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Quantum entanglement plays a key role in quantum computation and quantum information pro-
cessing. It is of great significance to find efficient and experimentally friend separability criteria to
detect entanglement. In this paper, we firstly propose two easily used entanglement criteria based
on matrix moments. The first entanglement criterion only uses the first two realignment moments
of a density matrix. The second entanglement criterion is based on the moments related to the
partially transposed matrix. By detailed examples we illustrate the effectiveness of these criteria
in detecting entanglement. Moreover, we provide an experimentally measurable lower bound of
concurrence based on these moments. Finally, we present both bipartite and genuine tripartite en-
tanglement measures based on the moments of the reduced states. By detailed examples, we show
that our entanglement measures characterize the quantum entanglement in a more fine ways than
the existing measures.

PACS numbers: 04.70.Dy, 03.65.Ud, 04.62.+v

I. INTRODUCTION

Quantum entanglement [1] is a novel characteristic of
quantum mechanics and plays an important role in many
quantum tasks such as quantum communications [2–5],
quantum simulation [6], quantum computing [7–9] and
quantum cryptography [10–12]. In this context, detect-
ing the quantum entanglement has become particularly
important.

Let HA and HB denote the Hilbert spaces of systems
A and B with dimensionsm and n, respectively. A quan-
tum state ρ ∈ HA⊗HB is separable if it can be expressed
as a convex combination of product states,

ρ =
∑

i piρ
A
i ⊗ ρBi ,

∑

i pi = 1, 0 ≤ pi ≤ 1.

Otherwise, the state ρ is entangled. Generally it is a chal-
lenge to detect the entanglement for a given state. The
PPT criterion [13] is both necessary and sufficient for
the separability of quantum states in systems 2 ⊗ 2 and
2⊗ 3 [14]. This criterion indicates that for any bipartite
separable state ρ, the matrix ρτ obtained from partial
transpose with respect to subsystem B is still positive
semi-definite, where (ρτ )ij,kl = (ρ)il,kj . Any state that
violates the PPT criterion is an entangled one. The re-
alignment is another permutation of the elements of a
density matrix. The realignment criterion [15, 16] says
that for any bipartite separable state ρ, the trace norm
of the realigned matrix ρR is not greater than 1, i.e.,
‖ρR‖ ≤ 1, where (ρR)ij,kl = (ρ)ik,jl, and the trace norm

of an operator E is defined by ‖E‖ := Tr(
√
E†E). A

state is entangled if it violates the realignment criterion.

There are also many other approaches to detect the
entanglement. The entanglement witnesses can be used
to detect the entanglement [17–19] experimentally, al-

though the construction of the witness operators gener-
ally requires the prior deterministic information of the
quantum state. Locally randomized measurements [20–
24] and parameterized entanglement monotone [25–29]
have been also adopted to detect entanglement. Besides,
the quantum entanglement is also studied based on the
truncated moment problem that is well studied mathe-
matically. Bohnet et al. proposed a necessary and suf-
ficient condition of separability that can be applied by
using a hierarchy of semi-definite programs [30].

Recently, the authors in [31, 32] show that the first
three partially transpose (PT) moments can be used to
detect entanglement. The advantage of the PT moments
is that they can be experimentally measured through
global random unitary matrices [33, 34] or local ran-
domized measurements [31] based on quantum shadow
estimation [35]. In [32] the authors proposed a sepa-
rability criterion based on PT moments called p3-OPPT
criterion. Neven et al. proposed an ordered set of experi-
mentally measured conditions for detecting entanglement
[36], with the k-th condition given by comparing the mo-
ments of the PT density operator up to order k. Zhang et
al. introduced a separability criterion based on the rear-
rangement moments [37]. In [38] the authors introduced
Λ-moments with respect to any positive maps Λ. They
showed that these Λ-moments can effectively character-
ize the entanglement of unknown quantum states with-
out prior reconstructions. In [39], the authors proposed
a framework for designing multipartite entanglement cri-
teria based on permutation moments. The author in [40]
demonstrates that for two-qubit quantum systems the
PT moments can be expressed as functions of principal
minors and shows that the PT moments can detect all
the negative partial transpose entanglement of GHZ and
W states mixed with white noise. A separability crite-
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rion and its physical realization has been also proposed
by using the moments of the realigned density matrices
[41, 42].
Besides the separability, the quantification of entan-

glement is also of great significance [43]. Some entangle-
ment measures have been proposed to quantify the en-
tanglement [18, 19, 44–47], among which one of the most
well known measures is the concurrence [18, 19, 44]. Let
|ψAB〉 be a bipartite pure state in HA ⊗ HB. The con-
currence of |ψAB〉 is given by

C(|ψAB〉) =
√

2[1− Tr(ρ2A)], (1)

where ρA = TrB(|ψAB〉〈ψAB |) is the reduced density ma-
trix. The concurrence for general bipartite mixed states
ρ is given by the convex-roof extension,

C(ρ) = min
{pi,|ψi〉}

∑

i

piC(|ψi〉), (2)

where pi ≥ 0,
∑

i pi = 1 and the minimum is tak-
ing over all possible pure state decompositions of ρ =
∑

i pi|ψi〉AB〈ψi|.
For multipartite systems, the quantification of the gen-

uine multipartite entanglement remains a challenging
problem. The authors in [48] proposed a genuine mul-
tipartite entanglement measure (GMEM) based on the
concurrences under bi-partitions. The authors in [49] in-
troduced a genuine three-qubit entanglement measure in
terms of the area of a triangle with the three edges given
by bipartite concurrences. More genuine multipartite en-
tanglement measures have been also presented [50–53].
In [51] the authors proposed the generalized geometric
measure. Further genuine multipartite concurrences are
studied in [53]. Guo et al. [54] gave an approach of con-
stituting genuine m-partite entanglement measures from
any bipartite entanglement and any k-partite entangle-
ment measure for 3 ≤ k < m. Recently, the authors
in [55] constructed a proper genuine multipartite entan-
glement measure by using the geometric mean area of
concurrence triangles according to a series of inequalities
related to entanglement distribution.
In this paper, we first propose two separability criteria

based on moments, and illustrate their effectiveness in
entanglement detection by specific examples. We then
provide an experimentally measurable lower bound of
concurrence based on the moments. We present a bi-
partite entanglement measure based on the moments of
the reduced states. Furthermore, we propose a genuine
tripartite entanglement measure based on our bipartite
entanglement measure. The paper is organized as follows.
In the second section, we provide a separability criterion
based on realignment moments. In the third section, we
propose a separability criterion based on PT moments.
In the fourth section, we derive an experimentally mea-
surable lower bound of concurrence for arbitrary bipar-
tite states. In the fifth section, we propose a bipartite

entanglement measure based on reduced moments. In
the sixth section, we put forward a genuine tripartite en-
tanglement measure based on our bipartite entanglement
measure. We summarize and discuss our conclusions in
the last section.

II. SEPARABILITY CRITERION BASED ON

REALIGNMENT MOMENTS

We first recall the realignment moments of density ma-
trices. Let ρ be a bipartite state in HA ⊗ HB. The re-
alignment moments are given by

TRk = Tr[(ρR†ρR)k], k = 1, 2, ...,mn.

Let σ1, σ2, ...σd be the d nonzero singular values of ρR.
We have

TR1 = Tr(ρR†ρR) =
d

∑

i

σ2
i , (3)

TR2 = Tr[(ρR†ρR)2] =
d

∑

i

σ4
i . (4)

We have the following conclusion on the separability of
ρ in terms of the realignment moments.

Theorem 1. If a state ρ is separable, then Q ≤ 1, where

Q ≡
√

√

2[(TR1 )2 − TR2 ] + TR1 .

Proof. By the definition we have

TR2 = (TR1 )2 − 2
∑

i<j

σ2
i σ

2
j

≥ (TR1 )2 − 2(
∑

i<j

σiσj)
2

= (TR1 )2 − 1

2
(2

∑

i<j

σiσj)
2

= (TR1 )2 − 1

2
[(

d
∑

i=1

σi)
2 −

d
∑

i=1

σ2
i ]

2

= (TR1 )2 − 1

2
(‖ρR‖2 − TR1 )2, (5)

where the inequality is due to the following fact: for
non negative real numbers x1, x2, ..., xn,

∑n
i=1 x

2
i ≤

(
∑n

i=1 xi)
2. The relation Eq. (5) implies that

(‖ρR‖2 − TR1 )2 ≥ 2[(TR1 )2 − TR2 ]

⇔ ‖ρR‖2 − TR1 ≥
√

2[(TR1 )2 − TR2 ].

Therefore, we have

‖ρR‖ ≥
√

√

2[(TR1 )2 − TR2 ] + TR1 .

According to the realignment criterion, if a quantum
state ρ is separable, ‖ρR‖ ≤ 1, which completes the
proof.
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From Theorem 1 a quantum state which violates the
inequality Q ≤ 1 must be entangled. The advantage
of our criterion is its simplicity as it only involves the
first two moments of the realigned matrix. To verify the
efficiency of our criterion let us consider the following
example given in [56].

Example 1.

ρa =





























1−a
2 0 0 0 0 0 0 0 − 11

50
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 − a − 11
50 0 0 0

0 0 0 0 − 11
50 a 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

− 11
50 0 0 0 0 0 0 0 a

2





























,

where 1
50 (25 −

√
141) ≤ a ≤ 1

100 (25 +
√
141). The first

two realignment moments of ρa are

TR1 =
7a2

4
− a+

867

1250
,

TR2 =
35a4

16
− 3a3

2
+

373a2

250
− 373a

625
+

292899

1562500
.

We obtain that when 1
50 (25 −

√
141) ≤ a ≤ 1

100 (25 +√
141), the inequality in Theorem 1 is violated. That

is, our criterion can detect all the entanglement for this
family of states. See Figure. 1.

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

a

Q

 

 

Q

1

FIG. 1: The red solid line represents the value of Q. When
1

50
(25 −

√
141) ≤ a ≤ 1

100
(25 +

√
141), there is always Q >

1, which means that this family of quantum states violates
Theorem 1.

In the above example, our entanglement criterion and
realignment criterion are equally effective, as they both
detect all entangled states in this family of quantum
states. However, this is not always the case. In general,

our criterion is weaker than the realignment criterion be-
cause our criterion is derived from the latter.
Example 2. Let us consider the Werner state,

ρu = u|ψ〉〈ψ|+ 1− u

4
I4,

where 0 ≤ u ≤ 1, |ψ〉 = 1√
2
(|00〉+ |11〉) and I4 is the 4×4

identity matrix. By calculation it can be concluded that
Q > 1 when u > 0.54, which means that entanglement of
ρu can be detected by our entanglement criterion within
the range of 0.54 < u ≤ 1. However, according to the
realignment criterion ρu is entangled when u > 1

3 . This
also indicates that in order to achieve the experimental
feasibility, our criterion is weaker than the original re-
alignment criterion.

III. SEPARABILITY CRITERION BASED ON PT

MOMENTS

With respect to the partially transposed matrix ρτ of
ρ, the PT moments are defined as

T τk = Tr[(ρτ )k], k = 1, 2, ...,mn.

Consider the characteristic polynomial of ρτ ,

a0λ
p − a1λ

p−1 + ...+ (−1)p−1ap−1λ+ (−1)pap,

where p = mn is the number of rows of the matrix ρτ ,
a0 = 1, ak =

∑

{sk}∈S
∏

j∈sk λj , k = 1, 2, ..., p, sk denotes

a subset of S = {1, 2, ..., p} with k elements. The char-
acteristic polynomial coefficients and the PT moments
have the following relations [28],

ak+1 =
1

k + 1

k
∑

l=0

(−1)lak−lT
τ
l+1 (6)

for k = 0, 1, ..., p− 1. We have the following result.

Theorem 2. If the bipartite state ρ is separable, then

ak ak+1 > 0, k = 0, 1, ..., q − 1, (7)

where q is the rank of the matrix ρτ , ak is given in Eq.(6),
with aq 6= 0 and ar = 0 for r > q.

Proof. The characteristic polynomial of ρτ can be rewrit-
ten as P (λ) = a0λ

p − a1λ
p−1 + ... + (−1)qaqλ

p−q. We
first prove that ρτ is positive semidefinite if and only if
akak+1 > 0 for each k = 0, ..., q − 1. If akak+1 > 0 for
each k = 0, ..., q − 1, since a0 = 1 the symbols of the
coefficients of the characteristic polynomial are strictly
alternating. Thus P (λ) has no negative roots. Other-
wise, if we assume the existence of negative roots, we
obtain contradictions. Hence ρτ has only nonnegative
eigenvalues.
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Conversely, if ρτ is positive semidefinite, we denote
its positive eigenvalues by λ1, ..., λq, with all the remain-
ing p − q eigenvalues being 0. Through inductive argu-
ment, we obtain that the signs of the coefficients of the
polynomials (λ−λ1)(λ−λ2)...(λ−λq) alternate strictly,
which gives P (λ) up to a factor λp−q. Therefore, ρτ is
positive semidefinite if and only if akak+1 > 0 for each
k = 0, ..., q − 1. From the PPT criterion that ρτ is pos-
itive semidefinite for any bipartite separable state ρ, we
complete the proof of Theorem 2.

Theorem 2 implies that if a bipartite quantum state
violates any inequality in Eq.(7), it must be entangled.
From the proof of Theorem 2, it is seen that our criterion
is equivalent to the PPT criterion. However, the PPT
criterion can not be applied without state tomography.
Our criterion can be used to detect the entanglement
of unknown quantum states. We only need to measure
the PT moments, since the conditions akak+1 > 0, k =
0, 1, ...,m− 1, in the Theorem 2 can be transformed into
the relationship among the moments. We illustrate the
usefulness of our criterion through the following example.
Example 3. Consider the two-qubit isotropic state

given in [57],

ρb =
1− b

3
I2 ⊗ I2 +

4b− 1

3
|ψ〉〈ψ|, 0 ≤ b ≤ 1,

where I2 denotes the second-order identity matrix, |ψ〉 =
1√
2
(|00〉+ |11〉). We have

T τ1 = 1,

T τ2 =
1

3
(4b2 − 2b+ 1),

T τ3 = −8

9
b3 +

5

3
b2 − 2

3
b+

5

36
,

T τ4 =
84

81
b4 − 156

81
b3 +

126

81
b2 − 39

81
b+

21

324
.

Substituting the above moments into the inequalities in
Theorem 2, we obtain that ρb is entangled when b >

0.5, which is exactly the same result as the one from
the realignment and PPT criterion directly, and stronger
than the result b ≥ 0.608594 given in [42].

IV. EXPERIMENTALLY MEASURABLE LOWER

BOUND OF CONCURRENCE

For any m⊗ n (m ≤ n) quantum state ρ, Chen et al.
proposed a lower bound of concurrence [58],

C(ρ) ≥
√

2

m(m− 1)
max(‖ρτ‖ − 1, ‖ρR‖ − 1). (8)

To obtain experimentally measurable lower bound of con-
currence, we next derive the lower bounds according to
the moments from ‖ρτ‖ and ‖ρR‖.

Theorem 3. For any m ⊗ n(m ≤ n) quantum state ρ,
we have the following experimentally measurable lower
bound of concurrence,

C(ρ) ≥
√

2

m(m− 1)
max{M1,M2, 0}, (9)

where

M1 =

√

√

2[(T1)2 − T2] + T1 − 1,

M2 =

√

√

2[(TR1 )2 − TR2 ] + TR1 − 1

with Ti = Tr[(ρτ†ρτ )i] and TRi = Tr[(ρR†ρR)i], i = 1, 2.

Proof. Firstly, we have proven that if ρ is a separable
state, then M1 ≤ 0. Similar to the proof of Theorem 1,

we have ‖ρτ‖ ≥
√

√

2[(T1)2 − T2] + T1. Hence we only

need to prove that ‖ρτ‖ ≤ 1. Since ρ is separable, the
eigenvalues ξi of ρ

τ are non negative and the summation
of the eigenvalues is 1,

∑

i ξi = 1, ξi ≥ 0, i = 1, 2, ...,mn.
Hence the eigenvalues of ρτ†ρτ are ξ2i (i = 1, 2, ...,mn).
As the singular values of ρτ are the arithmetic square
root of the non negative eigenvalues of ρτ†ρτ , we have
‖ρτ‖ =

∑

i ξi = 1. From the definition of concurrence
and the formula (8), we obtain Eq.(9).

Example 4. Consider the following 3 × 3 dimensional
quantum states

ρs =
1− s

9
I9 + s|ψ3〉〈ψ3|, s ∈ [0, 1],

where |ψ3〉 = 1√
3

∑3
i=1 |ii〉. The state is shown to entan-

gled for s > 1
4 [59]. From Theorem 3 we obtain the ex-

perimental measurable lower bound, which detects most
of the entangled states in this family, see Figure. 2.

V. ENTANGLEMENT MEASURE BASED ON

MOMENTS OF REDUCED STATES

Let |ψAB〉 =
∑d

i=1

√
µi|ii〉 be a bipartite pure state in

HA⊗HB in Schmidt decomposition, where
∑d

i=1 µi = 1,
µi ≥ 0 (i = 1, 2, ..., d) and d = min(m,n) with m and n
the dimensions ofHA andHB, respectively. Consider the
characteristic polynomial of the reduced density matrix
ρA of |ψAB〉,

b0µ
m− b1µ

m−1 + ...+ (−1)m−1bm−1µ+ (−1)mbm, (10)

where b0 = 1,

bk =
∑

{gk}∈G

∏

j∈gk
µj , k = 1, 2, ...,m, (11)

with gk a subset of G = {1, 2, ...,m} of k elements.
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FIG. 2: The red dashed line represents the value of M1, the
blue solid line denotes the value of M2, the value of ‖ρτ‖ − 1
is represented by a black dashed line M3, and the value of
‖ρR‖ − 1 is represented by a green solid line M4. For s >

0.5994 the maximum values of M1 and M2 are greater than
0.

The coefficients of the characteristic polynomial of a
reduced density matrix for a bipartite pure state can be
linearly expressed by the moments of the reduced density
matrix [28],

bk+1 =
1

k + 1

m
∑

l=0

(−1)lbk−lTr(ρ
l+1
A ), (12)

where b0 = 1 and k = 0, 1, ...,m − 1. Hence, as the
entanglement can be usually characterized by the reduced
density matrix [25–27, 44], it can be also quantified by
the moments of the reduced density matrix. We define
the following entanglement measure based on moments
of the reduced states (EMMRS),

Erm(|ψAB〉) = 1−
m
2

∑

i=1

[
4i

m2 + 2m
Tr(ρiA)

+
2m− 4i+ 4

m2 + 2m
Tr(ρ

i+m
2

A )]

for even m, and

Erm(|ψAB〉) = 1−
m−1

2
∑

i=1

[
4i

(m+ 1)2
Tr(ρiA)

+
2m− 4i+ 2

(m+ 1)2
Tr(ρ

m+1

2
+i

A )− 2

m+ 1
Tr(ρ

m+1

2

A )]

for odd m.

The EMMRS for general mixed states ρAB is given by
convex-roof extension,

Erm(ρAB) = min
{pi,|ψi〉AB}

∑

i

piE
rm(|ψi〉AB), (13)

where the minimization goes over all possible pure state
decompositions of ρAB =

∑

i pi|ψi〉AB〈ψi|.
Before presenting our main results, we first prove two

lemmas.

Lemma 1. For any ensemble {pi, ρi} of a quantum state
ρ, we have

Tr[(
∑

i

piρi)
n] ≤

∑

i

piTr(ρ
n
i ). (14)

Proof. We first prove the case for i = 2, ρ = p1ρ1 + p2ρ2,
where p1 + p2 = 1. For n ≥ 2, we have

Tr(p1ρ1 + p2ρ2)
n ≤ {[Tr(p1ρ1)n]

1
n + [Tr(p2ρ2)

n]
1
n }n

= {p1[Tr(ρn1 )]
1
n + p2[Tr(ρ

n
2 )]

1
n }n

≤ p1Tr(ρ
n
1 ) + p2Tr(ρ

n
2 ),

where the first inequality is due to the Minkowski in-
equality, the second inequality is due to the convexity
of the function y = xn when x is non negative. By
using mathematical induction, we can obtain inequality
(14).

Lemma 2. For any ensemble {pi, ρi} of a quantum state
ρ, denote

f(ρ) = 1−
m
2

∑

i=1

[
4i

m2 + 2m
Tr(ρi)+

2m− 4i+ 4

m2 + 2m
Tr(ρi+

m
2 )]

for even m and

g(ρ) = 1−
m−1

2
∑

i=1

[
4i

(m+ 1)2
Tr(ρi)

+
2m− 4i+ 2

(m+ 1)2
Tr(ρ

m+1

2
+i)

− 2

m+ 1
Tr(ρ

m+1

2 )]

for odd m. We have

f(ρ) ≥
∑

i

pif(ρi), (15)

g(ρ) ≥
∑

i

pig(ρi). (16)
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Proof. By definition we have

f(ρ) = f(
∑

j

pjρj)

= 1−
m
2∑

i=1

[
4i

m2 + 2m
Tr[(

∑

j

pjρj)
i]

+
2m− 4i+ 4

m2 + 2m
Tr[(

∑

j

pjρj)
i+m

2 ]]

≥ 1−
∑

j

pj

m
2∑

i=1

[
4i

m2 + 2m
Tr(ρj)

i +
2m − 4i+ 4

m2 + 2m
Tr(ρj)

i+m
2 ]

=
∑

j

pjf(ρj),

where the inequality is due to Lemma 1. Similarly, we
can prove the inequality (16).

We are now ready to present a bona fide measure of
quantum entanglement. In fact, a well-defined quantum
entanglement measure must satisfy the conditions [60–62]
as follows:
(i)E(ρ) ≥ 0 for any quantum state ρ and E(ρ) = 0 if

ρ is separable.
(ii)E is invariant under local unitary transformation.
(iii)E does not increase on average under stochastic

LOCC.
(iv)E is convex.
(v)E cannot increase under LOCC, that is, E(ρ) ≥

E(Λ(ρ)) for any LOCC map Λ.
It has been proposed in [63] that a covex function E

satisfies conditions (v) if and only if it satisfies condi-
tions (ii) and (iii). E is said to be an entanglement
monotone[64] if the first four conditions hold. From this
point of view any entanglement monotone defined in [64]
could be regarded as a measure of entanglement.

Theorem 4. For any state ρAB, E
rm(ρAB) is a well-

defined measure of quantum entanglement.

Proof. Firstly, we prove that if |ψAB〉 is a separable pure
state, then Erm(|ψAB〉) = 0. If |ψAB〉 is a separable
state, its reduced density matrix ρA is pure. The moment
of any order of ρA is equal to 1, that is, Tr(ρkA) = 1,
k = 1, 2, .... Thus

Erm(|ψAB〉) = 1−
m
2

∑

i=1

4i

m2 + 2m
+

2m− 4i+ 4

m2 + 2d
= 0.

This equation also indicates that when the pure state
|ψAB〉 is not separable, its reduced state ρA is a mixed
state, therefore Tr(ρkA) < 1, for k = 1, 2, .... That is
Erm(|ψAB〉) > 0. For mixed state ρ, by definition and
proof of the pure state case, Erm(ρAB) ≥ 0, and if ρAB
is separable, Erm(ρAB) = 0.
E is invariant under local unitary transformations from

the invariance of Tr(ρi).

Below we prove that Erm(ρ) is non-increasing on av-
erage under LOCC. Let |ψAB〉 be a bipartite pure state,
and {ηi} be a completely positive trace preserving map
on the subsystem B. Then the post-mapped state is

σi =
1

pi
ηi(σ),

where σ = |ψ〉AB〈ψ| and pi = Tr(ηiσ). Let σAi =
TrB(σi). We have

σA =
∑

i

piσ
A
i .

Let {pij, σij} be the optimal ensemble of σi such that

Erm(σi) =
∑

j

pijE
rm(σij),

where {σij} are pure states. Thus,

Erm(ρ) = f(σA)

= f(
∑

i,j

pipijσ
A
ij)

≥
∑

i,j

pipijf(σ
A
ij)

=
∑

i,j

pipijE
rm(σij)

=
∑

i

piE
rm(σi), (17)

where σAij = TrB(σij) and the inequality is due to Lemma
2.
Now, for any mixed quantum state ρ, let {εi} be a

completely positive trace preserving map. Then the post-
mapped state is

ρi =
1

πi
εi(ρ),

where πi = Tr(εiρ). Suppose {qj , |ψj〉} be the optimal
pure-state ensemble of ρ. According to the equation (17),
we have

Erm(|ψj〉) ≥
∑

i

kjiE
rm(ρji), (18)

where kji = Tr(εi|ψj〉〈ψj |) and ρji = 1
kji
εi(|ψj〉〈ψj |).

Let {kjil, |ψjil〉} be the optimal pure-state ensemble of
ρji such that Erm(ρji) =

∑

l kjilE
rm(|ψjil〉). We have

Erm(ρ) =
∑

j

qjE
rm(|ψj〉)

≥
∑

j,i

qjkjiE
rm(ρji)

=
∑

j,i,l

qjkjikjilE
rm(|ψjil〉)

≥
∑

i

πiE
rm(ρi),
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where the first inequality is due to (18). The last inequal-
ity is due to that

ρi =
1

πi
εi(ρ)

=
1

πi
εi(

∑

j

qj |ψj〉〈ψj |)

=
1

πi

∑

j

qjεi(|ψj〉〈ψj |) (19)

=
1

πi

∑

j

qjkjiρji

=
1

πi

∑

j,l

qjkjikjil|ψjil〉〈ψjil |,

where in the equality (19), we have used the linear prop-
erty of εi.
Finally, we prove convexity. Consider ρ = tρ1 + (1 −

t)ρ2. Let ρ1 =
∑

i pi|ψi〉〈ψi| and ρ2 =
∑

j qj |φj〉〈φj |
be the optimal pure state decomposition of Erm(ρ1) and
Erm(ρ2), respectively. Where

∑

i pi =
∑

j qj = 1 and pi,
qj > 0. We have

Erm(ρ) ≤
∑

i

tpiE
rm(|ψi〉) +

∑

j

(1− t)qjE
rm(|φj〉)

= tErm(ρ1) + (1− t)Erm(ρ2),

where the inequality is due to that
∑

i tpi|ψi〉〈ψi| +
∑

j(1 − t)qj |φj〉〈φj | is also a pure state decomposition
of ρ.

To demonstrate the usefulness of EMMRS, let us con-
sider the family of 3×3 quantum states given in Example
1. From our EMMRS we obtain

Erm(ρa) =
5

32
a2 − 5

32
a+

15

16
.

The value of Erm(ρa) is always greater than 0 for a ∈
[ 1
50 (25−

√
141), 1

100 (25+
√
141)], decreasing with the in-

crease of a, see Figure. 3. It is worth noting that in [56],
the singlet fraction Fmax(ρa), which is directly related to
the ability of quantum teleportation, also decreases with
the increase of a. Hence, our entanglement measure also
reflects the ability of the state in quantum teleportation.

From the definition of EMMRS, we see that for m = 2,

Erm(|ψAB〉) = 1
2 (1 − Tr(ρ2A)) =

C2(|ψAB〉)
4 , which is just

the square of concurrence up to a constant factor. When
m increases our entanglement measure can traverse all
the moments of the reduced density matrix ρA, thus cap-
turing relatively complete information on the entangle-
ment properties of quantum states.
Example 5. We consider the following rank-3 states

given in [28],

|φ1〉AB =
1√
2
|00〉+ 1√

3
|11〉+ 1√

6
|22〉,

|φ2〉AB =
√

β1|00〉+
√

β2|11〉+
√

1− β1 − β2|22〉,

0.28 0.3 0.32 0.34 0.36
0.9

0.901

0.902

0.903

0.904

0.905

0.906

0.907

0.908

0.909

0.91

a

E
rm

(ρ
a
)

 

 

E
rm

(ρ
a
)

FIG. 3: Erm(ρa) > 0 for a ∈ [ 1

50
(25−

√
141), 1

100
(25+

√
141)],

and Erm(ρa) decreases with the increase of a.

where β1 = 1
4 and β2 = 9+

√
13

24 . The concurrences of these
two quantum states are equal, C(|φ1〉AB) = C(|φ2〉AB).
However, using our EMRM we obtain Erm(|φ1〉AB) =
0.5139 and Erm(|φ2〉AB) = 0.5126. This indicates that
although both |φ1〉AB and |φ2〉AB are entangled states,
the degree of entanglement is different. Our entangle-
ment measure can characterize the entanglement in a
more fine way.

VI. GENUINE TRIPARTITE ENTANGLEMENT

MEASURE BASED ON EMMRS

For a tripartite pure state |ψ〉 ∈ HA⊗HB⊗HC , we de-
fine the genuine tripartite entanglement measure (GTE-
EMMRS) based on EMMRS,

EGTE(|ψ〉) := [
∏

γi∈Γ

Erm(|ψ〉γi)]
1
3 , (20)

where Γ = {γi} represents the set of all possible bipar-
titions of {A,B,C}, and the summation goes over all
possible bipartitions Γ = {(A|B,C), (B|A,C), (C|A,B)}.
Generalizing to mixed states ρ via a convex roof exten-
sion, we have

EGTE(ρ) = min
{pi,|ψi〉}

∑

i

piEGTE(|ψi〉), (21)

where the minimum is obtained over all possible pure
state decompositions of ρ =

∑

i pi|ψi〉〈ψi|.
In the following we prove that the GTE-EMMRS is a

genuine tripartite entanglement measure.
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Theorem 5. The GTE-EMMRS defined in Eq.(21) is
a genuine tripartite entanglement measure of tripartite
quantum systems.

Proof. The definition of EGTE(ρ) directly implies
EGTE(ρ) = 0 for all biseparable states and EGTE(ρ) > 0
for all genuine tripartite entangled states.
Next, we prove convexity. For any mixture

∑

i piρi, let
{pij , ρij} be the pure-state ensemble of ρi. Thus

EGTE(ρ) = EGTE(
∑

i

piρi)

= EGTE(
∑

i,j

pipijρij)

≤
∑

i,j

pipijEGTE(ρij)

=
∑

i

piEGTE(ρi),

where the inequality is due to the definition of EGTE(ρ).
As the EMMRS has been proven to be nonincreas-

ing under LOCC, the geometric mean of EMMRS for
all subsystems is also nonincreasing under LOCC. Thus
EGTE(ρ) is nonincreasing under LOCC. Therefore, we
have completed the proof of the theorem.

Example 6. Consider the following single parameter
family of three-qubit state,

ρf =
1

4f2 + 4

























1 1+f2

4

f

4
0 0 f 0 1

1+f2

4
1 0 0 0 0 0 0

f

4
0 2f2 0 0 f2 0 f

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

f 0 f2 0 0 2f2 0 f

4

0 0 0 0 0 0 1 1+f2

4

1 0 f 0 0 f

4

1+f2

4
1

























,

where f ∈ [0, 1]. By calculation, the GME-concurrence
presented in [48] has the form,

CGME(|ψ〉) := min
{γi∈Γ}

√

2[1− Tr(|ψ〉2γi)],

which is just a constant, CGME(ρf ) =
√

2[1− Tr(ρfγ3)] =
√
15
4 for all f ∈ [0, 1]. However, by

using our GTE-EMMRS we obtain

EGTE(ρf ) =
3

√

240f4 + 465f2 + 240

16384(1 + f2)2
.

The genuine tripartite entanglement from our measure
depends on the value of f . In other words, our entangle-
ment measure GTE-EMMRS effectively distinguishes the
genuine tripartite entanglement of this family of quantum
states, see Figure. 4. In [49] the authors proposed an in-
teresting entanglement measure called the concurrence

fill, which is given by the area of a triangle composed of
three one-to-other bipartite concurrences serving as side
lengths:

F123 =
4√
3

√

P (P − C2
1(23))(P − C2

2(13))(P − C2
3(12)),

where P = 1
2 (C

2
1(23) + C2

2(13) + C2
3(12)), Ci(jk) denotes

the concurrence under bipartition i and jk. Calcula-
tion shows that the concurrence fill decreases with the
increase of the parameter f . In this sense, GTE-EMMRS
and concurrence fill are two inequivalent measures of tri-
partite entanglement, see Figure. 5.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

E
G

T
E
(C

G
M

E
)

 

 

E
GTE

C
GME

FIG. 4: Our entanglement measure EGTE varies with the f

for f ∈ [0, 1], while CGME remains unchanged.

0 0.2 0.4 0.6 0.8 1
0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

f

F
1
2
3

 

 

F
123

FIG. 5: Concurrence fill F123 versus f for f ∈ [0, 1].
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CONCLUSIONS AND DISCUSSIONS

Based on the moments of the realigned matrix of a den-
sity matrix we have proposed an experimentally plausible
separability criterion for any dimensional bipartite quan-
tum states. The main advantage of this criterion is that it
only requires the first two realignment moments, which
simplifies the related experimental measurements. We
have also provided a separability criterion based on the
relationship between the characteristic polynomial coef-
ficients and the moments of a partially transposed ma-
trix. The discriminant in this criterion can also be repre-
sented in terms of PT moments. Therefore, this criterion
can also be experimentally implemented. Moreover, we
have presented experimentally measurable lower bounds
of concurrence for arbitrary bipartite quantum states,
which give the ways to determine quantitatively the de-
gree of quantum entanglement without the tomography
of unknown quantum states. Based on the moments of
the reduced states, we have also obtained a bona fide
bipartite entanglement measure. Finally, we have pre-
sented a genuine tripartite entanglement measure based
on our bipartite entanglement measure, which discrim-
inates entanglement between different quantum states
that cannot be distinguished by GME-concurrence.
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