. (6)

It is evident from Equation 6 that |t⟩ is closer to the
ground state than |s⟩ i.e. | ⟨t|ϕ0⟩ |2 > | ⟨s|ϕ0⟩ |2. After a
single imaginary time step this difference may be small
(assuming the step size is small). Despite this, the dif-
ference can now be boosted by performing a series of
reflections, inspired by amplitude amplification.
The boosted imaginary time evolution procedure en-

tails a ‘leapfrogging’ of states using reflections as shown
in Figures 1 and 2. Firstly, an initial state |ψi⟩ is imagi-
nary time evolved byNs steps, |t⟩ = U(∆τ)Ns |ψi⟩, where
U(∆τ) is the evolution operator. A reflected state |r1⟩
is then produced by reflecting the initial state |ψi⟩ about
the evolved state |t⟩ i.e., |r1⟩ = R(|t⟩) |ψi⟩. The unitary
operator that implements a reflection about a state |v⟩ is
given by,

R(|v⟩) = 2 |v⟩ ⟨v| − I. (7)

Figure 1 shows the 2D case where the initial state is
the uniform superposition state, |ψi⟩ = |s⟩. Note that the
larger Ns, the larger the angle of the reflection. In the
second step, the state |t⟩ is reflected about |r1⟩ to pro-
duce |r2⟩ (see Figure 2) and this can continue as many
times as desired with the nth state given by the recur-
rence relation,

|rn⟩ = R(|rn−1⟩) |rn−2⟩ , (8)

with the initial conditions |r0⟩ = |t⟩ and |r−1⟩ = |ψi⟩.

|ϕ0⟩

|ϕ1⟩

|s⟩

|t⟩

|r1⟩

FIG. 1: The state |r1⟩ is produced by reflecting |s⟩ about
|t⟩.
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Using the simple 2D example in Figures 1 and 2 we
can further develop the method and demonstrate how
it generalises beyond 2D. In this example, we see that
the initial states that are ‘input’ to the BITE procedure,
|ψi⟩ = |s⟩ and |t⟩, define a 2D plane in Hilbert space,
with the allowed states lying on a unit circle in the plane.
The sequence of reflection operations that produces the
sequence of states |rn⟩ traverses the unit circle in a se-
ries of rotations that have angle θ = arccos(⟨s|t⟩). In
the 2D case, the unit circle corresponds to all allowed
states in the Hilbert space and it is therefore the case
that the ground state lies on the unit circle defined by the
sequence of reflections. Only finitely many states are ac-
cessible by performing reflections, specifically the number
of states is n = 2π/θ. In general the ground state will not
be one of the accessible states. However, the minimum
energy state accessible by reflections |rmin⟩ will be close
to the ground state. More concretely, the angle between
|rmin⟩ and |ϕ0⟩ will be at most θ′ = arccos(⟨s|t⟩)/2.

|ϕ0⟩

|ϕ1⟩

|s⟩

|t⟩

|r1⟩

|r2⟩

FIG. 2: The state |r2⟩ is produced by reflecting |t⟩ about
|r1⟩.

The 2D case is a somewhat trivial case and so we
will now give an illustrative 3D example. Consider a
3D Hilbert space H3 spanned by {|ϕ0⟩ , |ϕ1⟩ , |ϕ2⟩} with
respective energies E0 < E1 < E2. The allowed states
|ψ⟩ ∈ H3 lie on the 2D surface of the unit 2-sphere. With-
out loss of generality consider the states |ϕ0⟩ = (1, 0, 0)T ,
|ϕ1⟩ = (0, 1, 0)T and |ϕ2⟩ = (0, 0, 1)T . Given some start-
ing state |ψi⟩ = (a0, a1, a2)

T , imaginary time evolution
will trace out a path on the surface of the unit sphere
defined by A(τ)(a0e

−E0τ , a1e
−E1τ , a2e

−E2τ )T . The path
will begin at |ψi⟩ and, in the limit of large τ = Ns∆τ ,
will terminate at the ground state. An example trajec-
tory with |ψi⟩ = |s⟩ is shown by a red curve in Figure
3.

Now consider the 2D plane defined by the states |s⟩
and an imaginary time evolved state |t⟩ (not shown in
Figure 3) which will intersect the unit sphere defining a
great circle. The great circle defines a set of states C
such that |rn⟩ ∈ C are accessible by performing reflec-
tions. An example of such a great circle is shown by

the black circle in Figure 3 that contains |s⟩ and initially
intersects the red ITE path. Performing a series of reflec-
tions will traverse this great circle, eventually returning
to the initial state. It is evident that, unlike the 2D
case, the ground state will not generally lie on the great
circle, |ϕ0⟩ ̸∈ C. However, it can be qualitatively seen
from Figure 3 that traversing C until a minimum energy
state is found |rmin⟩ will result in a state that is closer
to the ground state i.e. | ⟨rmin|ϕ0⟩ |2 > | ⟨t|ϕ0⟩ |2. To put
this more rigorously, provided all states |rn⟩ ∈ C respect
any physical constraints of the system, the minimum en-
ergy state |rmin⟩ is guaranteed to be closer to the ground
state provided Ermin

< Et. We now develop an efficient
way of performing boosts without needing to explicitly
perform reflections and then go on to detail a potential
algorithmic implementation of BITE.

FIG. 3: A visualisation of a 3D Hilbert space with the
allowed states shown as the surface of a unit sphere. The
blue vector represents the initial state |s⟩ and the red
curve is a trajectory resulting from imaginary time evo-
lution. The black great circle that contains |s⟩ is an ex-
ample of the intersection of a plane with the surface of
the unit sphere.

A. Recurrence Relations for Efficient Boosting

One of the key features of the BITE method is that
it can be implemented in a highly efficient manner by
exploiting the recurrence relation in Equation 8. It can
be shown (see Appendix A) that the recurrence relation
for the nth reflected state can be written as follows,

|rn⟩ = 2F |rn−1⟩ − |rn−2⟩ , (9)

where we have defined the overlap F = ⟨t|ψi⟩. It is
then possible to use Equation 9 to express the nth state
in terms of only the input states and some coefficients αn

and βn,
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|rn⟩ = αn |t⟩+ βn |ψi⟩ . (10)

Furthermore, we show in Appendix A that the coeffi-
cients αn and βn can be calculated using the following
recurrence relations,

αn = 2Fαn−1 − αn−2,

βn = −αn−1,
(11)

with the initial conditions α0 = 1, α−1 = 0 and
α−2 = −1. In order to reach the state |rn⟩ we no longer
need to perform the full sequence of reflections. Instead
we need only compute the series of coefficients αn using
the recurrence relations in Equation 11 and then apply
Equation 10. This allows us to boost directly to the nth

state without computing the intermediate states. In Ap-
pendix B we derive a closed form expression for the nth

state,

|rn⟩ =
1

sin(θ)
(sin((n+ 1)θ) |t⟩ − sin(nθ) |ψi⟩) , (12)

where θ = arccos(F ). The closed form in Equation 12
enables an even more efficient boost. However, it is not
necessarily apparent which state to boost to. In order to
select a state to boost to, it would be useful to know the
energy of the state ahead of time. Consider the energy
of the nth state, En = ⟨rn| Ĥ |rn⟩. Using Equation 10 we
can derive a recurrence relation for the energy,

En = α2
nEt + α2

n−1Ei − 2αnαn−1Eit, (13)

where Et = ⟨t| Ĥ |t⟩, Ei = ⟨ψi| Ĥ |ψi⟩ and Eit =

⟨ψi| Ĥ |t⟩. The recurrence relation in Equation 13 al-
lows the energy of the nth state to be computed without
computing the state itself. This means that the series
En can be evaluated efficiently in order to choose a state
to boost to and then Equation 12 can be used to boost
directly to the chosen state. We now have everything
we need in order to describe our heuristic algorithm that
implements the BITE method.

B. Algorithm Implementation

In this section we will describe a heuristic algorithm
that implements boosted imaginary time evolution and
in the following section, we demonstrate the algorithm
on a simple test case of a 1D spin chain. The BITE
algorithm sequentially performs many boosts, each time
using new states to define a new 2D plane and therefore
a new great circle on the surface of the n-sphere. The
steps of the algorithm are as follows:

1. Imaginary time evolve an initial state |ψi⟩ by a sin-
gle step ∆τ to produce a state |t⟩.

2. Calculate the overlap F and the terms Et, Ei and
Eit and use Equation 13 to compute the series of
energies En of states that lie on the great circle
defined by the boost. Find the minimum En and
compute the corresponding state |rn⟩.

3. Imaginary time evolve |rn⟩ by a single step to pro-
duce a new initial state |ψ′

i⟩, and by two steps to
produce a new evolved state |t′⟩.

4. Repeat steps 1-3 using the new states |ψ′
i⟩ and |t′⟩

as the initial states until the energy converges.

The key advance that makes this method computa-
tionally viable is that, by using expression for the series
of energies En in Equation 13, it is possible to find the
minimum energy state on the plane efficiently. The com-
putational cost associated with boosting from |t⟩ to |rn⟩
is comprised of two parts: the cost to find the minimum
En and the cost to construct the associated state |rn⟩.
Computing the series En requires the overlap F as well
as the quantities Et, Ei and Eit. Computing each of
these quantities can be done with an overlap which, to
leading order, requires O(2Ndχ3) operations for an MPS
with N sites and site dimension d [15]. This gives a to-
tal of O(8Ndχ3) operations to calculate the quantities
needed to compute the series En. Computing the state
|rn⟩ requires the coefficients αn and αn−1 which can be
computed with O(1) cost given F and then a single MPS
add of the form |c⟩ = α |a⟩+β |b⟩. An MPS addition oper-
ation is in principle no cost but, the direct sum grows the
bond dimension from χ to 2χ. The computational cost is
therefore associated with compressing the MPS after the
addition. Assuming that we wish to compress that state
back to a bond dimension of χ by SVD compression, the
required operations are O(4Ndχ3) [15]. The total cost
for a boost is therefore CB ∈ O(Ndχ3). Note, there is
also some space overhead because boosting requires stor-
ing 2 MPS (|ψi⟩ and |t⟩) rather than updating a single
MPS in place.
The cost of implementing a single TEBD step is dom-

inated by the cost of applying 2-body terms which is
CT ∈ O(Nd3χ3). We therefore see that, to leading or-
der, the ratio of the cost of boosting and the cost of a
single TEBD step is,

CB

CT
=

KBNdχ
3

KTNd3χ3
=

KB

KT d2
, (14)

where KB and KT are the constant prefactors for
boosting and TEBD respectively. Importantly, the cost
ratio in Equation 14 is independent of system size and
bond dimension. The constant factor KT contains a fac-
tor f(p) that depends on the order of Trotterisation p
used. Higher order Trotterisation requires more opera-
tors to implement, thereby increasing the cost of a TEBD
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step. Given that we will consider spin systems, we fix
the site dimension as d = 2. The cost ratio is therefore
a constant factor K = KB/4KT ∈ O(1). A boost is
therefore efficient provided it progresses further towards
the ground state than K TEBD steps would have i.e.
| ⟨ϕ0|Uboost |ψ⟩ |2 > | ⟨ϕ0|UK

tebd |ψ⟩ |2. It is evident that
it is not a priori possible to guarantee that the above
inequality is satisfied and that boosting is efficient. In
light of this fact, we found it useful to introduce a heuris-
tic that only begins boosting once the rate of change of
the energy of the state evolved by TEBD falls below a
certain threshold. Such a heuristic helps to reduce the
likelihood that boosting is used in a regime where it is
inefficient. Note that, as the order of Trotterisation in-
creases, the ratio K decreases and it is also evident that
for smaller time step sizes ∆τ the action of UK

tebd on a
state |ψ⟩ will move the state a smaller amount towards
the ground state. We therefore expect boosting to more
useful in cases with p ≥ 2 and smaller ∆τ i.e., where a
smaller Trotter error is necessary.

III. RESULTS

In this section we demonstrate the BITE algorithm for
a simple test case of the transverse field Ising model on a
1D spin chain of N = 100 sites, with open boundary con-
ditions and parameters J = 0.5 and g = 1.5.1 The initial
state used is a product state of random superpositions of
up and down spins. All calculations were run in serial on
an Intel Xeon Gold 6142 CPU, using the python package
TeNPy [16] which defines the transverse field Ising model
as,

Ĥ = −J
∑
i,j

XiXj − g
∑
i

Zi. (15)

In Figure 4 we compare standard imaginary time evo-
lution using 2nd order TEBD with step size ∆τ = 0.001
to the boosted imaginary time evolution algorithm in the
previous section. In Figure 4 BITE converges to within
0.001 Ha of the density matrix renormalisation group en-
ergy in a run time of tr = 521s compared to tr = 1042s
for ITE. The run time tr is the total wall time for the
calculation. This is a considerable reduction in run time,
especially considering the fact that we allow the bond
dimension to grow somewhat during the MPS addition
operations. In Figure 5 we show χav and χmax which are
respectively, the mean and max bond dimensions at each
point in the calculation. We see that, despite BITE hav-
ing a χmax of up to 17 compared to χmax = 6 for ITE,
the run time reduction is still significant. However, it is
important to note that we used a small time step and this

1 Other non-critical parameter values tested gave similar results
to those below.

is favourable for the BITE algorithm as each TEBD step
progresses a smaller distance towards the ground state.

0 200 400 600 800 1000
Run time/s

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

En
er

gy
 / 

Ha

ITE
BITE
DMRG

FIG. 4: The energy per site of the MPS vs run time for
ITE with 2nd order TEBD and the BITE algorithm. Cal-
culations terminated when the energy was within 1mHa
of the reference DMRG energy (dashed black line).
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2
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12

14

16
BITE av

BITE max

ITE av

ITE max

FIG. 5: Average and maximum bond dimension at each
point in the BITE and ITE calculations. χav is averaged
over all matrices in the MPS at a given step.

In Table I we show how the performance changes as
the time step increases from ∆τ = 0.001 to 0.01. With a
larger time step, we find that it is not necessarily benefi-
cial to begin boosting immediately as we did in Figure 4.
This is because, with a larger time step, the initial part
of the ITE trajectory improves the state rapidly and it
is not necessarily the case that boosting improves the
state faster than TEBD. We therefore implement a sim-
ple heuristic that determines when to start boosting; we
start boosting once the gradient of the energy falls below
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a certain threshold, |mE | ≤ T where mE = ∆E/∆τ . In
all cases shown in Table I we use T = 1 (including for
∆τ = 0.001 although in this case we find |mE | < 1 from
the start) and find reductions in run time of ∼ 25% for
both ∆τ = 0.005 and ∆τ = 0.01. We also show the fi-
delities of the final state with the DMRG ground state
in Table I and find that BITE and ITE are comparable
in most cases. However, in the case of ∆τ = 0.001, the
BITE fidelity is improved to 0.998 as compared to 0.953
for ITE. It is likely that in this case, the ground state was
very close to being contained in the plane defined by the
final boost thus leading to a considerable improvement
in fidelity.

It is important to note that, for the simple system
tested here, imaginary time evolution would not be the
method of choice for finding the ground state. In this
regime DMRG is significantly faster and is highly accu-
rate. We present these results simply as a proof of prin-
ciple to demonstrate that the BITE method can improve
over imaginary time evolution using TEBD. Imaginary
time evolution is used to study some systems [17] and we
anticipate that in some of those scenarios, our method
may help to speed-up convergence to the ground state.

TABLE I: Run time, maximum and average (over the
entire calculation) bond dimension and fidelity of the
final state with the ground state for various time step

sizes.

Method ∆τ tr χmax χav | ⟨ϕ0|ψ⟩ |2
ITE 0.001 1042 6 4.1 0.953
BITE 0.001 521 17 10.2 0.998
ITE 0.005 204 7 4.5 0.956
BITE 0.005 156 16 6.3 0.959
ITE 0.01 105 7 4.8 0.960
BITE 0.01 79 16 5.8 0.957

IV. CONCLUSION

We have presented a novel quantum-inspired classical
algorithm that, when combined with TEBD, has the po-
tential to speed-up the convergence of imaginary time
evolution of matrix product states to a ground state. We
have shown how to use an initial and an imaginary time-
evolved matrix product state to define a plane that inter-
sects the unit n-sphere, defining a great circle that can
be traversed by performing a sequence of reflections. By
defining a state that has undergone a given number of re-
flections recursively, we were able to derive a closed form
expression for any state (and its energy) on the great cir-
cle accessible by performing rotations. This closed form
expression allows a so-called boosting procedure to be
implemented efficiently.
We have presented a proof-of-concept demonstration of

the method applied to the 1D transverse field Ising model
with open boundary conditions. The BITE method was
able to reduce the total run time to converge to within
1mHa of the DMRG energy by 25-50% depending on the
time step size. We find that BITE offers a larger im-
provement in regimes when a TEBD step only improves
the state by a relatively small amount i.e. during the
later part of an imaginary time evolution and when the
time step is relatively small. The method may therefore
be best suited to cases when a small Trotter error is re-
quired. In this work we have focused on the 1D case
where DMRG is typically a better method than ITE.
However, it may be possible to extend the BITE method
to 2D where the use of imaginary time evolution is more
prevalent. For example, projected entangled pair states
(PEPS) [18] are typically updated using ITE [17, 19] and
therefore might benefit from the BITE method.
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A. DERIVATION OF RECURRENCE
RELATIONS

The series of reflected states described in the main
paper is defined by the recurrence relation |rn⟩ =
R(|rn−1⟩) |rn−2⟩. Expanding the reflection operator of
Equation 7 gives,

|rn⟩ = R(|rn−1⟩) |rn−2⟩
= 2 ⟨rn−1|rn−2⟩ |rn−1⟩ − |rn−2⟩ .

(16)

To compute the nth state, we require the overlap
⟨rn−1|rn−2⟩. We will demonstrate using the recursive
nature of the equations that this simply reduces to the
overlap ⟨t|ψi⟩,

⟨rn−1|rn−2⟩ = (2 ⟨rn−3|rn−2⟩ ⟨rn−2| − ⟨rn−3|) |rn−2⟩
= 2 ⟨rn−3|rn−2⟩ − ⟨rn−3|rn−2⟩
= ⟨rn−3|rn−2⟩

(17)

It is trivial to continue this process,

⟨rn−3|rn−2⟩ = ⟨rn−3| (2 ⟨rn−3|rn−4⟩ |rn−3⟩ − |rn−4⟩)
= 2 ⟨rn−3|rn−4⟩ − ⟨rn−3|rn−4⟩
= ⟨rn−3|rn−4⟩

(18)

Finally, consider repeating the process until reaching
⟨r2|r1⟩,

⟨r2|r1⟩ = (2 ⟨t|r1⟩ ⟨r1| − ⟨t|) |r1⟩
= ⟨t|r1⟩
= ⟨t| (2 ⟨t|ψi⟩ |t⟩ − |ψi⟩)
= ⟨t|ψi⟩ .

(19)

We have therefore shown that ⟨rn|rn−1⟩ = ⟨t|ψi⟩. This
result should not be surprising because the reflection at
each step is effectively a constant angle rotation. Us-
ing this result, we can rewrite the recurrence relation in
Equation 16 as,

|rn⟩ = 2 ⟨t|ψi⟩ |rn−1⟩ − |rn−2⟩ . (20)

We now define F = ⟨t|ψi⟩. Given that the state |rn⟩ is
defined recursively, we can rewrite Equation 20 in terms
of the input states |ψi⟩ and |t⟩,

|rn⟩ = αn |t⟩+ βn |ψi⟩ , (21)

where αn and βn obey their own recurrence relations.
We will suppose the following form of Equation 21,

|rn⟩ = αn |t⟩ − αn−1 |ψi⟩ , (22)

with the recurrence relation,

αn = 2Fαn−1 − αn−2 (23)

and initial conditions of α0 = 1, α−1 = 0, and α−2 =
−1. We will first demonstrate that Equations 22 and
23 hold for n = 1, 2 and then prove that they hold for
all n using a proof by induction. The states |r1⟩ and
|r2⟩ are derived as follows using the recurrence relation
in Equation 20,

|r1⟩ = 2F |t⟩ − |ψi⟩ , (24)

|r2⟩ = 2F |r1⟩ − |t⟩
= 2F (2F |t⟩ − |ψi⟩)− |t⟩
= (4F 2 − 1) |t⟩ − 2F |ψi⟩

(25)

We now derive the coefficients using the proposed re-
currence relation in Equation 23,

α1 = 2Fα0 − α−1 = 2F (26)

α2 = 2Fα1 − α0

= 2F (2F )− 1

= 4F 2 − 1

(27)
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https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1103/PhysRevB.91.115137
https://doi.org/10.1103/PhysRevB.91.115137
https://doi.org/10.1103/PhysRevB.90.064425
https://doi.org/10.1103/PhysRevB.90.064425
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It is evident that the proposed recurrence relation
holds for n = 1, 2. Now suppose that the relation holds
for n = k and n = k − 1,

|rk⟩ = αk |t⟩ − αk−1 |ψi⟩ . (28)

Now consider n = k + 1 which according to Equation
20 is given by,

|rk+1⟩ = 2F |rk⟩ − |rk−1⟩ . (29)

Substituting the expressions for |rk⟩ and |rk−1⟩ gives,

|rk+1⟩ = 2F (αk |t⟩ − αk−1 |ψi⟩)
− (αk−1 |t⟩ − αk−2 |ψi⟩),

(30)

|rk+1⟩ = (2Fαk − αk−1) |t⟩ − (2Fαk−1 − αk−2) |ψi⟩ .
(31)

Utilising the proposed recurrence relation in Equation
23 we see that the coefficient of |t⟩ in Equation 31 is
simply αk+1 and the coefficient of |ψi⟩ is αk and the ex-
pression therefore reduces to the expected form, thereby
concluding the proof by induction,

|rk+1⟩ = αk+1 |t⟩ − αk |ψi⟩ . (32)

B. DERIVATION OF CLOSED FORM

In this section we derive a closed form for the terms in
the recurrence relation,

αn = 2Fαn−1 − αn−2, (33)

with initial conditions α−1 = 0 and α0 = 1. This is
a homogeneous linear recurrence and we can therefore
solve it using its characteristic equation,

x2 − 2Fx+ 1 = 0. (34)

The roots of Equation 34 are x± = F ±
√
F 2 − 1 which

gives a general solution,

αn = A+x
n
+ +A−x

n
−. (35)

Using the initial conditions we can fix,

A+ =
1

1− x−
x+

,

A− =
1

1− x+

x−

,

(36)

which gives a solution,

αn =
xn+1
+

x+ − x−
+

xn+1
−

x− − x+
. (37)

Substituting F = cos(θ) gives x± = e±iθ which we
substitute into Equation 37,

αn =
ei(n+1)θ

eiθ − e−iθ
+
e−i(n+1)θ

e−iθ − eiθ
. (38)

This simplifies to,

αn =
sin((n+ 1)θ)

sin(θ)
, (39)

which is the result used in the main paper.
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