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Contextuality, one of the strongest forms of quantum correlations, delineates the quantum world
and the classical one. It has been shown recently that some quantum models, in the form of infinite
one-dimensional translation-invariant Hamiltonians with nearest- and next-to-nearest-neighbor
interactions, have the lowest ground state energy density allowed in quantum physics. However,
these models all have local Hilbert space dimension larger than two, making the study of their
ground state behavior difficult on current qubit-based variational quantum simulation platforms.
In this work, we focus on the cost of simulating the local approximations of ground states of
these models using qubit-based parameterized quantum circuits. The local approximations, which
are 3-site reduced density matrices with local Hilbert space dimension three, are purified then
encoded into permutation-symmetric qubits. We develop a universal set of permutation-symmetry
preserving qubit-based gates, using them as an ansatz to simulate parameterized quantum circuits
designed for qutrits. These techniques allow us to assess the accuracy of simulating the purified
local ground states with respect to a fixed amount of classical and quantum resources. We found
that given the same quantum circuit and the number of iterations, more contextual ground states
with lower energy density are easier to simulate.
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I. INTRODUCTION

Exploring non-classical correlations present in many-
body quantum systems has been an impetus for quantum
simulation since its inception. While entanglement has al-
ways been the primary focus of this endeavor, the study of a
stronger form of quantum correlation—contextuality—has
recently been gaining popularity. Contextuality, both the
Kochen-Specker type (Budroni et al., 2022) and the Bell
type (Brunner et al., 2014; Cabello, 2021), has been shown

∗ These authors contributed equally to this work
† zizhu@uestc.edu.cn

to be the source of quantum advantages in specific tasks
in quantum computing (Bravyi et al., 2018; Howard et al.,
2014) and quantum machine learning (Anschuetz et al.,
2023).

In an earlier work by some of the authors (Yang
et al., 2022), we found several infinite one-dimensional
translation-invariant (TI) quantum Hamiltonians with
nearest- and next-to-nearest-neighbor interactions have the
lowest ground state energy density permissible in quantum
physics. This lower bound is numerically certified by a vari-
ant of the NPA-hierarchy (Navascués et al., 2007, 2008),
and the quantum Hamiltonian achieving the bound has
been found by optimizing the local observables of contextu-
ality witnesses derived from Bell inequalities and comput-
ing their the ground state with uniform matrix product state
(uMPS) algorithms (Cirac et al., 2021; Haegeman et al.,
2011; Vanderstraeten et al., 2019; Zauner-Stauber et al.,
2018). These quantum Hamiltonians, which are essentially
many-body quantum Bell inequalities (Cirel’son, 1980), de-
marcate quantum and post-quantum theories, providing a
conceptual way of experimentally refuting the universal va-
lidity of quantum physics (Yang et al., 2022). In addi-
tion, they can be used in self-testing protocols (Šupić and
Bowles, 2020) for many-body quantum systems, which has
recently been done for entangled states in a network sce-
nario (Šupić et al., 2023). Self-testing can be seen as a
method to separate classical control from quantum behav-
ior (Reichardt et al., 2013), leading to the central question
of this work: How hard is it to generate local approxima-
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tions of ground states of quantum Hamiltonians that reach
the lower bound?

In order to answer this question, we use variational quan-
tum algorithms (VQAs) (Cerezo et al., 2021) to simulate
the purification of local reduced density matrices of ground
states of quantum Hamiltonians exhibiting various degrees
of contextuality. However, since these Hamiltonians all
have local Hilbert space dimension 3 but our variational
simulator is based on qubits, we encode a qutrit state into a
pair of permutation-symmetric qubits. Exploiting permuta-
tion symmetry in many-body quantum systems allows us to
characterize various forms of quantum correlations in many
scenarios (Aulbach et al., 2010; Markham, 2011; Ribeiro
and Mosseri, 2011; Ribeiro et al., 2008; Tura et al., 2014,
2015; Wang and Markham, 2012). We also develop a qubit-
based ansatz inspired by recent ansätze based on tensor net-
work states (Ran, 2020; Rudolph et al., 2023). Compared
to earlier works using qubit-based variational algorithms to
simulate higher-dimensional quantum systems (Gard et al.,
2020; Han et al., 2024; Lyu et al., 2023; Meyer et al., 2023;
Sawaya et al., 2020), our ansatz preserves the permuta-
tion symmetry of the encoded states and allows arbitrary
2-qutrit gates to be implemented.

Using these techniques, we investigate the cost of lo-
cally simulating qutrit ground states of contextual quantum
Hamiltonians from (Yang et al., 2022) via qubit-based pa-
rameterized quantum circuits (PQCs). The cost is defined
by comparing the negative logarithmic fidelity per site (NLF-
per-site) of the PQC-generated state and the purified local
ground state, with a fixed number of layers for the quantum
circuit, thus fixing both the number of classical variational
parameters and quantum gates. In addition, we also fix the
number of iterations run by the classical optimization part
of the VQA. A lower NLF-per-site signifies the two states
are closer, making the simulation better. We observe that
the cost to prepare the ground states that can exhibit con-
textuality are more expensive than the ground states that
cannot. When the amount of violation becomes larger, the
cost is gradually reduced while it still costs more resources
than generating the states that cannot exhibit contextual-
ity. When comparing these results to Hamiltonians which
do not exhibit contextuality (often having separable ground
states), the ground state energy density serves as a reli-
able indicator of the cost of approximating the local ground
states of these classes of Hamiltonians with various degrees
of contextuality witness violation.

II. QUANTUM HAMILTONIANS AND LOCAL
APPROXIMATION OF THEIR GROUND STATES

In this work, the Hamiltonians we use are infinite one-
dimensional translation-invariant with nearest- and next-
to-nearest neighbor interactions, with each party having a
choice of one of two dichotomic observables Ox , Oy with
outcomes ±1. This class of Hamiltonians is called the 322-

type in (Yang et al., 2022). They come from classical TI
probability distributions, which form a convex polytope
whose facets are contextuality witnesses:
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After choosing suitable observables Σx and Σy , if the
ground state energy density of (2) is smaller than L, the
quantum system is contextual. It is shown that in some 322-
type Hamiltonians, to reach the lower limit of the ground
state energy density, the local Hilbert space dimension must
be at least 3 (see Table. I).

The ground state of Hamiltonian (2) is represented by a
uMPS. A uMPS |φ(A)〉 with the bond dimension D and the
physical dimension d defined on an infinite 1D TI chain is
parameterized by a set of D×D matrices As(s = 1, 2, . . . , d).
The overall TI variational ground state then can be written
as

|φ(A)〉=
∑

s

(. . . Asi−1Asi Asi+1 . . . )|s〉, (3)

and represented diagrammatically as

|φ(A)〉= · · · A A A A A · · ·

Since the ground state is defined on an infinite chain, we
can only simulate its local approximation. The 3-site local
reduced state of the ground state |φ(A)〉 is

ρ3 = l

A A A

Ā Ā Ā

r (4)

Here, l and r are the left and right fixed points of the trans-
fer matrix T =

∑

s Ās ⊗ As with non-degenerate leading
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TABLE I Five many-body contextuality witnesses can be maximally violated by the ground states of 1D infinite TI Hamiltonians, where
L is classical bound, J ≡ {Jx , Jy , JAB

x x , JAB
x y , JAB

y x , JAB
y y , JAC

x x , JAC
x y , JAC

y x , JAC
y y } is the coefficients of contextuality witness which is also couplings of

the Hamiltonian (2), and QLimit is the maximal quantum violation obtained when the local physical dimension is 3.

No. L Jx Jy JAB
x x JAB

x y JAB
y x JAB

y y JAC
x x JAC

x y JAC
y x JAC

y y QLimit

1 -6 -6 0 2 3 3 -2 3 -1 -1 1 -6.32747

2 -6 -4 2 2 2 2 -4 1 -1 -1 3 -6.33712

3 -3 -3 1 1 1 1 -1 1 0 -1 1 -3.20711

4 -4 -2 -2 -2 1 -1 -2 1 0 2 1 -4.14623

5 -8 -11 1 5 2 2 -1 4 -1 -2 1 -8.12123

eigenvalue 1. Diagrammatically, l and r satisfy

l

A

Ā

= l

A

Ā

r = r

Besides, l and r satisfy the normalization condition
Tr(l r) = 1, or, diagrammatically,

l r = 1

Unless D = 1, ρ3 is a mixed state. To prepare ρ3 via
quantum circuits, we need to purify ρ3 to a pure state |ψ〉.
First, we perform Cholesky decomposition on l and r:

l = L† L, r = RR†.

ρ3 is then represented by

ρ3 =
L

L̄

A A A

Ā Ā Ā

R

R̄

Then, we split ρ3 into top and bottom parts. The top part
is the target state |ψ〉

|ψ〉=
L

D

D
A A A R

D

D

However, the physical dimension of L and R is not d, so we
express L and R using k = ⌈logd D⌉ tensors with physical
dimension d (assuming D > d). If logd D = k is an integer,

we repeatedly apply singular value decompositions (SVDs)
to L and R

L

dk

−→
SVDD

L2

d

d D

dk−1

L1 · · · −→
SVD

Lk

d

· · ·

d

L1

Similarly, we repeatedly do SVDs on R and get tensors
{R1, · · · , Rk}. Replacing L and R with {L1, · · · , Lk} and
{R1, · · · , Rk} respectively, we finally get the purified state.
If logd D is not an integer, we enlarge the physical dimen-
sion of L to dk by adding zeros to L, and then repeatedly
do SVDs as before.

III. SIMULATING QUTRITS ON QUBIT-BASED
PARAMETERIZED QUANTUM CIRCUITS

Even though the purification procedure above works for
any local Hilbert space dimension, the Hamiltonians max-
imally violating the five witnesses in Table. I all have local
dimension 3, which will be our focus for the rest of this
work. After obtaining the purified qutrit MPS via the pu-
rification procedure, we need to variationally prepare them
using PQCs. A good ansatz allows the simulation to be
done efficiently and accurately. The ansatz we use con-
sists of stacked linear layers of two-qutrit parameterized
unitaries, similar to the one used for qubits in Ref. (Ran,
2020; Rudolph et al., 2023). We purify the 3-site local re-
duced state to a 7-site pure state |ψ(A, L1, L2, R1, R2)〉, and
the quantum circuit with two layers is given by Fig. 1, where
{θ k} is a set of parameters and {U(θ k)} is a set of parame-
terized two-qutrit unitaries. The ansatz above can approxi-
mate |ψ〉 up to very high accuracy, with proper optimization
techniques (Rudolph et al., 2023). It is also a typical case
of the finite local-depth circuit (FLDC) described in (Zhang
et al., 2024), which is shown to be free from the barren
plateaux problem.

However, {U(θ k)} in Fig. 1 are qutrit unitaries. In or-
der to simulate the purified local ground states on qubit-
based platforms, we encode each qutrit into a pair of
permutation-symmetric qubits and develop a universal set
of permutation-symmetry preserving qubits gates to ap-
proximate any 2-qutrit gate. Existing encoding methods
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FIG. 1 Example of quantum circuit with two layers for 7-site MPS
|ψ(A, L1, L2, R1, R2)〉.

which allow the simulation of high-dimensional quantum
systems on qubit-based VQAs typically use standard binary,
Gray code, or unary encoding (Sawaya et al., 2020). They
do not guarantee that the encoded states stay in the en-
coded subspace through gate operations. Our gate oper-
ations preserve the symmetry of encoded qubits. Similar
encoding methods based on symmetry has been applied to
quantum chemistry simulation (Gard et al., 2020), varia-
tional quantum spin eigensolver (Lyu et al., 2023), varia-
tional quantum machine learning (Meyer et al., 2023), and
multilevel variational spectroscopy simulator (Han et al.,
2024). However, as noted below, our method differs from
these one substantially.

The Hilbert space of a d-dimensional (d ≥ 3) qudit is iso-
morphic to the symmetric subspace Hs of the n-qubit sys-
tem, where n= d − 1 and Hs is spanned by the Dicke basis
{|Sm〉 : 0≤ m≤ n} (Dicke, 1954)

|Sm〉=
�

n
m

�−1/2∑

perm

|1〉⊗m |0〉⊗(n−m) . (5)

|Sm〉 is the coherent superposition of all permutations of
the computational basis states with m qubits being |1〉
and n − m qubits being |0〉. The Hilbert space for two
qubits H4 can be decomposed into the direct sum of the
three-dimensional symmetric subspace Hs and the one-
dimensional anti-symmetric subspace Ha spanned by the
anti-symmetric basis |Sa〉 = (|01〉 − |10〉)/

p
2, i.e. H4 =

Hs
⊕

Ha.
Denote the qutrit Hilbert space by H3 with basis
{|0〉 , |1〉 , |2〉}. For a qutrit state |ψ〉 = ψ0 |0〉 + ψ1 |1〉 +
ψ2 |2〉, we define the symmetric encoded state as |ψ〉enc =
ψ0 |S0〉 + ψ1 |S1〉 + ψ2 |S2〉, where |S0〉 = |00〉 , |S1〉 =

1p
2
(|01〉+ |10〉), |S2〉= |11〉.
Qubit gates may map a symmetric state |ψ〉enc out of Hs.

To make sure we always operate in Hs thus do not increase
the total Hilbert space dimension of the VQA, we need gates
that are symmetry-preserving. Even though Ref. (Gard
et al., 2020; Lyu et al., 2023) both incorporate symmetries
into circuit design, the space they considered is the linear
span of all permutations of the state |1〉⊗m |0〉⊗(n−m) in the

Dicke state |Sm〉. Moreover, the circuits they used are de-
signed to preserve different kinds of symmetries (like total
spin), which helps to improve accuracy and reduce compu-
tational resources. Our circuit design contains a universal
gate set for simulating any qutrit gates with qubit gates, and
the gate set is symmetry-preserving.

Let U ∈ U(3) be a qutrit gate. Then, U can be written as

U =
2
∑

i, j=0

ui j |i〉 〈 j| . (6)

Applying the symmetric state encoding on the computa-
tional basis states |i〉 and 〈 j| , i, j ∈ {0,1, 2}, U can be en-
coded as Ũ in terms of Dicke basis {|S0〉 , |S1〉 , |S2〉}:

Ũ =
2
∑

i, j=0

ui j |Si〉 〈S j | . (7)

However, Ũ is not a unitary in U(4) because the anti-
symmetric component is missing. By adding a projector
P = |Sa〉 〈Sa|, where |Sa〉 = (|01〉 − |10〉)/

p
2 is the anti-

symmetric basis of Ha, U can be encoded as a two-qubit
unitary Uenc:

Uenc = Ũ + P. (8)

The fact that Uenc is a unitary can be seen from

UencU
†
enc = (Ũ + P)(Ũ + P)†

=(
2
∑

i,k=0

uik |Si〉 〈Sk|+ P)(
2
∑

t, j=0

ut j |St〉 〈S j |+ P)†

=
2
∑

i, j=0

(
2
∑

k=0

uiku∗k j) |Si〉 〈S j |+ |Sa〉 〈Sa|

=
2
∑

i, j=0

δi j |Si〉 〈S j |+ |Sa〉 〈Sa|

=
2
∑

i=0

|Si〉 〈Si |+ |Sa〉 〈Sa|= I4

(9)

Uenc is also symmetry-preserving, since U operating on
|ψ〉 is equivalent to Uenc operating on |ψ〉enc:

Uenc |ψ〉enc

=(Ũ + P)|ψ〉enc

=(
2
∑

i, j=0

ui j |Si〉 〈S j |+ |Sa〉 〈Sa|)(
2
∑

k=0

ψk |Sk〉)

=
2
∑

i, j=0

ui jψ j |Si〉= (U |ψ〉)enc

(10)

Universal gate sets for higher-dimensional gates have
been studied since the 1990s (Gottesman, 1999; Luo
and Wang, 2014; Muthukrishnan and Stroud Jr, 2000).
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V 01
enc(θ) =

Ry(−π
2
)

V (θ)

Ry(
π
2
)

(a) Synthesis of V 01
enc(θ ).

V 02
enc(θ) =

V (θ)

(b) Synthesis of V 02
enc(θ ).

V 12
enc(θ) =

Ry(
π
2
)

X V (θ) X

Ry(−π
2
)

(c) Synthesis of V 12
enc(θ ).

FIG. 2 The circuit for synthesizing two-qubit symmetry-preserving
unitaries V 01

enc(θ ) in (a), V 02
enc(θ ) in (b) and V 12

enc(θ ) in (c). • denotes
the control state is |1〉, and ◦ denotes the control state is |0〉. R y
represents the rotation-y gate, X denotes Pauli X gate, and V (θ ) ∈
U(2) has the general form of (13).

Ref. (Di and Wei, 2013, 2015) provide an optimal method
for synthesizing qutrit unitaries with a universal gate set
using quantum Shannon decomposition (Shende et al.,
2006). Using this gate encoding method, we encode each
qutrit gate in the universal qutrit gate set into symmetry-
preserving qubit gates. Then, we propose a universal qubit
gate set to approximate those symmetry-preserving qubit
gates.

Given an arbitrary single-qutrit unitary U ∈ U(3), using
Gaussian elimination, it can be decomposed as

U = V 01V 02V 12, (11)

where V i j ∈ U(3), (i, j) ∈ {(0,1), (0,2), (1,2)} are two-level
qutrit unitary gates with the general form

V 01=





θ1 θ2 0
θ3 θ4 0
0 0 1



 , V 02=





θ1 0 θ2

0 1 0
θ3 0 θ4



 , V 12=





1 0 0
0 θ1 θ2

0 θ3 θ4



 .

(12)
Here, θ1,θ2,θ3 and θ4 are the entries of an qubit unitary
V (θ ) ∈ U(2):

V (θ ) =

�

θ1 θ2

θ3 θ4

�

, (13)

By implementing the gate encoding method on V i j(θ ),
we obtain the two-qubit symmetry-preserving unitary
V i j

enc(θ ). The circuit for synthesizing V 01
enc(θ ), V 02

enc(θ ) and
V 12

enc(θ ) are shown in Fig. 2.
We need to encode two-qutrit unitaries into qubit gates

as required by our ansatz. The Ref.(Di and Wei, 2015) pro-
vides a method consisting of single-qutrit gates, controlled
diagonal gates and uniformly controlled R y rotation gates
to synthesize a generic N -qutrit (N ≥ 2) circuit. Combined
with the method for synthesizing the controlled diagonal

gates proposed in (Di and Wei, 2013), an arbitrary two-
qutrit unitary gate U ∈ U(9) can be synthesized as shown
in Fig. 3.

The circuit in Fig. 3 includes only two types of qutrit
gates: (i) single-qutrit gates and (ii) qutrit two-level con-
trolled rotation gates, both of which can be encoded by
our gate encoding method. All encoded single-qutrit gates
can be decomposed into two-qubit gates using the decom-
position in (11) and synthesis method in Fig. 2. For the
encoded qutrit two-level controlled rotation gates, accord-
ing to the specific state of the control, they can be decom-
posed into qubit-based gates in Fig. 4. Note that the two-
qubit gate V i j

enc in Fig. 4 is the two-qubit gate in Fig. 2 for
(i, j) ∈ {(0,1), (0,2), (1,2)}.

From the state encoding method, we know that the n-
qutrit Hilbert space is isomorphic to the symmetric subspace
of the 2n-qubit space. From the gate encoding method, we
know the encoded qutrit gate is symmetry-preserving. From
these plus the universality of qutrit gates proposed in (Di
and Wei, 2015), we conclude that the qubit-based gates in
Fig. 2 and in Fig. 3 form a universal gate set that can ap-
proximate arbitrary symmetry-preserving qubit-gates.

IV. COST OF LOCALLY APPROXIMATING GROUND
STATES OF CONTEXTUAL HAMILTONIANS

We apply the state and gate encoding methods presented
above to our qubit-based PQC to locally simulate qutrit
ground states of five types of Hamiltonians in (2). The
Hamiltonians have different sets of couplings J given by
five contextuality witnesses shown in Table. I. Given each
contextuality witness, the set of couplings J in Hamilto-
nian (2) is determined and each of qutrit local observables
{Σa : a ∈ {x , y}} being a real projective measurement is
parameterized as

Σa(wa) = (e
∑3

k=1 wakSk)Λa(e
∑3

k=1 wakSk)T , (14)

where Λa is a diagonal matrix with entries ±1, {Sk} are the
basis of three-dimensional skew-symmetric matrices space,
and wa ≡ (wa1, wa2, wa3) are real parameters. Here, all pa-
rameters are denoted as W ≡ (wx , w y). Then, given a set of
parameters W , the Hamiltonian is specified and the ground
state can be computed using MPS-based algorithms such
as the time-dependent variational principle (TDVP) algo-
rithm (Haegeman et al., 2011) or the variational uniform
matrix product state (VUMPS) algorithm (Vanderstraeten
et al., 2019; Zauner-Stauber et al., 2018).

Beginning with a set of random parameters W , the local
observables are optimized using gradient descent aiming at
finding the lowest possible ground state energy densitiy. We
follow the trajectory of the gradient descent and obtain a
sequence of Hamiltonians having the same J but differ-
ent local observables. From these, we obtain a sequence
of qutrit MPS ground states of contextual Hamiltonian ex-
hibiting different amounts of quantum violations. In Fig. 5,
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U(θ) =

U(θ1)

1

U(θ2)

2 R12
y (θ1)

1

R12
y (θ2)

2 U(θ3)

2 R01
y (θ3)

1

R01
y (θ4)

2 U(θ4)

0 R12
y (θ5)

1

R12
y (θ6)

2 U(θ5)

2

(a) Synthesis of an arbitrary two-qutrit unitary U ∈ U(9) consisting of qutrit-controlled unitary gates and qutrit two-level controlled
rotation gates. ◦ denotes the control, with the number (0,1 or 2) inside representing the state it is in. Note that each qutrit-controlled
unitary gate can be further decomposed into single-qutrit gates and qutrit two-level controlled rotation gates, with the decomposition

shown in (b).

U(α)

m

=

V (α1) R01
z (α1)

m

R02
z (α2)

m Pm(α3)

V (α1)†

(b) Synthesis of qutrit controlled unitary gates in (a). ◦ denotes the control in state |m〉 with m= 0,1, 2. R01
z and R02

z are qutrit
two-level rotation gates, Pm is the qutrit phase gate with respect to the control state |m〉, and V ∈ U(3) is a single-qutrit gate

constrained by the diagonal decomposition U = V DV † for a diagonal matrix D.

FIG. 3 The circuit for synthesizing an arbitrary two-qutrit unitary U ∈ U(9). (a) Synthesis of U in terms of qutrit controlled unitary gates
and qutrit two-level controlled rotation gates. (b) Synthesis of qutrit controlled unitary gates in (a) in terms of single-qutrit gates and
qutrit two-level controlled rotation gates. Combing (a) and (b), the circuit for synthesizing two-qutrit unitary U consists only single-qutrit
gates and qutrit two-level controlled rotation gates.

V ij
enc(θ)

(a) Circuit of encoded qutrit two-level controlled rotation gates
when the control state is |0〉 in Fig. 3.

Ry(
π
2
)

V ij
enc(θ)

Ry(−π
2
)

(b) Circuit of encoded qutrit two-level controlled rotation gates
when the control state is |1〉 in Fig. 3. Here, R y is the single-qubit

rotation gate.

V ij
enc(θ)

(c) Circuit of encoded qutrit two-level controlled rotation gates
when the control state is |2〉 in Fig. 3.

FIG. 4 The circuit for the encoded qutrit two-level controlled ro-
tation gates in Fig. 3. According to the specific state of the control,
they can be decomposed into three cases. (a) Circuit for encoded
qutrit two-level controlled rotation gates when the control state
is |0〉. (b) Circuit for encoded qutrit two-level controlled rotation
gates when the control state is |1〉. (c) Circuit for encoded qutrit
two-level controlled rotation gates when the control state is |2〉. In
all subplots, the two-qubit gate V i j

enc is the two-qubit gate in Fig. 2
for (i, j) ∈ {(0,1), (0,2), (1,2)}.

each point represents a specific Hamiltonian on the trajec-
tory and different colors represent different bond dimen-
sions D of the uMPS ground states. For each model, five pos-
sibilities D = 5, 6,7, 8,9 and 3-site local approximations of
ground states are considered. Using the purification proce-

dures in Sec. II, we obtain the purified ground states, which
are 7-site qutrit MPSs |ψ(A, L1, L2, R1, R2)〉 with repsect to
D ∈ {5, 6,7,8, 9}. These qutrit states are then generated
by the quantum circuit consisting of stacked two layers of
two-qutrit unitaries in Fig. 1.

To simulate the purified qutrit states on qubit-based
quantum circuits, we encode all these 7-site qutrit MPSs
|ψ(A, L1, L2, R1, R2)〉 into the 14-site qubit states by the sym-
metric state encoding method, and the encoded qubit states
are our target states |ψ〉T. Besides, using the gate en-
coding method and the circuits for synthesizing symmetry-
preserving gates, each qutrit gate U(θ ) in the quantum cir-
cuit in Fig. 1 can be synthesized by the circuit consisting of
qubit gates Uenc(θ ) with trainable parameters θ in Fig. 6.
Then, we use the same qubit-based PQC to simulate all the
target 14-site qubit states. This means that all target states
are approximated by the same quantum circuit. Each state
|ψ〉QC generated by the quantum circuit is truncated after
500 iterations. Then, we calculate the negative logarithmic
fidelity per site (NLF-per-site) F between the target state
|ψ〉T and |ψ〉QC:

F = −
ln
Æ

〈ψQC|ψ〉T〈ψ|TψQC〉
N

, (15)

where N is the number of qubits for the target state. In
this situation, if two target states |ψ1〉T and |ψ2〉T have the
same bond dimension D, and |ψ1〉QC has a lower NLF-per-
site than |ψ2〉QC, then we conclude that preparing |ψ1〉T
consumes fewer circuit resources than preparing |ψ2〉T.

We carry out the simulation on the MindQuantum plat-
form (MindQuantum Developer, 2021) and the results are
shown in Fig. 5. Each sub-figure corresponds to one contex-
tuality witness, and each point in the sub-figure corresponds
to one ground state of the Hamiltonian with form (2) when



7

(a) No.1 in Table I

-6.3-6.25-6.2-6.15-6.1-6.05-6
10-9

10-8

10-7

10-6

10-5

10-4

(b) No.2 in Table I

-6.35-6.3-6.25-6.2-6.15-6.1-6.05-6
10-9
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10-7

10-6
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(c) No.3 in Table I
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(d) No.4 in Table I
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(e) No.5 in Table I
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10-9
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10-5

10-4

10-3

FIG. 5 The NFL-per-site of purified 3-site local approximation of ground states with bond dimensions D = 5,6, 7,8, 9 of five contextuality
witnesses in Table I versus a sequence of ground state energy densities when the local dimension d = 3. All the target states |ψ〉T are the
14-site qubit state. In each subplot, each point represents a specific Hamiltonian on the trajectory and different colors represent different
bond dimensions D of the uMPS ground states.
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FIG. 6 Symmetry-preserving 4-qubit circuit for synthesising arbitrary two-qutrit unitary gates U(θ ) in Fig. 1.
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the local physical dimension is 3. we find that the circuit re-
sources to simulate the ground states that can exhibit con-
textuality are more expensive than the ground states that
cannot. As shown in Table. II, using the same circuit re-
sources as generating the contextual ground states, the NLF-
per-site of each ground state with the ground state energy
density being the classical bound is much smaller than the
contextual ones. More interestingly, as the ground state en-
ergy density decreases, or equivalently, as the amount of
violation to contextuality witness becomes larger, the NLF-
per-site becomes smaller. This indicates that the stronger
contextuality exhibited by the ground state, the less circuit
resources are required to prepare the state.

TABLE II NLF-per-site for the ground state that can not exhibit
contextuality and have the the ground state energy density being
the classical bounds.

No. L D NLF-per-site

1 -6 1 3.700743415417188e-17

2 -6 1 1.110223024625156e-16

3 -3 1 2.590520390792030e-16

4 -4 1 2.220446049250312e-16

5 -8 3 4.344672769700346e-14

V. CONCLUSIONS

In this paper, we investigate the connection between con-
textuality and circuit resources required to simulate local
approximation to the ground states of maximally contextual
quantum Hamiltonians. Since maximal quantum violation
demands qutrit systems, we propose a symmetric encoding
framework that enables the simulation of any qutrit state
using qubit-based parameterized quantum circuits. We
found that generating ground states exhibiting contextual-
ity consumes more circuit resources than those that do not
exhibit contextuality. We find that, given the same amount
of classical and quantum resources, the more contextual a
Hamiltonian becomes, the easier it is to faithfully simulate
its local ground state. High-dimensional quantum circuit
platforms have wide applications in the fields of quantum
computing and quantum simulation. Our proposed univer-
sal gate set plays a central role in this context. However,
considering the synthesis of high-dimensional gates, there
is room for improvement in the number of CNOTs, multi-
controlled gates, and the corresponding circuit structure in
the future.
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