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Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks
with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC
framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode
optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scal-
able and practically measurable reservoir that outperforms traditional classical reservoir computing
in both memory retention and nonlinear data processing. We evaluate the reservoir’s performance
through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the
classification of sine-square waveforms. Our results demonstrate significant enhancements in per-
formance with increased numbers of atoms, supported by non-destructive, continuous quantum
measurements and polynomial regression techniques. This study confirms the potential of QRC to
offer a scalable and efficient solution for advanced computational challenges, marking a significant
step forward in the integration of quantum physics with machine learning technology.

I. INTRODUCTION

Quantum reservoir computing (QRC) has emerged as
a groundbreaking machine learning framework for tem-
poral information processing (i.e., processing of time se-
ries) that is capable of addressing intricate tasks with
remarkable efficiency and minimal energy consumption
[1–17]. There are also static “variants" of QRC that pro-
cess vectors or single quantum states rather a time se-
ries, which should properly be referred to as quantum
random kitchen sinks or quantum extreme learning ma-
chines [18], for instance, [19–21]. The tasks addressed by
QRC fall into two main categories: classical tasks that
require quantum memories for processing nonlinear func-
tions and datasets [1, 4, 5], and quantum tasks focused
on recognizing quantum entanglements [19], measuring
dispersive currents [22], and predicting molecule struc-
tures [21]. Of these categories, classical tasks provide
a clearer basis for comparing the performance of QRC
against classical reservoir computing (CRC) [22–27].

Proposals for implementing quantum reservoirs have
been advanced using various platforms, including cou-
pled networks of qubits [1–3, 9, 10, 14, 20, 21], fermions
[19], harmonic oscillators [8], Kerr nonlinear oscillators
[22], Rydberg atoms [6], and optical pulses [15]. Increas-
ing the number of physical sites, such as qubits, oscilla-
tors, or atoms, within a quantum network can dramati-
cally expand the Hilbert space by exponentially increas-
ing the number of quantum basis states. Each of these
basis states functions as a node within the quantum neu-
ral network, mirroring the role of a node in a classical
neural network [1] or an optical neural network [28, 29].
The exponential scalability of the basis states involved in
computation underlies the advantage of QRC over CRC,
with quantum phase transitions further enhancing the
performance [9, 10]. However, the proposed implemen-

tations discussed above face challenges in scalability due
to the considerable difficulty in establishing connections
between each new site and all existing sites in a quantum
network. Particularly, the readouts of information from
quantum reservoirs have been proposed through various
methods, including measuring probabilities on quantum
basis states [4], excitations of qubits [1], occupations on
lattice sites [19], and energies of oscillators [22]. How-
ever, employing these conventional measurement tech-
niques poses a significant hurdle to data processing ef-
ficiency. These methods often necessitate quantum to-
mography, which costs the complete destruction of the
quantum reservoir to acquire readouts at each time step.
Consequently, they demand a substantial number of re-
peated time evolutions, resulting in a considerable over-
head.

In this paper, we present a quantum reservoir that of-
fers both convenient scalability and practical measurabil-
ity, achieved through the coupling of atoms and photons
in an optical cavity. To assess its computing prowess,
we evaluate its performance on two classical tasks: the
Mackey-Glass task [1], which demands long-term mem-
ory for predicting the future trend of an input function,
and the sine-square waveform classification task [4, 16],
which requires nonlinearity of the reservoir to capture
sudden, high-frequency shifts in a linearly inseparable in-
put dataset. These classical inputs are embedded in the
coherent driving of the cavity photon field, enabling the
performance comparison between QRC and CRC.

Our quantum reservoir is more conveniently scalable
compared to prior proposals, since newly added atoms
automatically couple with the existing atoms through
their mutual connections with the cavity photon field.
The performance improvement associated with this scal-
ability is evidenced by the diminishing gap between the
actual and target outputs as the number of atoms in-

ar
X

iv
:2

40
5.

04
79

9v
1 

 [
qu

an
t-

ph
] 

 8
 M

ay
 2

02
4



2

Input

Quantum Optical
      Reservoir

Observable
Readouts

Trained
Weights 

Output 

Coherent
Drive

FIG. 1: Setup of quantum optical reservoir computing. The
reservoir is composed of atoms inside an optical cavity, ex-
hibiting diverse detunings and couplings across various spatial
positions. The input function is integrated into the coherent
driving of the cavity. Readouts are obtained via continuous
measurements of photonic quadratures and atomic spin chan-
nels. A machine learning process is employed to train the
mapping from the readouts to the output.

creases. Practical readouts are obtained through a con-
tinuous quantum measurement, where the cavity field
provides two readouts linked to two photonic quadra-
tures, and each atom provides two readouts linked to two
atomic spin channels [30–36]. In contrast to the tomogra-
phy measurements in the prior methods, our continuous
measurement scheme is considered non-destructive while
its back-action on the reservoir is fully incorporated into
our model. The exponential scaling of basis states un-
derlying the limited number of observable readouts still
plays an important role of making the system dynamics
more nonlinear and more complex, ensuring the excellent
performance of QRC.

II. RESULTS

A. Quantum Optical Reservoir

The components of quantum reservoir computing in-
clude the input, the quantum reservoir, the readouts,
and the output, as illustrated in Fig. 1. We employ
a quantum optical system encompassing two-level atoms
inside a single-mode optical cavity as the quantum reser-
voir. In the literature, this system is commonly known as
the Jaynes-Cummings model for a single atom [37] and
the Tavis-Cummings model for multiple atoms [38]. The
time-independent part of the Hamiltonian is expressed as

H0 = ωcc
†c+

∑
i

ωiσ
†
iσi +

∑
i

gi

(
c†σi + cσ†

i

)
, (1)

where c represents the photon annihilation operator, σi =
|g⟩ ⟨e|i denotes the lowering operator of the i-th atom

with |g⟩ (|e⟩) representing the ground (excited) state, ωc

(ωi) describes the detuning between the coherent driving
and the cavity (atomic) frequencies, and gi is the electric-
dipole coupling strength between the i-th atom and the
cavity mode. For QRC, it is essential to select either
various detuning ωi or various coupling strength gi to
prompt the atoms to produce non-identical memories,
thus enhancing their overall capability. This model can
be practically implemented using cold atoms in an optical
cavity [39, 40], where optical tweezers can be used to
trap and measure individual atoms at different positions
[41, 42]. Alternatively, quantum dots can also be utilized
to induce random positioning, detuning, and coupling
[43]. The input function, denoted as f (t), is integrated
into the time-dependent coherent driving term

H1 (t) = iϵf (t)
(
c− c†

)
, (2)

where ϵ is the driving strength.
The readouts from the quantum optical reservoir are

determined through continuous quantum measurement,
as elaborated in the “Methods” section. In the ideal sce-
nario where the number of measurements approaches in-
finity, the readouts, denoted as xn (t), are directly cor-
related with the expectation values of experimental ob-
servables. The observables of the cavity field stem from
the homodyne detection of two orthogonal quadratures
[30, 31, 44]

Q = c+ c†, (3)

P = i
(
c− c†

)
,

and the observables of the atomic spontaneous emission
are associated with the Pauli operators [45]

σx,i = σi + σ†
i , (4)

σy,i = i
(
σi − σ†

i

)
.

It has been demonstrated that these observables of the
cavity and atoms can be simultaneously measured [32–
35]. To establish a linear regression for training and test-
ing the reservoir computer, the relation between read-
outs and observables is constructed as x1 (t) = ⟨Q⟩,
x2 (t) = ⟨P ⟩, x3 (t) = ⟨σx,1⟩, x4 (t) = ⟨σy,1⟩, and so forth.
This leads to Nreadouts = 2Natom + 2, with Nreadouts

and Natom the number of readouts and atoms, respec-
tively. To enhance performance, a polynomial regression
is also employed by incorporating both the linear and all
the quadratic terms of these expectation values into the
readouts. This includes terms such as ⟨Q⟩2and ⟨P ⟩⟨σx,i⟩,
resulting in Nreadouts = 2N2

atom+7Natom+5. The expec-
tation values are calculated using the density operator,
ρ (t), whose dynamics, averaged over an infinite number
of measurements, is idealized as the deterministic master
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equation

dρ

dt
= −i [H0 +H1 (t) , ρ]+2D [

√
κcc] ρ+2

∑
i

D [
√
κiσi] ρ,

(5)
where the Lindblad superoperator is defined as

D [a] ρ = aρa† − 1

2

(
a†aρ+ ρa†a

)
(6)

for any collapse operator a. To roughly maintain a con-
stant total decay rate κ as Natom increases, the de-
cay rate of the cavity or each atom is assumed to be
κc(i) = κ/ (2Natom + 2). A higher κ reduces the uncer-
tainty in the readout measurement, commonly referred
to a strong measurement, while a lower κ corresponds to
a weak measurement [36].

Time discretization is essential within the framework
of quantum reservoir computing [1]. The discretized time
is expressed as tk = k∆t, where the integer k denotes the
time index and ∆t represents the time step. During the
time interval from tk−1 to tk, the discretized input main-
tains a constant value fk = f (tk), where f (tk) originates
from Eq. (2). The discretized readouts are sampled at
tk as xkn = xn (tk), where a constant bias term xk0 = 1
is also introduced.

The relationship between the readouts and output is
trained through a learning process. Let ȳk represent the
target output capturing some key features of the input
fk. The objective of training is to determine the readout
weights Wn in order to achieve the actual output

yk =
∑
n

xknWn, (7)

such that the normalized root mean square error

NRMSE =
1

ȳmax − ȳmin

√√√√∑
k

(yk − ȳk)
2

L
(8)

is minimized, where L is the number of time steps in
the training period. The approach for this minimization
is discussed in “Methods”. To test the performance of
reservoir computing, newly generated xkn and ȳk in the
testing period, along with the trained weights Wn, are
utilized to calculate the NRMSE.

B. Mackey-Glass task

The Mackey-Glass task serves as a test for long-term
memory, demanding the reservoir to retain past informa-
tion from the input function to forecast its future behav-
ior. The input function is generated from the Mackey-
Glass equation

df (t)

dt
=

βf (t− τM )

1 + f10 (t− τM )
− γf (t) , (9)
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FIG. 2: Input and readouts for the Mackey-Glass task. (a)
The input function, fk, divided into memory fading, training,
and testing zones. (b)-(e) The corresponding readouts from a
single-atom reservoir with ω1 = 20 and g1 = 30. Parameters:
Delay = 20, κ = 10, ωc = 40, and ϵ = 20.

where the parameters β = 0.2, γ = 0.1, and τM = 17 are
commonly accepted standard values in the chaotic regime
[1, 4, 7]. We apply a buffer by discarding the first 1000
time units in Eq. (9), thus considering the discretized
function fk = f (t+ 1000) as the actual input, with dis-
cretized time t = kdt, as depicted in Figure 2(a). The
time series is sampled with a time step of dt = 1. The
target output, ȳk, predicting the future of the input func-
tion with a time Delay, is constructed as ȳk = fk+Delay.

The proposed quantum optical reservoir is highly com-
patible with the Mackey-Glass task, as it exhibits dis-
cernible responses to various input waveforms, which are
quantified by the readouts of observables illustrated in
Figure 2(b)-(e). The time period for the simulation is
divided into three intervals for the purposes of memory
fading, training and testing. The memory fading phase
guarantees that during training and testing, the read-
outs depend solely on the input function rather than the
initial state of the master equation.

Figure 3 illustrates the performance enhancement as
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FIG. 3: Testing result for the Mackey-Glass task with various
reservoir scales. (a) NRMSE plotted against the number of
neurons, where readouts are obtained from all neurons. Blue
lines: fixed gi = 30 for all atoms and ωi = 20 for one atom,
ωi = [0, 40] for two atoms, ωi = [0, 20, 40] for three atoms,
ωi = [0, 10, 30, 40] for four atoms, and ωi = [0, 10, 20, 30, 40]
for five atoms. Green lines: fixed ωi = 20 for all atoms
and gi = 30 for one atom, gi = [10, 50] for two atoms,
gi = [10, 30, 50] for three atoms, gi = [10, 20, 40, 50] for four
atoms, and gi = [10, 20, 30, 40, 50] for five atoms. Solid lines:
regular linear regression. Dashed lines: polynomial regression
incorporating both linear and quadratic terms of observables.
Red line: CRC averaging 1000 random trajectories on the
echo state network. (b) NRMSE as a function of the num-
ber of hidden (unmeasured) atoms in QRC, while maintaining
measurement of 4 specified neurons from the cavity field and
the particular atom (denoted as the 0-th atom) with g0 = 30
and ω0 = 20. (c)-(d) Actual (red) and target (blue) outputs
from QRC with one atom (linear regression) and five atoms
(polynomial regression), corresponding to the points marked
by letters “c” and “d” in panel (a), respectively. Parameters:
Delay = 20, κ = 10, ωc = 40, ϵ = 20.

the quantum reservoir scales up, demonstrating the scal-
ability of QRC. The scale of QRC is determined by two
factors: (i) the number of observables, which is deter-
mined by the number of channels one wishes to measure,
with a maximum availability of 2Natom + 2; and (ii) the
number of basis states spanning the Hilbert space, which
scales as Nc2

Natom , with Nc the number of involved pho-
ton Fock states. In QRC, the number of observables is
also referred to as the number of neurons. The blue
and green solid lines in Fig. 3(a) shows the decrease
in NRMSE as the number of atoms increases from 1 to
5, where measurements of the cavity field and all atoms
lead to a corresponding increase in the number of neu-
rons from 4 to 12. For comparison, the red solid line
in Fig. 3(a) shows the performance of CRC as a func-
tion of the number of neurons in an echo state network,
with further details discussed in “Methods”. The advan-
tage of QRC over CRC is attributed to the exponentially
increasing number of quantum basis states underlying
the few measured neurons. The power of increasing ba-
sis states is further demonstrated in Fig. 3(b), where
the number of measured neurons is fixed at 4 (includ-
ing 2 cavity and 2 atomic observables), while additional
hidden (unmeasured) atoms is introduced to expand the
computational Hilbert space. The improved performance
for a fixed number of measured output neurons with an
increase in the dimension of the QRC Hilbert space has
previously been observed for Ising models of QRC [1, 2].
A possible reason for this could be that, for the par-
ticular tasks considered, more complex fading memory
maps generated by the QRC as the Hilbert space is in-
creased are able to better capture features in the task
to be learned. However, the improvement is expected to
eventually plateau for a high enough dimension of the
Hilbert space.

The outcome from the polynomial regression, incorpo-
rating both linear and quadratic terms of all observables,
is depicted by the dashed lines in Fig. 3(a). The re-
sult is consistent with previous research indicating that
appending nonlinear readouts from a reservoir can no-
tably enhance performance [5, 46]. A comparison be-
tween two extreme cases, linear regression with one atom
and polynomial regression with five atoms, is illustrated
in Fig. 3(c)(d), demonstrating a substantial performance
improvement resulting from the combination of scalabil-
ity and polynomial regression.

The effects of Delay and the decay rate κ are shown
in Figs. 4 and 5, respectively. As per Eq. (9), a longer
Delay necessitates a stronger memory for the reservoir
to “remember” more past information from the input in
order to forecast the future output, making the task in-
creasingly challenging. Conversely, a larger κ tends to
cause the reservoir to “forget” input information more
quickly due to photon leakage and atomic spontaneous
emission. However, a larger κ is beneficial for stronger
measurements with reduced uncertainties in readouts.
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FIG. 4: Testing result for the Mackey-Glass task with various
Delay. (a) NRMSE as a function of Delay for a three-atom
QRC with g = 30 and ωi = [0, 20, 40]. (b)(c) The actual (red)
and target (blue) outputs with Delay = 2 and Delay = 200,
corresponding to the points marked by letters “b” and “c” in
panel (a), respectively. Parameters: κ = 10, ωc = 40, ϵ = 20.
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FIG. 5: Testing result for the Mackey-Glass task with various
decay rate κ. (a) NRMSE as a function of κ for three-atom
QRC with g = 30 and ωi = [0, 20, 40]. (b)(c) The actual
(red) and target (blue) outputs with κ = 10 and κ = 105,
corresponding to the points marked by letters “b” and “c” in
panel (a), respectively. Parameters: Delay = 20, ωc = 40,
ϵ = 20.

Therefore, selecting a balanced κ will be crucial in ex-
periments.

C. Sine-square waveform classification task

The objective of the classification task is to determine
whether each input data point belongs to a sine or a
square waveform. The time-dependent input, fk, com-
prises 110 randomly generated sine and square wave-
forms. Among these, 10 waveforms are allocated for
memory fading, 50 for training, and 50 for testing. Each
waveform is discretized into Nss points, leading to a time
step of ∆t = 2π/ (Nssωss), where ωss denotes the oscil-
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FIG. 6: Input and readouts for the sine-square waveform clas-
sification task, where 110 random waveforms are sent in as
the input, with 10 waveforms allocated for memory fading,
50 waveforms for training, and 50 waveforms for testing. (a)
A segment of the input function, fk, representing the first 10
waveforms during the testing zone. (b)-(e) The correspond-
ing readouts from a single-atom reservoir with ω1 = 20 and
g1 = 30. Parameters: ωc = 40, κ = 10, ϵ = 20, ωss = 10,
Nss = 8.

lation frequency of the input. Figure 6(a) depicts these
discretized time points (red dots) across the first 10 wave-
forms during the testing phase. The target output, ȳk,
aimed at classifying the input signal, is set to 0 if the
input point belongs to a square waveform, and 1 if it
belongs to a sine waveform.

The sine-square waveform classification is a nonlinear-
ity task that requires the reservoir to process a linearly
inseparable input dataset containing abrupt changes. In
a linear, closed quantum system, the smoothly evolving
expectation values in readouts, ⟨c⟩ ∝ exp (−iωct) and
⟨σi⟩ ∝ exp (−iωit), are unable to capture these high-
frequency, abrupt shifts. The introduction of nonlinear-
ity, originating from the pumping and decay in the open
quantum system, enhances the reservoir’s capability to
promptly respond to the abrupt changes in the input.
This is evidenced by the distinct readout measurements
in Fig. 6(b)-(e), which correspond one-on-one to the in-
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FIG. 7: Testing result for the sine-square waveform classifi-
cation task with various reservoir scales. (a) NRMSE plotted
against the number of neurons, featuring results from QRC
with linear regression, QRC with polynomial regression, and
CRC on echo state network, where the parameters ωi and gi
align with those in Fig. 3. (b)(c) The actual (red) and target
(blue) outputs from QRC with one atom (linear regression)
and five atoms (polynomial regression), corresponding to the
points marked by letters “b” and “c” in panel (a), respectively.
Parameters: ωc = 40, κ = 10, ϵ = 20, ωss = 10, and Nss = 8.

put waveforms in Fig. 6(a).
The performance enhancements resulting from scala-

bility and polynomial regression, along with the compar-
ison between QRC and CRC, are shown in Fig. 7. It is
observed that the performance associated with polyno-
mial regression, represented by the blue and green dashed
lines in Fig. 7(a), tends to saturate at 8 neurons. This
performance saturation suggests that the maximum per-
formance achievable with the current sample size, associ-
ated with Nss = 8, has been attained. The correspond-
ing comparison between the actual and target outputs
is illustrated in Fig. 7(c), where discrepancies primarily
occur at the first sample point in each waveform. Figure
8 shows that these discrepancies can be mitigated by in-
creasing the number of sample points, Nss, within each
period of the sine or square waveform. This is evidenced
by the decrease in NRMSE, as shown in Fig. 8(a). The
comparison between Fig. 8(b) and Fig. 8(c) reveals that
larger Nss reduces the impact of abrupt shifts in the input
waveform on the output. Meanwhile, it also introduces
more small oscillations resulting from higher-frequency
changes in the input function due to smaller ∆t.
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FIG. 8: Testing result for the sine-square waveform classifica-
tion task with various numbers of sample points, Nss, within
each period of the sine or square waveform. (a) NRMSE
as a function of Nss for two sets of five-atom QRCs with
gi = 30 and ωi = [0, 10, 20, 30, 40] (blue) and with ωi = 20
and gi = [10, 20, 30, 40, 50] (green), utilizing polynomial re-
gression. The point at Nss = 8 corresponds to the "c" marker
in Fig. 7(a). (b)(c) The actual (red) and target (blue) outputs
with Nss = 16 and Nss = 64, corresponding to the "b" and
"c" markers in panel (a), respectively. Parameters: ωc = 40,
κ = 10, ϵ = 20, and ωss = 10.

III. DISCUSSION

We have introduced a paradigm for quantum optical
reservoir computing with capabilities in quantum mem-
ory and nonlinear data processing. The inputs are clas-
sical functions integrated into the coefficient of coherent
driving, allowing for direct comparison with the perfor-
mance of classical reservoir computing. Notably, quan-
tum decoherence of the reservoir facilitates the memory
fading without the need for external erasing. This means
that readouts are solely determined by the input, rather
than by the initial state, after a certain period of quan-
tum dissipation. Compared to other schemes of quantum
reservoir computing, our paradigm has two major advan-
tages: practicality and scalability.

In terms of practicality, continuous quantum measure-
ment utilizing the homodyne detections of cavity quadra-
tures and atomic spins is considered. These detections of
non-commuting observables can be in fact carried out
simultaneously [32–35] and do not require tomography,
making them more feasible than measurements of prob-
ability distributions in quantum basis states proposed in
pervious works [1, 4, 19, 22].

Our presented quantum optical reservoir offers conve-
nient scalability compared to reservoirs built upon quan-
tum networks, such as the Ising [1] and Fermi-Hubbard
[19] models. This is attributed to the coupling style be-
tween atoms and the single-mode cavity field. Specifi-
cally, to add a new atom, we only need to couple it with
the cavity field, which will automatically induce its cou-
pling with the rest of the atoms in the reservoir. More-
over, the number of quantum basis states in our reservoir
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scales proportionally to 2Natom , enabling faster growth
compared to the reservoirs not based on quantum net-
works, such as a single Kerr nonlinear oscillator [5] and
two coupled linear oscillators [4]. The increase in basis
states, by itself, is able to improve the performance of
QRC, as demonstrated by Fig. 3(b). This exponential
scaling is also a crucial factor in the advantage demon-
strated by the comparison between QRC and CRC, as
shown in Figs. 3(a) and 7(a).

Additionally, previous studies have indicated that ap-
pending nonlinear post-processing to the readouts can
enhance the performance of both QRC [5] and CRC
[24, 47, 48]. In our work, this idea is implemented
through polynomial regression, which additionally ap-
pends quadratic combinations of observable expectations
to the readout matrix. The results demonstrate a signif-
icant improvement in performance.

IV. METHODS

A. Continuous quantum measurement

Continuous quantum measurements are simulated for
both the cavity field and individual atoms. For the cavity
field, homodyne detection of two orthogonal quadratures
involves splitting the system’s output beam into two us-
ing a beam-splitter, followed by homodyning each beam
with the same local oscillator, differing by a phase shift
of π/2 [30]. Similarly, for atoms, homodyne detection
is performed for spontaneous emissions [45]. These mea-
surements can be conducted concurrently [32–35]. Conse-
quently, the continuous measurement process is described
by the stochastic master equation [30, 31, 44, 49–52]

dρJ = −i [H0 +H1 (t) , ρJ ] dt (10)

+ 2D [
√
κcc] ρJdt+ 2

∑
i

D [
√
κiσi] ρJdt

+ (dWQH [
√
κcc] + dWPH [i

√
κcc]) ρJ

+
∑
i

(dWx,iH [
√
κiσi] + dWy,iH [i

√
κiσi]) ρJ ,

where the deterministic part is governed by the Lindblad
superoperator D defined in Eq. (6), and the stochastic
part is determined by the superoperator H defined as

H [a] ρJ = aρJ + ρJa
† −

〈
a+ a†

〉
J
ρJ (11)

for any stochastic collapse operator a. The continuous
quantum measurements of the observables Q, P , σx,i,
and σy,i are associated with the stochastic collapse op-
erators

√
κcc, i

√
κcc,

√
κiσi, and i

√
κiσi, respectively

[30, 31, 44]. The randomness of the measurement records
is taken into account by the Wiener increments, dWQ(P )

and dWx(y),i, each of which selects a random number
from a Gaussian probability distribution with a width

of dt. The efficiencies of various detection channels are
incorporated into the Wiener increments.

Each measurement detects the continuous currents in
cavity and atom channels with noises, with the mea-
surement records given by ⟨Q (P )⟩J + dWQ(P )/dt and〈
σx(y),i

〉
J
+ dWx(y),i/dt, where the expectation values

are computed using ρJ from Eq. (10). As the num-
ber of measurements approaches infinity, the impacts of
the measurement back-actions, dWQ(P ) and dWx(y),i, are
averaged out. This idealization is described by the deter-
ministic master equation (5), accompanied by the aver-
aged measurement records ⟨Q (P )⟩ and

〈
σx(y),i

〉
, where

the expectation values are computed using ρ.

B. Minimization of NRMSE for training

The objective of training is to find the optimized
weights Wn that minimize the NRMSE defined in Eq.
(8). Since NRMSE2, being a quadratic function of Wn,
only has a global minimum but no local minima, a pseu-
doinverse method is sufficient for minimization. The
readouts, xkn, along with the constant bias term xk0 = 1,
are arranged in an L×(Nreadouts + 1) matrix X, where L
is the number of time steps for training. The target out-
put, ȳk, is organized in an L × 1 column vector Ȳ. The
weights, Wn, are arranged in a (Nreadouts + 1) × 1 col-
umn vector W. The optimized weight W that minimizes
NRMSE is therefore determined by [5, 53]

W = X+Ȳ, (12)

where the Moore-Penrose pseudoinverse

X+ =
(
XTX+ δI

)−1
XT, (13)

with I being the identity square matrix, and δ = 10−10 is
a ridge-regression parameter used to prevent overfitting.

C. Classical reservoir computing

For the classical reservoir computing results, we use
echo state networks (ESNs) described by

xk1
= ReLU(Axk +Buk) (14)

yk = WTxk + C, (15)

where xk is the vector-valued readout of the ESN at
time step k with length Nreadouts, uk is the input, W
and C are fitting parameters obtained through optimiza-
tion, and yk is the output at k. The activation function
we use is the rectified linear unit ReLU(z) = max(0, z)
for a scalar z, and for vector arguments x the func-
tion is applied to each element of the vector so that
(ReLU(x))i = ReLU(xi) = max(0, xi). An individual
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ESN is defined by the choice of the matrix A and the
vector B.

In the results of Figs. 3(a) and 7(a), we get an average
over 1000 ESNs by choosing A and B randomly, with
the constraint that that largest singular value of A must
be less that 1 to ensure convergence. The number of
neurons in these figures corresponds to the vector length
of xk (and therefore W) given by Nreadouts. Training of
W and C is performed using linear regression described
in Section IV B by extending W to an (Nreadouts + 1)-
dimensional vector with W0 = C.

∗ Electronic address: chuanzhouzhu@arizona.edu
† Electronic address: danielsoh@arizona.edu
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