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The salient feature of both classical and quantum gravity is its universal and attractive char-
acter. However, less is known about the behaviour and build-up of quantum correlations when
quantum systems interact via graviton exchange. In this work, we show that quantum correlations
can remain strongly suppressed for certain choices of parameters even when considering two adja-
cent quantum systems in delocalized states. Using the framework of linearized quantum gravity
with post-Newtonian contributions, we find that there are special values of delocalization where
gravitationally induced entanglement drops to negligible values, albeit non-vanishing. We find a
pronounced cancellation point far from the Planck scale, where the system tends towards classi-
calization. In addition, we show that quantum correlations begin to reemerge for large and tiny
delocalizations due to Heisenberg’s uncertainty principle and the universal coupling of gravity to
the energy-momentum tensor, forming a valley of gravitational entanglement.

I. INTRODUCTION

The coupling of classical gravity to the stress-energy
tensor has been probed in numerous experiments and
has withstood the test of time in all astronomical obser-
vations [1]. One of its most distinguishing consequences
is the universal and attractive character of the induced
gravitational matter-matter interaction. Such behaviour
is manifest by looking at Newton’s 1/r potential, but
persists also when including post-Newtonian (PN) cor-
rections depending on the particle momenta [2–6].

The same universal and attractive behaviour is also a
feature of an effective field theory of quantum gravity [4],
where the gravitational field is not real-valued but rather
operator-valued [7–10]. Such a quantum interaction can
generate non-classical correlations between quantum sys-
tems with no classical analogue, making it ideal for test-
ing genuinely quantum aspects. This observation was
critical in conceiving a protocol to test the quantum na-
ture of gravity using two massive particles [11, 12] 1. This
protocol, known as the quantum gravity-induced entan-
glement of masses (QGEM), is in this regard akin to
Bell’s original idea of testing quantum correlations be-
tween two spatially separated systems [14, 15].

According to the Local Operations and Classical Com-
munication (LOCC) principle [16], entanglement can
only be generated by ostensibly quantum interactions
between the test particles. Hence, only if gravity is a
quantum entity will it generate an entangled state of the
two masses [11, 17]. Within the context of an effective
field theory of quantum gravity the gravitational inter-
action is being mediated by the massless spin-2 graviton,
see [4, 7–10, 17–24], for a textbook, see [25].

Theoretical works and feasibility studies about the
QGEM proposal have mainly focused on the static regime

1 The results of Ref. [11] were already known earlier, see [13].

where the momenta of the particles (i.e., the PN correc-
tions) are neglected in the gravitational interaction. In
the static Newtonian limit, the interaction is in position,
and the spatial delocalizations of the quantum states con-
trol entanglement generation. Generally speaking, in-
creasing the spatial delocalization ∆x will increase the
overall generated entanglement. Based on the intuition
from the static Newtonian limit, decreasing the spatial
delocalization ∆x would suggest that the generated en-
tanglement is bound to decrease. We will show that this
is not the case and that this naive picture breaks down
when the PN corrections are included in the analysis [26].

In this paper, we will show that the generated entan-
glement in general increases for both very small and very
large spatial delocalizations ∆x. This observation is, in
a way, simple, and it follows directly from Heisenberg’s
uncertainty principle [27] and the universal coupling of
gravity to energy [28]. The generated entanglement en-
tropy, quantifying the degree of entanglement, scales as
a function of ∆x for large spatial delocalizations and as a
function of ∆p ∝ ℏ/∆x for small spatial delocalizations.
We will illustrate this result using a toy setup of two har-
monic oscillators interacting gravitationally for the initial
state of the product of ground states.

There is also an unexpected twist in the story. We find
small pockets in the parameter space of ∆x – far from
the Planck scale – where the entanglement is strongly
suppressed. This decrease is pronounced when the dom-
inant 0PN and 1PN terms entering in the generation of
quantum correlations cancel each other’s contributions.
The explanation lies in the opposite sign of the two-mode
squeezing parameter induced by the 0PN and 1PN cou-
plings. We show that this behaviour persists, and can
be controlled, by varying the degree of squeezing of the
initial states. We conclude by arguing that analogous
cancellations of quantum correlations, where the system
tends towards classicalization, should appear also in any
other quantum mechanical theory of gravity.
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II. QUANTUM GRAVITATIONAL POTENTIAL
AND HARMONIC OSCILLATORS

We consider the simple 1D toy model of two identical
harmonic oscillators, A and B, characterized by the mass
m and angular frequency ωm, oscillating along the x-axis.
We will assume that the centres of the two harmonic traps
are separated by a distance d, and the two particles in-
teract only gravitationally. Using Gupta’s framework of
linearized quantum gravity [18, 19] and perturbation the-
ory, we can then obtain the gravitational matter-matter
potential up to order 2PN [7] (see also [8–10]):

Ĥgrav =− Gm2

|r̂A − r̂B |
− G(3p̂2A − 8p̂Ap̂B + 3p̂2B)

2c2|r̂A − r̂B |

+
G(5p̂4A − 18p̂2Ap̂

2
B + 5p4B)

8c4m2|r̂A − r̂B |
, (1)

where c (G) denotes the speed of light (the gravitational
constant). Here, we will implicitly assume that the mo-
menta are sufficiently small such that higher order terms,
i.e., the terms ∝ p̂nj p̂

n′

k (with j, k = A,B and n+n′ > 4),
can be neglected. Higher order terms would only modify
the quantitative results for relativistic momenta without
affecting the features in the regime where the velocities
are small compared to the speed of light (i.e., we neglect
terms beyond O(c−4)). To keep the expressions short,
we also implicitly assume the convention that unsym-
metrized expressions (e.g., x̂p̂) are to be interpreted in
the symmetrized ordering (e.g., (x̂p̂+ p̂x̂)/2).

Post-Newtonian corrections have, of course, been ana-
lyzed extensively in previous works in the center of mo-
mentum frame [2, 3, 5, 6, 29]. If we set p̂ ≡ p̂A = −p̂B ,
and denote r̂ ≡ |r̂A − r̂B |, we recover from Eq. (1) the
known result in the literature:

Ĥgrav = −Gm
2

r̂
− 7

Gp̂2

c2r̂
− Gp̂4

c4m2r̂
. (2)

In other words, Eq. (1) can be seen as the adaptation
of Eq. (2) to the specific case of two quantum harmonic
oscillators. Generalizations to more particles, e.g., four
harmonic oscillators, forming pairs of particles and detec-
tors [30], modified gravity scenarios such as in the case
of a massive graviton [10], fat graviton with nonlocal in-
teraction [9, 31], or a dilaton-graviton combination [32],
can also be analyzed using similar methods.

We now suppose that the two trap centres are located
at ±d/2 and write r̂A = −d/2+ x̂A, and r̂B = d/2+ x̂B .
The operators x̂A and x̂B denote small displacements
from the equilibrium position, while the corresponding
conjugate momenta are given by p̂A and p̂B , respectively.
The Hamiltonian of the two harmonic oscillators is given
by

Ĥmatter =
p̂2A
2m

+
p̂2B
2m

+
mω2

m

2
x̂2A +

mω2
m

2
x̂2B , (3)

where ωm and m denote the harmonic frequency and
mass, respectively (assumed for simplicity to be the same
for the two harmonic oscillators). For later convenience,
we introduce the mode decompositions

x̂A = δx(â+ â†), x̂B = δx(b̂+ b̂†), (4)

p̂A = iδp(â† − â), p̂B = iδp(b̂† − b̂), (5)

where â, b̂ (â†, b̂†) denote the annihilation (creation) oper-

ators, and δx =
√

ℏ
2mωm

, δp =
√

ℏmωm
2 are the position,

momentum zero-point-motions, respectively.
Here, we will be interested in the phenomenology of

the gravitational potential in Eq. (1) up to the quar-
tic order in the operators ∝ ÔiÔjÔkÔl (with Ôi,j,k,l =
x̂A, x̂B , p̂A, p̂B) corresponding to small position and mo-
mentum fluctuations. Taylor expanding Eq. (1) around
the equilibrium positions and considering small fluctua-
tions, we find the following Hamiltonian:

Ĥgrav = −Gm
2

d
+ ĤA + ĤB + ĤAB, (6)

where the first term only produces a global phase, and
ĤA and ĤB depend only on the operators of particle
A and B, respectively. The leading order cross-coupling
terms between the two particles are given by

ĤAB =
Gm2

d

[
2x̂Ax̂B

d2
+

4p̂Ap̂B

m2c2
− 9p̂2Ap̂

2
B

4m4c4

]
, (7)

where the 0PN, 1PN, and 2PN contributions appear from
left to right, respectively.

While the leading order gravitational force arises from
the terms ĤA and ĤB (as these terms contain the uni-
form gravitational fields affecting the motion of the in-
dividual particle), the leading order contribution for en-
tanglement generation arises from the cross-couplings in
ĤAB [33]. This is already hinting that the generation
of gravitationally induced entanglement might be hiding
some surprises.

III. GRAVITATIONAL ENTANGLEMENT
ENTROPY

In this section we illustrate how the gravitational en-
tanglement entropy depends on the delocalization using
simple first order perturbation theory. We assume that
the initial state is a product of the two ground states

|ψi⟩ = |0⟩A|0⟩B, (8)

which is perturbed by the gravitational interaction Ĥgrav
in Eq. (6). We can always decompose the perturbed state
vector in the number basis:

|ψAB⟩ =
1√
N

∑
n,N

CnN |n⟩|N⟩, (9)
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where CnN denote the coefficients (with C00 = 1), N =∑
n,N |CnN |2 is the normalization, and |n⟩, |N⟩ denote

the number states of the two harmonic oscillators. In
particular, the coefficients appearing in Eq. (9) can be
computed using

CnN =
⟨n|⟨N |ĤAB |0⟩|0⟩
2E0 − En − EN

, (10)

where E0 and En, EN denote the energy of the ground
state |0⟩ and of the excited states |n⟩, |N⟩, respectively
(we recall that for a harmonic oscillator, we have Ej =
E0 + ℏωj with j denoting the occupation number).

We will quantify the degree of entanglement using
the von Neumann entanglement entropy given by S =
−tr[ρAlnρA], where ρA = trB [ρAB ] is the reduced den-
sity matrix of subsystem A, and ρAB = |ψAB⟩⟨ψAB | is
the total density matrix of the system (see Appendix A
for a short review on the entanglement entropy). Using
Eqs. (7)-(10) find a simple formula for the steady-state
entanglement entropy:

S ≈−
(
Gm

c2d
− Gm

2d3ω2
m

)2

log

((
Gm

c2d
− Gm

2d3ω2
m

)2
)

− 81G2ω2
mℏ2

1024c8d2
log

(
81G2ω2

mℏ2

1024c8d2

)
, (11)

which is plotted in Fig. 1 (see Appendix B for the detailed
derivation). The first line of Eq. (11) captures the right-
most part of the plot (from the 0PN x̂Ax̂B coupling) as
well as the plateau (from the 1PN p̂Ap̂B coupling). The
right-most part of the plot in Fig. 1 is captured by the
2PN contribution in the second line of Eq. (11) arising
from the coupling ∝ p̂2Ap̂

2
B .

We find that the entanglement entropy grows for very
large and very small positions delocalizations ∆x given
by the zero-point-motion. For large ∆x the entangle-
ment entropy grows as a consequence of the 0PN static
position couplings arising from the familiar 1/r poten-
tial, while for small ∆x the momentum delocalization
∆p ∼ ℏ/∆x becomes large, and the post-Newtonian mo-
mentum couplings start increasing the entanglement en-
tropy. In other words, the landscape of entanglement
entropy as a function of delocalizations ∆x or ∆p forms
a valley. This can be seen as a consequence of Heisen-
berg’s minimum uncertainty relation ∆p∆x = ℏ/2 and
the universal coupling of gravity to all forms of energy.

In addition, Fig. 1 reveals unexpected dips in entan-
glement entropy, which appear far the Planck length.
These dips arise because of the cancellation between the
0PN and 1PN terms in the first line of Eq. (11) corre-
sponding to the couplings ∝ x̂Ax̂B and ∝ p̂Ap̂B , respec-
tively. The first line vanishes when the product of the
harmonic frequency, ωm, and of the distance between the
two traps, d, becomes comparable to the speed of light,
i.e.,

√
2ωmd = c. In this case, the position and momen-

tum delocalizations are given by ∆x =
√

ℏd
mc/

4
√
2 and
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Figure 1. Entanglement entropy S as a function of the spatial
delocalization ∆x (bottom) or the momentum delocalization
∆p = ℏ/∆x (top). We have expressed the spatial (momen-
tum) superposition in units of the Planck length (momen-
tum) given by xP ≡

√
ℏG/c3 (pP ≡ ℏ/xP). The behaviour

on the right is determined by the static contribution ∝ x̂Ax̂B.
The plateau in the middle is determined by the non-static
1PN contribution ∝ p̂Ap̂B. The dominant static and the non-
static couplings cancel each other’s contribution to the en-
tanglement entropy at

√
2dωm ∼ c, and we observe that the

entanglement entropy S drops to negligible values (the three
pronounced dips indicated by the arrow). We note that these
dips of quantum correlations indicate a classicalization of the
system and that they occur far from the Planck length xp.
Finally, as we approach relativistic velocities (corresponding
to large momentum superposition sizes on the left side of the
figure), we find that higher-order momentum contributions
become important. Here we have plotted the contribution
from the term ∝ p̂2Ap̂

2
B arising at order O(1/c4). We plot

the curves for different values of the trap distance d. Note
that the qualitative behaviour remains the same in all three
cases, with the location of the dip shifting to the left (right)
for smaller (larger) values of d as expected (i.e., larger dis-
tances weaken the position couplings, hence requiring larger
spatial superposition sizes). The entanglement entropy is ex-
pressed in units of the entanglement entropy when we set
the spatial superposition to that of the Planck length, i.e.,
Sp = S(∆x = xP) = −(Gm

c2d
)2 log((Gm

c2d
)2) which is achieved

on the plateau.

∆p =
√

ℏmc
d / 4

√
2, respectively. At this point, the two

adimensional parameters governing the 0PN and 1PN
match, i.e., ∆x/d =

√
2∆p/(mc).

The adimensional parameters however only explain
that the 0PN and 1PN contributions are of equal mag-
nitude without revealing the origin of the cancellation.
As we will see in the next section, this cancellation arises
from the opposite sign of the two-mode squeezing (TMS)
character of the position and momentum couplings.
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Figure 2. The maximum entanglement value achieved dur-
ing the time evolution starting with a product of two single-
mode-squeezed-vacuum (SMSV) states as a function of the
spatial delocalization ∆x = δxe−r (bottom axis) and mo-
mentum delocalization ∆p = δper (top axis). By setting
ωm = ω0 ≡ c/(

√
2d) we find the case of equal couplings

gx = gp = g0 ≡
√
2Gm/(c2d) (green line). We also consider

the case ωm = 4ω0 producing the couplings 4gx = gp/4 = g0
(orange line), and the case ωm = ω0/4 producing the coupling
gx/4 = 4gp = g0 (black line). The entanglement entropy is
normalized to the maximum value of the green line to ease
the comparison. We note that both the horizontal location
and the depth can be changed by tuning the couplings gx, gp
using the mechanical frequency ωm. At the location of the
dips the system tends towards classicalization as there is a
strong suppression of quantum correlations.

IV. DIPS OF GRAVITATIONAL
ENTANGLEMENT

In this section we look closer at the unexpected dips
of gravitational entanglement uncovered in the previous
section. We restrict the analysis only to the leading order
terms identified in the previous section as its origin, i.e.,

ĤAB =
2Gm2

d3
x̂Ax̂B +

4G

c2d
p̂Ap̂B. (12)

Using Eqs. (4) and (5) in Eq. (12) we then find

ĤAB = ℏg−(ab+ a†b†︸ ︷︷ ︸
TMS

) + ℏg+(ab† + a†b︸ ︷︷ ︸
BS

), (13)

where the coupling rates are

g− = gx − gp, g+ = gx + gp, (14)

gx =
Gm

d3ωm
, gp =

2Gmωm

c2d
, (15)

and TMS (BS) labels the two-mode squeezing (beam-
splitter) contribution (for an introduction on quantum
optics transformations see for example [34, 35]).

For an initial product of ground states |0⟩|0⟩ the BS
part of the Hamiltonian has no effect, while the TMS-
induced change depends on the PN order: at 0PN we
have the coupling +gx, while at 1PN we have the coupling
−gp. The explanation for the dips in Fig. 1 thus lies in
the opposite sign of the TMS transformation arising from
the position and momentum couplings of gravity. When
gx = gp the 0PN and 1PN contributions to TMS cancel,
i.e., g− = 0, and we find a dip.

The observed cancellation point persists even if we con-
sider the initial state to be the product of two single-
mode-squeezed-vacuum (SMSV) states which have en-
hanced position or momentum delocalizations given by

∆x = δxe−r, ∆p = δper, (16)

respectively (with δx and δp denoting the zero-point-
motions defined below Eq. (5)). Such states are not en-
ergy eigenstates, and hence, we have to take into account
their time-evolution in the harmonic traps (see derivation
in Appendix C). In Fig. 2 we show how the maximum
achieved entanglement entropy changes by varying the
degree of squeezing r of the initial state. We note that
by tuning the mechanical frequency ωm (and hence the
couplings gx, gp in Eq. (15)) we can also shift to profile
horizontally and increase its depth. The location of the
dip is now determined by the condition gxe

−2r = gpe
2r,

which depends on the squeezing parameter r as expected.

V. DISCUSSION

In this work, we have discussed entanglement gener-
ation within the context of a linearized quantum grav-
ity with post-Newtonian (PN) momentum contributions.
We have considered a simple toy model of two nearby
harmonic oscillators and computed the entanglement en-
tropy arising from their gravitational interaction. We un-
covered a surprising interplay between the Heisenberg’s
uncertainty relation, the squeezing character of grav-
ity, and the generation of non-classical correlations when
1PN and 2PN contributions are taken into account.

We found that the entanglement entropy drops to neg-
ligible values when the 0PN contribution and the 1PN
are of the same magnitude, i.e., when ∆x/d ∼ ∆p/(mc),
where m is the mass of each harmonic oscillator, and d
denotes the distance between the two trap centres. Al-
though the classical gravitational force is universally at-
tractive, the generation of gravitationally induced entan-
glement can be suppressed to negligible values for spe-
cific states. As this will remain true within any theory
that recovers the predictions of perturbative quantum
gravity, such states could. provide a method to distin-
guish perturbative quantum gravity from other classes of
gravitational theories, such as a scalar-tensor theory with
different PN contributions. While this work does not
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answer questions of experimental feasibility, it nonethe-
less uncovers experimentally defining features of infrared
quantum gravity. The entanglement dips provide a dis-
tinct signature of classicalization, showing how quantum
correlations can become suppressed in a fully quantum
mechanical framework.
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Appendix A: Brief overview of entanglement
entropy formulae

The von Neumann entanglement entropy is given by

S = −tr[ρAlnρA], (A1)

where ρA = trB [ρAB ] is the reduced density matrix
of subsystem A, ρAB = |ψAB⟩⟨ψAB | is the total den-
sity matrix of the system. The same form of the ex-
pression would be obtained by tracing over system A
by formally exchanging the subsystems A and B, i.e.,
S = −tr[ρB lnρB ] and ρB = trA[ρAB ]. The general ex-
pression in Eq. (A1) can be however rewritten in a more
convenient way for the two cases we analyse in Secs. III
and IV.

In Sec. III, we will suppose that the initial state is
the product of the ground states of two harmonic oscil-
lators, i.e., |0⟩|0⟩ and use time-independent perturbation
theory. Using the Schmidt decomposition of the state in
Eq. (9) it can be shown that the entanglement entropy

from Eq. (A1) reduces to

S = −
∑
j

|αj |2log
[
|αj |2

]
, (A2)

where αj are the Schmidt coefficients. The Schmidt de-
composition can, in general, be performed using the lin-
ear algebra technique of singular value decomposition
(SVD) [36]. However, we will be primarily interested
in the states of the form

∑
j αj |j⟩|j⟩ (with |j⟩ denoting

the number states), where one can readily read-off the
Schmidt coefficients αj .

In Sec. IV, we will be interested in Gaussian states and
their time-evolution. The formula for the entanglement
entropy simplifies to [37–41]:

S = −f lnf + (1 + f)(1 + lnf), (A3)

where f(t) is the symplectic eigenvalue of the single-mode
covariance matrix of subsystem A given by

f(t) =
1

ℏ

√
4⟨x̂2A⟩⟨p̂2A⟩ − ⟨x̂Ap̂A + p̂Ax̂A⟩2 −

1

2
. (A4)

Also, the formula in Eq. (A3) remains valid if we for-
mally replace the quantities related to subsystem A with
the ones for subsystem B in Eq. (A4) (i.e., we compute
the symplectic eigenvalue of the single mode covariance
matrix of subsystem B).

Appendix B: List of expansion coefficients up to
quartic order in the operators and up to 2PN

From Eq. (1) we find that the cross-coupling terms
between the two particles are given by

∆ĤAB =
Gm2

d3

(
2x̂Ax̂B + 3

(x̂2Ax̂B − x̂Ax̂
2
B)

d

+
4x̂3Ax̂B − 6x̂2Ax̂

2
B + 4x̂Ax̂

3
B

d2

)
+

G

c2d

(
4p̂Ap̂B(1 +

x̂A − x̂B

d
+

(x̂A − x̂B)
2

d2
)

+
3p̂2A
2

(
x̂B

d
+

2x̂Ax̂B − x̂2B
d2

)

+
3p̂2B
2

(
x̂A
d

+
2x̂Ax̂B − x̂2A

d2
)

)
− 9G

4c4m2d
p̂2Ap̂

2
B ,

(B1)

where the first two lines contain the static limit 0PN con-
tribution, lines three to five contain the 1PN contribution
and the last term corresponds to the 2PN contribution.
While the leading order gravitational force arises from
the terms ĤA and ĤB (as these terms contain the uniform
gravitational fields affecting the motion of the individual
particle), the leading order contribution for entanglement
generation arises from the cross-couplings in ĤAB.
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order coefficient coupling Non-zero coefficients CnN from first-order perturbation theory
C11 C21 C12 C31 C13 C22

0PN

2Gm2

d3
x̂Ax̂B − Gm

2d3ω2
m

3Gm2

d4
x̂2

Ax̂B − Gmδx√
2d4ω2

m

− 3Gm2

d4
x̂Ax̂

2
B

Gmδx√
2d4ω2

m
4Gm2

d5
x̂3

Ax̂B − 3Gℏ
2d5ω3

m
−

√
6Gℏ

4d5ω3
m

− 6Gm2

d5
x̂2

Ax̂
2
B

3Gℏ
4d5ω3

m
4Gm2

d5
x̂Ax̂

3
B − 3Gℏ

2d5ω3
m

−
√
6Gℏ

4d5ω3
m

1PN

4G
c2d

p̂Ap̂B
Gm
c2d

4G
c2d2

p̂Ap̂Bx̂A
2
√
2Gmδx
3c2d2

− 4G
c2d2

p̂Ap̂Bx̂B − 2
√
2Gmδx
3c2d2

4G
c2d3

p̂Ap̂Bx̂
2
A

Gℏ
2c2d3ωm

√
6Gℏ

4c2d3ωm

− 8G
c2d3

p̂Ap̂Bx̂Ax̂B − Gℏ
c2d3ωm

4G
c2d3

p̂Ap̂Bx̂
2
B

Gℏ
2c2d3ωm

√
6Gℏ

4c2d3ωm
3G

2c2d2
p̂2Ax̂B

√
2Gmδx
4c2d2

− 3G
2c2d3

p̂2Ax̂
2
B − 3Gℏ

16c2d3ωm
3G
c2d3

p̂2Ax̂Ax̂B − 3Gℏ
8c2d3ωm

3
√
6Gℏ

16c2d2ωm
3G

2c2d2
p̂2Bx̂A

√
2Gmδx
4c2d2

− 3G
2c2d2

p̂2Bx̂
2
A − 3Gℏ

16c2d3ωm
3G
c2d3

p̂2Bx̂Bx̂A − 3Gℏ
8c2d3ωm

3
√
6Gℏ

16c2d2ωm

2PN − 9G
4c4m2d

p̂2
Ap̂2

B
9Gℏℏℏωm
32c4d

Table I. List of all gravitational couplings up to quartic order in operators and up to order 2PN (first three columns). Using first-
order perturbation theory in Eq. (10) we obtain the 25 non-zero coefficients CnN in columns four to nine (the coefficients C0N

and Cn0 will not contribute to the entanglement at first order in perturbation theory and are left out of the table [33]). The local
dip feature in the generation of entanglement occurs as a result of the cancellation arising from the terms ∝ x̂Ax̂B and ∝ p̂Ap̂B.
As discussed in the main text, this is a result of the different signs of the induced two-mode-squeezing (TMS) transformation
from the leading order 0PN and 1PN terms with the hint in the different sign of the corresponding C11 coefficients. We note
that additional cancellations occur in every column; we see that the CnN coefficients in all columns have both positive and
negative values. The broad valley feature can be understood directly from the couplings. On the one hand, for large-position
delocalization ∆x the 0PN term ∝ x̂Ax̂B generates a rapid increase of the entanglement entropy with increasing ∆x, and,
on the other hand, for large momentum delocalization ∆p (i.e., tiny spatial delocalization) the term ∝ p̂2Ap̂

2
B also produces

a fast growth of the entanglement entropy with increasing ∆p. In other words, entanglement entropy as function of position
delocalization is loosely speaking “U” shaped, forming a valley of entanglement.

In Table. I, we have listed the couplings from Eq. (7)
and applied Eq. (10) to obtain the non-zero expansion
coefficient CnN for n,N > 0 (the coefficients C0N and
Cn0 will not contribute to the entanglement at first or-
der in perturbation theory and are left out of the compu-
tation). The resulting entanglement entropy computed
using Eq. (A2) as a function of position delocalization
∆x ≡ δx (bottom axis) and momentum delocalization
∆p ≡ δp = ℏ/∆x (top axis) is plotted in Fig. 1.

We can, however, capture both qualitatively and quan-
titatively the entanglement entropy shown in Fig. 1 by
considering only three couplings from Table. I. In the
right-most part of the figure, the momentum couplings
(1PN and 2PN effects) are negligible as the momentum
delocalization ∆p is tiny compared to mc, and hence
dominated by the position 0PN couplings. Furthermore,
if the size of the delocalization ∆x is also small compared
to the distance between the traps d, then we can further

neglect the cubic and quartic couplings, leaving us with
the coupling ∝ x̂Ax̂B . The intermediate plateau is cap-
tured by the 1PN coupling ∝ p̂Ap̂B as the ratio ∆x/d
becomes tiny, and ∆p becomes non-negligible compared
to mc. Finally, the left-most part of the figure is dom-
inated by the 2PN coupling ∝ p̂2Ap̂

2
B , and eventually by

higher order PN corrections as we would further increase
∆p. By making such simplifications, the perturbed state
can be written as

|ψAB⟩ ≈
1

N
[|0⟩|0⟩ − C11|1⟩|1⟩ − C22|2⟩|2⟩], (B2)

where |0⟩, |1⟩, |2⟩ denote the number states, and N de-
notes the overall normalization. To compute the entan-
glement entropy in Eq. (11), we can now readily use
Eq. (A2), where we can make the further approxima-
tion N ≈ 1 as we have C00 ≈ 1 and C11, C22 ≪ 1 (while
the terms C2

11, C
2
22 appearing in N would only contribute

higher order corrections).
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Let us briefly comment how to see the entanglement
dip from Table. I. We first recall that the TMS operator
can be written in the form ˆS(ξ) = exp(−i(ξ∗âb̂+ξâ†b̂†)),
where the TMS generator is ∝ ξ∗âb̂ + ξâ†b̂†. From
Eq. (10) we immediately find

CnN ∝ ⟨n|⟨N |ĤAB |0⟩|0⟩ ∝ ±⟨n|⟨N |â†b̂† + âb̂|0⟩|0⟩,
(B3)

with the plus (minus) sign corresponding to the 0PN cou-
pling x̂Ax̂B (1PN coupling p̂Ap̂B). In other words, the
0PN position coupling would like to squeeze with TMS
parameter ξ = +1 while the 1PN momentum coupling
would like to squeeze in the opposite direction with TMS
parameter ξ = −1. The 0PN and 1PN two-mode squeez-
ing contributions cancel when ∆x/d =

√
2∆p/(mc).

Summing the two contributions, we find a total squeezing
parameter ξ = 0 and a suppression of the gravitationally
induced entanglement. The reason for the entanglement
suppression thus lies in the opposite sign of the two-mode
squeezing (TMS) parameter at the leading order 0PN and
1PN gravitational interaction.

Appendix C: Derivation of the time-dependent
entanglement entropy

Here, we further explore the dip in entanglement gen-
eration by considering the initial state to be the product
of two single-mode-squeezed-vacuum (SMSV) states:

|ψi⟩ = |r⟩A|r⟩B, (C1)

where r ∈ Re is the SMSV squeezing parameter. The
single mode squeezed state is given by

|r⟩ = 1√
coshr

∞∑
n=0

(tanhr)n
√

(2n)!

2nn!
|2n⟩, (C2)

where |n⟩ denotes the number state of the considered
harmonic oscillator. The state in Eq. (C2) has enhanced
position or momentum delocalization is given by

∆x = δxe−r, ∆p = δper, (C3)

respectively (with δx and δp denoting the zero-point-
motions defined below Eq. (5)). Such states are not en-
ergy eigenstates, and hence, we have to take into account
their time-evolution in the harmonic traps. However, as
the initial state in Eq. (C1) is Gaussian, and the interac-
tion in Eq. (12) is quadratic in the operators, the state
will remain Gaussian also at any later time.

The Heisenberg equations of motion for the modes of
the harmonic oscillators evolve as [42]:

â(t) = c0(t)â+ c+(t)b̂+ c−(t)b̂
†, (C4)

b̂(t) = c0(t)b̂− c+(t)â− c−(t)â
†, (C5)
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Figure 3. Entanglement entropy S as a function of time t
for different values of the couplings gx, gp defined in Eq. (15)
(which scale as a function of the harmonic frequency ωm).
The SMSV squeezing parameter is set to r = −3 correspond-
ing to initial position squeezing ∆x = δxe−r and momentum
delocalization ∆p = δper. By setting ωm = ω0 ≡ c/(

√
2d) we

find the case of equal couplings gx = gp = g0 ≡
√
2Gm/(c2d)

(green line). We also consider the case ωm = 4ω0 producing
the couplings 4gx = gp/4 = g0 (orange line), and the case
ωm = ω0/4 producing the coupling gx/4 = 4gp = g0 (black
line). In all cases, the maximum entanglement is generated at
ωmt = π/2. The entanglement entropy is normalized to the
maximum value Smax of the green curve to ease the compar-
ison with Fig. 2.

where â ≡ â(0), b̂ ≡ b̂(0). The time-dependent coeffi-
cients are given by: [42]

c0(t) = cos(ωet)− i
ωm

ωe
sin(ωet), (C6)

c±(t) = g±
ωm

ωe
sin(ωet), (C7)

where we have defined the effective frequency ωe =√
ω2

m + g2+ − g2−. We can now readily compute the
time dependency of the entanglement entropy. Inserting
Eq. (C4) in Eq.(A4) we find that the problem reduces to
evaluating the expectation values of the initial state in
Eq. (C1). In particular, to complete the analysis, we use
the following expectation values [34, 35]:

⟨ââ⟩ = ⟨b̂b̂⟩ = -sinh(r)cosh(r), (C8)

⟨â†â†⟩ = ⟨b̂†b̂†⟩ = -sinh(r)cosh(r), (C9)

⟨ââ†⟩ = ⟨b̂b̂†⟩ = cosh2(r), (C10)

⟨â†â⟩ = ⟨b̂†b̂⟩ = sinh2(r), (C11)

where the expectation values are computed with respect
to the SMSV state in Eq. (C2).
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Inserting Eq. (A4) in Eq. (A3), and neglecting higher
order terms in gx,p/ωm, we eventually find the formula
for the time-dependent entanglement entropy S(t):

S(t) ≈− A(t)

2ω2
m

sin2(ωmt)

(
ln
[
A(t)

2ω2
m

sin2(ωmt)

]
− 1

)
.

(C12)

where

A(t) =g2p − 4gpgx + g2x +
(
g2p + g2x

)
cos(2ωmt)

+ 2
(
g2pe

4r + g2xe
−4r
)
sin2(ωmt). (C13)

We analyze the temporal behaviour of Eq. (C12) in
Fig. 3. We first find that the behaviour remains quali-
tatively similar as we change the frequency ωm. The en-
tanglement entropy S(t) has the maximum at ωmt = π/2
in all cases. Setting ωmt = π/2 we find that the maxi-
mum entanglement increases both for r < 0 (i.e., spatial
delocalization ∆x > δx) as well as for r > 0 (momen-
tum delocalization ∆p > δp). This is not surprising as a
squeezed state breaks the symmetry of the ground state,
leaving it more exposed to TMS with either positive or
negative values.

The generated entanglement becomes negligible when
the condition A = 0 is met (at t = π/(2ωm)). In this case
we are in an entanglement dip, such that S(t) = 0 ∀t, as
can be noted by computing the limit of Eq. (C12):

lim
A→0

S(t) = 0. (C14)

In particular, if we set t = π/(2ωm) in Eq. (C13), and im-
pose A = 0, we find the simple condition for the location
of the dip:

gxe
−2r = gpe

2r. (C15)

If we set r = 0 in Eq. (C15) we recover the condition gx =
gp emerging at the level of the Hamiltonian in Eqs. (13)-
(15) as highlighted in the main text. In other words, the
squeezing effectively changes the quadratic position and
momentum couplings resulting in the modified condition
for the dip. We observe the shifted dip location according
to Eq. (C15) in Fig. 2.

To summarize, the 0PN position coupling x̂Ax̂B and
the 1PN momentum coupling p̂Ap̂B induce two-mode
squeezing (TMS) with an opposite sign of the squeezing
parameter ξ. The 0PN and 1PN coupling are a source
of TMS with squeezing parameter ξ = +1 and ξ = −1,
which would individually generate TMS entangled states.
However, when the two effects combine, they cancel, re-
sulting in a strong suppression of gravitationally induced
entanglement.

As a safety check, we consider the case where the po-
sition and momentum coupling match such that g− =
gx−gp vanishes, and we would thus expect a strong sup-
pression of entanglement generation. We define

ω0 ≡ c/(
√
2d), g0 ≡

√
2Gm/(c2d), (C16)

and find that when ωm = ω0 we have equal couplings
gx = gp = g0. Using this symmetric coupling regime, we
find from Eq. (C13) a simplified expression.

A(t) ≈ 8g20 sinh
2(2r) sin2(ωmt). (C17)

Setting ωmt = π/2 and taking the limit r → 0 in
Eq. (C12) with A(t) from Eq. (C17) we recover that
the entanglement entropy vanishes (case corresponding
to the dip found in Fig. 1 for the ground state).
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