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Kirkwood-Dirac representations of quantum states are increasingly finding use in many areas
within quantum theory. Usually, representations of this sort are only applied to provide a
representation of quantum states (as complex functions over some set). We show how standard
Kirkwood-Dirac representations can be extended to a fully compositional representation of all of
quantum theory (including channels, measurements and so on), and prove that this extension satisfies
the essential features of functoriality (namely, that the representation commutes with composition
of channels), linearity, and quasistochasticity. Interestingly, the representation of a POVM element
is uniquely picked out to be the collection of weak values for it relative to the bases defining the
representation. We then prove that if one can find any Kirkwood-Dirac representation that is
everywhere real and nonnegative for a given experimental scenario or fragment of quantum theory,
then the scenario or fragment is consistent with the principle of generalized noncontextuality, a key
notion of classicality in quantum foundations. We also show that the converse does not hold: even
if one verifies that all Kirkwood-Dirac representations (as defined herein) of an experiment require
negativity or imaginarity, one cannot generally conclude that the experiment witnesses contextuality.

I. INTRODUCTION

It is often useful to represent quantum systems as
functions over some kind of phase space. If one
wishes to represent all of standard quantum theory,
however, well-known no-go theorems demonstrate that
such representations must be quasiprobabilistic rather
than probabilistic [1, 2]. Often, the term ‘quasi ’ refers to
the fact that these functions take negative values, with
well-known examples including Wigner quasiprobability
distributions [3] or discrete versions thereof [4]. However,
one intriguing family of quasiprobability distributions
of quantum states that is defined over the complex
numbers is the Kirkwood-Dirac (KD) quasiprobability
distribution [5–7]. KD distributions have been used to
study post-selected quantum metrology [8–10], quantum
fluctuation theorems [11–13], work extraction [14–
17], heat flow [18], weak value theory and quantum
coherence estimation [19, 20], indefinite causal order [21],
incompatibility [22–24], and scrambling of quantum
information [25–27]. Moreover, KD distributions can
be experimentally measured in various ways [15, 28].
Perhaps surprisingly, given the recent surge of interest
in such representations, KD distributions have so far
only been described for quantum states, in contrast to
the majority of other established representations (such
as Wigner’s) that can be used to represent quantum
dynamics, quantum measurements, and indeed arbitrary
quantum processes.

The first contribution of this work is to extend
KD distributions as typically defined—for quantum
states only—to full representations of quantum theory,

applicable to arbitrary quantum processes—states,
channels, measurements, instruments, and so on.
Our extension is designed to satisfy a powerful
and elegant mathematical property: that the
representation commutes with composition. Formally,
the representation is a symmetric strict monoidal
functor [29] (i.e., is diagram-preserving [30]). Our
arguments here are the natural extension of work
regarding real-valued quasiprobability representations,
most notably Refs. [1, 2, 30–32], to the complex-valued
family of KD representations. Indeed, all of these
constructions are special cases of what are known as
frame representations [33], and this fact immediately
unifies much of the study of KD representations and
other representations (such as the Wigner function).
Our representation may be of independent interest

to research on weak values [34–36]. In particular, we
show that the representation of a POVM element in a
particular KD representation is given by the collection of
weak values for that operator with respect to the basis
vectors defining the KD representation. This implies a
formal duality between KD representations for states and
weak values.
It is sometimes suggested that when a quantum

state’s KD distribution has negative real components
or non-zero imaginary components, respectively
termed negativity and imaginarity, then that state
is somehow nonclassical. But (as has been argued
before [2]) it is meaningless to talk about the
nonclassicality of a state without specifying more
information—e.g., the measurements one can do
on the state or the experiment one will embed
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the state in. By considering the representation of
arbitrary processes (not merely quantum states),
we begin to derive direct connections between KD
representations and an important foundational notion
of classicality, namely generalized noncontextuality.
Generalized noncontextuality [37] (henceforth simply
‘noncontextuality’) is a principled [37–39], useful [40–53],
and operational [54–63] notion of classicality, relative
to which one can classify any theory or experiment as
classically-explainable or not. Indeed, this classification
has been studied for phenomena ranging from
computation [64, 65], state discrimination [40, 66–68],
interference [69–71], compatibility [61, 72], uncertainty
relations [73], metrology [53], thermodynamics [53],
weak values [41, 42], coherence [74, 75], quantum
Darwinism [76], information processing and
communication [43–46, 51], cloning [47], and (as
mentioned above) Bell [77, 78] and Kochen-Specker
correlations [54, 57, 79–83].

The second main contribution of this article is to
prove that if an experiment or theory admits of any
Kirkwood-Dirac representation that is everywhere real
and nonnegative, then that theory or experiment is
consistent with noncontextuality. We also prove that
the converse does not hold—so that even if every KD
representation (as defined herein) requires negativity or
imaginarity, one has not necessarily proven the failure of
noncontextuality.

II. KIRKWOOD-DIRAC REPRESENTATIONS
OF STATES, CHANNELS, AND

MEASUREMENTS

Given a finite dimensional Hilbert space HA associated
to a single quantum system A, pick any two bases {|ai⟩}i
and {|a′i′⟩}i′ for the Hilbert space, under the constraint
that ⟨ai|a′i′⟩ ̸= 0 for all i and i′. From these, define a
(nonovercomplete) basis F := {Fi,i′}i,i′ for the space of
bounded linear operators B(HA) as

Fi,i′ := |a′i′⟩⟨ai| ⟨a′i′ |ai⟩ . (1)

Such a basis is an example of a frame [33]. Next, define
the dual frame D := {Di,i′}i,i′ as the unique basis of
operators satisfying

Tr
[
Fī,̄i′Di,i′

]
= δī,iδī′,i′ , (2)

namely,

Di,i′ :=
|ai⟩⟨a′i′ |
⟨a′i′ |ai⟩

. (3)

The frame and the dual frame operators satisfy

Tr
[
Di,i′

]
= 1, (4)

Tr [Fi,i′ ] = |⟨a′i′ |ai⟩|2. (5)

Using these, we construct the representations of state
ρ and POVM element E, respectively, as

µ(i, i′|ρ) := Tr[Fi,i′ρ] (6)

and

ξ(E|i, i′) := Tr[EDi,i′ ]. (7)

Given a channel E : B(HA) → B(HB), one defines a
frame Fj,j′ and its dual Dj,j′ for HB in the same manner
as above (but relative to two bases for HB , denoted
{|bj⟩}j and {

∣∣b′j′〉}j′ , satisfying
〈
bj
∣∣b′j′〉 ̸= 0,∀j, j′), in

addition to those introduced above for system HA, with
which the channel is represented by

Γ(j, j′|i, i′, E) :=Tr[Fj,j′E(Di,i′)]. (8)

It is often useful to interpret Γ(j, j′|i, i′, E) as a matrix
mapping vectors indexed by (i, i′) to vectors indexed by
(j, j′). Composition within the representation is then
given by matrix multiplication. The family of all KD
representations is generated by ranging over possible
basis choices for each Hilbert space in question.
Note that while we use the suggestive notation

typically used in the literature on ontological models
for epistemic states, response functions, and stochastic
maps, these are more general, as they are complex-valued
and not bounded by 0 or 1.
Such representations are faithful (injective).1 That is,

given some representation µ, ξ, or Γ, one can reconstruct
the quantum processes ρ, E or E(·), respectively, by

ρ =
∑
i,i′

µ(i, i′|ρ)Di,i′ ; (9)

E =
∑
i,i′

ξ(E|i, i′)Fi,i′ ; (10)

E(·) =
∑

j,j′,i,i′

Γ(j, j′|i, i′, E) Tr[Fi,i′ · ]Dj,j′ , (11)

as we prove in Appendix A.
To see that the quantum predictions are recovered

by the representation, consider an experiment where
a channel E is carried out on state ρ, after which a
measurement outcome corresponding to POVM element

1 One could consider representations that are not faithful, but such
representations generally lose information; moreover, faithfulness
is necessary for reproducing the experimental predictions arising
in scenarios where the states and measurement operators span
the space B(H).
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E is obtained. The representation of this scenario is∑
j,j′,i,i′

ξ(E|j, j′)Γ(j, j′|i, i′, E)µ(i, i′|ρ)

=
∑

j,j′,i,i′

ξ(E|j, j′) Tr[Fj,j′E(Di,i′)]µ(i, i
′|ρ)

=Tr

∑
j,j′

ξ(E|j, j′)Fj,j′

 E

∑
i,i′

µ(i, i′|ρ)Di,i′


=Tr(EE(ρ)), (12)

where we used the linearity of the trace operation and of
the channel for the second equality, and used Eq. (9) and
Eq. (10) for the last equality.

The representation of the identity channel I is given
by Eq. (8) to be the identity matrix:

Γ(̄i, ī′|i, i′, I) = Tr
[
Fī,ī′I(Di,i′)

]
= Tr

[
Fī,̄i′Di,i′

]
= δī,iδī′,i′ , (13)

as per Eq. (2). Finally, the representation of the identity
POVM element is given by Eq. (7) to be the all-ones
vector: for all i, i′,

ξ(1|i, i′) = Tr [1Di,i′ ] =
Tr [|ai⟩⟨a′i′ |]
⟨a′i′ |ai⟩

= 1. (14)

This condition is the reason it is meaningful to think
of these representations as quasistochastic (i.e., where
the sum of the components in each column of one’s
matrix is less than or equal to one), as opposed to some
arbitrary complex linear representation, since it implies
that the representation of every trace-preserving channel
E satisfies ∑

j,j′

Γ(j, j′|i, i′, E) = 1 ∀i, i′ (15)

and, for the special case of a state ρ, satisfies∑
i,i′

µ(i, i′|ρ) = 1. (16)

The proof is simple, and given in Appendix A.
Our choice of normalisation factors for the frame in

Eq. (1) might have seemed arbitrary, but in fact it is
fixed, since (by Eq. (2)) our choice fixes the normalization
for the dual, which in turn is fixed by Eq. (14). This
is one reason why it must be the case that ⟨a′i′ |ai⟩ ≠
0 for all i and i′. (See Appendix A for more.) Note
in particular that this rules out taking the bases {|ai⟩}i
and {|a′i′⟩}i′ to be the same basis, which would lead to
the standard density matrix representation of quantum
states (for which Eq. (14) is not satisfied).

A. Multiple systems

For composite systems, we take the operator basis
to be the tensor product of the bases of the space of
operators on each Hilbert space in the composite. For
example, for the composite Hilbert space HA ⊗ HB ,
we pick any two bases {|ai⟩}i and {|a′i′⟩}i′ satisfying
⟨ai|a′i′⟩ ̸= 0,∀i, i′ for HA and any two bases {|bj⟩}j
and {

∣∣b′j′〉}j′ satisfying ⟨bj |b′b′⟩ ≠ 0,∀j, j′ for HB . We
introduce the frame

Fi,i′;j,j′ := |a′i′⟩⟨ai| ⊗
∣∣b′j′〉〈bj∣∣ ⟨a′i′ |ai⟩ 〈b′j′∣∣bj〉 (17)

=Fi,i′ ⊗ Fj,j′

and the dual frame

Di,i′;j,j′ :=
|ai⟩⟨a′i′ | ⊗

∣∣bj〉〈b′j′ ∣∣
⟨a′i′ |ai⟩ ⟨b′j′ |bj⟩

(18)

=Di,i′ ⊗Dj,j′

and define the representation of quantum processes
exactly as was done for single systems.

B. Recovering standard Kirkwood-Dirac
distributions for states

For the special case of quantum states, our
representation recovers the standard KD distribution [7,
25, 28], since

µ(i, i′|ρ) :=Tr[Fi,i′ρ] = ⟨ai| ρ |a′i′⟩ ⟨a′i′ |ai⟩ .

Consequently, our representation satisfies all known
properties of preexisting KD representations; for
instance, the distribution associated to any state is
bounded by one and has maximal negativity and
imaginarity given by min{ai}i,{a′

i′}i′ ,ρ
Re[µ(i, i′|ρ)] =

−1/8 and max{ai}i,{a′
i′}i′ ,ρ

Im[µ(i, i′|ρ)] = 1/4 [84]; see
Appendix A for more. Consequently, existing techniques
to witness KD negativity or imaginarity, or that
investigate the geometry of nonnegatively represented
states with respect to fixed KD bases [23, 24, 28, 85–87]
also remain applicable. Our work opens the possibility of
extending these investigations beyond quantum states.

C. Connections with weak values and tomography

While µ(i, i′|ρ) is bounded, the representation ξ(E|i, i′)
is not, possibly having arbitrarily large positive, negative,
or imaginary values. This is immediate from noticing
that, for any dual frame D given by Eq. (3), each value
ξ(E|i, i′) is exactly what is known as the weak value
of E with respect to the vectors |ai⟩ and |a′i′⟩ [35, 36].
Indeed, KD distributions for states and these particular
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weak values must be dual representations of states and
POVM elements in our representation, as the dual basis
is uniquely singled out by Eq. (2). It remains to be
seen how this duality relates to prior connections between
weak values and KD distributions [15, 19, 25].

The KD representation Γ of a channel E , given by
Eq. (8), can also have arbitrarily large absolute values
due to the inner-products ⟨a′i′ |ai⟩ in the denominator.
Still, the quasistochastic behavior from Eq. (15)
continues to hold. A natural question is how these
representations relate to physical quantities of interest in
the same way that those for states have been shown to,
or as we have just argued that those for POVM elements
relate to weak values.

As a final remark, since our representation is
faithful and so contains complete information about
one’s quantum process, any estimation of our KD
representation for a state, channel, or measurement
is a form of state tomography, process tomography,
or measurement tomography. For any process, the
representation can be written as a multivariate trace, and
so can be estimated using polynomial [88, 89] or even
constant [90] depth quantum circuits.

D. Compositionality and functoriality

A useful property for any representation to have is
functoriality, or more specifically, that the representation
is a symmetric strict monoidal functor [29] (sometimes
called a diagram preserving map [30]), which means
that the representation commutes with composition of
processes. Functoriality also requires that identity and
swap operations are represented by the identity and the
swap, respectively, in the representation. Functoriality
is arguably essential if that representation is to carry
physical meaning (e.g. to provide a physical explanation)
rather than merely be a mathematical simulation. Most
representations studied to date are functorial, although
some [91–93] are not [30].

As we have defined it, every KD representation is
functorial. We prove this in Appendix C, by showing
that the representation of a composite process (whether
composed in parallel or in sequence) is the same as the
composite of the representations of each component of it,
and by proving that the identity and swap operations are
represented correctly. For example, the representation of
two channels composed in sequence, e.g. E2 ◦E1, must be
the composition (matrix product) of the representations
of each individually, namely

Γ(k, k′|i, i′, E2 ◦ E1)

=
∑
j,j′

Γ(k, k′|j, j′, E1)Γ(j, j′|i, i′, E2). (19)

III. CONNECTION TO GENERALIZED
NONCONTEXTUALITY

With Kirkwood-Dirac representations for all of
quantum theory in hand, it is straightforward to establish
connections with noncontextuality.
Consider any fragment of quantum theory. In the

simplest case, this means a set {ρi}i of states, a set {Ej}j
of channels, and a set {{E[k|m]}k}m of measurements.
More generally, one may have any fixed circuit and
a set of possibilities for each process in the circuit.
These sets may arise from the particular capabilities of
some particular hardware, from a specific experiment, or
from some theoretical considerations. They may (but
need not) have further structure, such as being finite or
convexly closed.
An ontological model for a fragment of quantum theory

is any linear and functorial mapping from the quantum
processes to (the monoidal category of) substochastic
matrices [30], such that the trace operation is mapped to
marginalization (i.e., the all ones vector). See Ref. [94]
for an introduction to ontological models, and Ref. [30]
for the first fully precise and compositional definition.
Many fragments of quantum theory do not admit of any
ontological model, but some fragments do—even very
rich fragments like the stabilizer subtheory in all odd
dimensions [4, 64].
Under the formulation we have introduced herein,

any KD representation that happens to be real and
nonnegative for all processes in a given fragment also
satisfies all of these properties, and so constitutes an
ontological model of that fragment. Clearly the KD
representation in this case is a mapping from quantum
processes to nonnegative real-valued matrices; as we
prove in Appendix B, these matrices are moreover
substochastic. And as we saw in Eq. (13) and Eq. (14)
(respectively), the identity is represented by the identity
matrix and the representation of the trace operation is
equal to marginalization.
The connection to generalized noncontextuality now

follows immediately from the results of Refs. [30, 38],
which show that the predictions of a fragment of
quantum theory can be reproduced by an ontological
model if and only if any laboratory procedures whose
quantum description is given by this fragment admits
of a generalized noncontextual ontological model. 2 In
other words, a scenario is consistent with generalized
noncontextuality if and only if its description within
standard quantum theory admits of an ontological model.

2 Formally, by ‘laboratory procedures’ we mean processes within
an unquotiented operational theory, while by the ‘quantum
description’ of the fragment, we mean a quotiented operational
theory (with density operators, quantum channels, and the
like). [30, 95]
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But every nonnegative KD representation constitutes an
ontological model, so the existence of any nonnegative
KD representation implies noncontextuality.

However, negativity or imaginarity of a KD
representation does not necessarily imply the failure
of noncontextuality. Most obviously, there may be
another KD representation that manages to represent
all processes in the scenario or theory nonnegatively,
in which case this other representation constitutes
a perfectly fine classical model, consistent with
noncontextuality. Moreover, even if one shows that for
a given scenario or theory, all KD representations (as
defined herein) require negativity or imaginarity, it is still
possible that an ontological model of an entirely different
form is possible.

Indeed, this sometimes happens, as we prove by
example. Consider the stabilizer subtheory of quantum
mechanics in odd dimensions, which has a unique [64]
ontological model, namely that given by Gross and by
Spekkens [4, 96]. This model is not of the form of any
Kirkwood-Dirac representation, as one can see by the fact
that the frame operators defining it are Hermitian, while
those of a KD representation are not. But by uniqueness,
there can be no other ontological model of it, so all KD
representations of it must have negativity or imaginarity,
even though the subtheory is noncontextual.

That said, there is a natural (although rather broad)
generalization of the family of KD representations
considered here and in the literature for which one can
make a tighter connection with noncontextuality. This is
the natural class of linear, functorial, and empirically
adequate quasistochastic representations of quantum
processes as complex-valued functions: essentially, it is
what one obtains if one relaxes the frame in Eq. (1) to
be an arbitrary nonovercomplete frame (basis) for the
space of all operators on H. As we show in future work,
one can prove the failure of noncontextuality by proving
that every representation in this considerably broader
class has negativity or imaginarity, as a natural extension
of analogous arguments for real-valued functions in
Ref. [30].

IV. CONCLUSIONS

We have showed how to generalize standard KD
representations to any quantum process, including
measurements and channels. The representation satisfies
key properties such as respecting composition and
linearity. This allows us to clarify the relationship
between KD distributions, ontological models, and
noncontextuality. It also leads to new avenues of study,
such as the connection of the KD representation of
POVM elements with weak values.

Other extensions of KD distributions have been
proposed, but only for quantum states [9, 12, 25]. We are

not aware of a fully general definition of a representation
of quantum theory (or even of quantum states) in
complex-valued functions. In forthcoming work, we
extend the present work to define this very general class
of representations and discuss their relation with some
other generalized KD representations one can find in
the literature. We then show that every ontological
model of a quantum scenario has the form of some such
representation that is nonnegative on all processes in the
scenario, which implies that one can prove nonclassicality
(the failure of generalized noncontextuality) if one can
prove that no such representation is nonnegative. We
also show that these general representations and results
(which subsume all the ones in this paper) apply to
arbitrary generalized probabilistic theories [97, 98], not
just quantum theory. Finally, we note that working with
representations such as these is typically dramatically
simpler when one uses diagrammatic notation, as we do
in the forthcoming work, and as is done in Ref. [30].
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S. D. Bièvre, Characterizing the geometry of the
Kirkwood-Dirac positive states, arXiv:2306.00086 (2023).

[88] M. Oszmaniec, D. J. Brod, and E. F. Galvão, Measuring
relational information between quantum states, and
applications, New Journal of Physics 26, 013053 (2024).

[89] L. M. Yosef, S. Ubaru, L. Horesh, and H. Avron,
Multivariate trace estimation using quantum state space
linear algebra, arXiv:2405.01098 [quant-ph] (2024).

[90] Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace
estimation in constant quantum depth, Quantum 8, 1220
(2024).

[91] K. Husimi, Some Formal Properties of the Density
Matrix, Proceedings of the Physico-Mathematical
Society of Japan. 3rd Series 22, 264 (1940).

[92] R. J. Glauber, Coherent and incoherent states of the
radiation field, Phys. Rev. 131, 2766 (1963).

[93] E. C. G. Sudarshan, Equivalence of semiclassical and
quantum mechanical descriptions of statistical light
beams, Phys. Rev. Lett. 10, 277 (1963).

[94] N. Harrigan and R. W. Spekkens, Einstein,
Incompleteness, and the Epistemic View of quantum
states, Found. Phys. 40, 125 (2010).

[95] G. Chiribella, G. M. D’Ariano, and P. Perinotti,
Probabilistic theories with purification, Phys. Rev. A 81,
062348 (2010).

[96] R. W. Spekkens, Quasi-Quantization: Classical
Statistical Theories with an Epistemic Restriction,
in Quantum Theory: Informational Foundations and
Foils, edited by G. Chiribella and R. W. Spekkens
(Springer Netherlands, Dordrecht, 2016) pp. 83–135.

[97] L. Hardy, Quantum Theory From Five Reasonable
Axioms, arXiv:quant-ph/0101012 (2001).

[98] J. Barrett, Information processing in generalized
probabilistic theories, Phys. Rev. A 75, 032304 (2007).

[99] L. M. Johansen, Quantum theory of successive projective
measurements, Phys. Rev. A 76, 012119 (2007).

Appendix A: Useful mathematical facts

We now present some useful mathematical facts
regarding the family of Kirkwood-Dirac representations
that we have defined.
In the main text, we showed how arbitrary quantum

processes could be represented and then reconstructed.
In fact, arbitrary operators on a Hilbert space can be
represented and reconstructed in an exactly analogous
fashion. There are two ways to do so, depending on
whether the representation or the reconstruction is done
using the frame (as opposed to the dual). One can define
the representation of an arbitrary operator O acting on
Hilbert space HA as

µ(i, i′|O) :=Tr[Fi,i′O], (A1)

= ⟨ai|O |a′i′⟩ ⟨a′i′ |ai⟩ , (A2)

where Eq. (A2) has the form of standard KD
representations commonly seen in the literature. In this
case, one reconstructs O via

O =
∑
i,i′

µ(i, i′|O)Di,i′ . (A3)

The above was already noticed in, for example, Ref. [25,
Eq. (19), pg. 4]. Alternatively, one can represent O as

ξ(O|i, i′) :=Tr[ODi,i′ ] (A4)

=
⟨a′i′ |O |ai⟩
⟨a′i′ |ai⟩

; (A5)

in which case the reconstruction equation is

O =
∑
i,i′

ξ(O|i, i′)Fi,i′ . (A6)

Here we are using the convention that representations in
terms of the frame are denoted by µ, while those in terms
of the dual frame are represented by ξ, consistent with
the notation in the main text.
We now prove the validity of the reconstruction

equations Eqs. (9) to (11) in the main text, of which
the proof for Eq. (9) and Eq. (10) also works for
the respective reconstruction equations for a general
operator, namely, Eq. (A3) and Eq. (A6).
For Eq. (9), i.e., ρ =

∑
i,i′ µ(i, i
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|ai⟩⟨a′i′ |
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=
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|ai⟩⟨ai| ρ |a′i′⟩⟨a′i′ |

=ρ. (A7)
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When we replace ρ with a general operator O, Eq. (A7)
becomes a proof for Eq. (A3).

For Eq. (10), i.e., E =
∑

i,i′ ξ(E|i, i′)Fi,i′ :∑
i,i′

ξ(E|i, i′)Fi,i′

=
∑
i,i′

⟨a′i′ |E |ai⟩
⟨a′i′ |ai⟩

|a′i′⟩⟨ai| ⟨a′i′ |ai⟩

=
∑
i,i′

|a′i′⟩⟨a′i′ |E |ai⟩⟨ai|

=E. (A8)

When we replace E with a general operator O, Eq. (A8)
becomes a proof for Eq. (A6).

To prove Eq. (11), namely that

E(·) =
∑

j,j′,i,i′

Γ(j, j′|i, i′, E) Tr[Fi,i′ · ]Dj,j′ ,

we have ∑
j,j′,i,i′

Γ(j, j′|i, i′, E) Tr[Fi,i′ · ]Dj,j′

=
∑

j,j′,i,i′

Tr[Fj,j′E(Di,i′)]µ(i, i
′| · )Dj,j′

=
∑
j,j′

Tr

Fj,j′E

∑
i,i′

µ(i, i′| · )Di,i′

Dj,j′

=
∑
j,j′

Tr[Fj,j′E (·)]Dj,j′

=
∑
j,j′

µ (j, j′|E(·))Dj,j′

=E(·), (A9)

where we used the linearity of trace and channel at the
second equal sign, and used the reconstruction equations
at the third and fifth equal sign. One relation that will be
useful in the following proofs is that

∑
i,i′ Fi,i′ preserves

the trace of any operator. That is,∑
i,i′

Tr [Fi,i′O] = Tr [O] . (A10)

This can be seen by explicit calculation:∑
i,i′

Tr [Fi,i′O] =
∑
i,i′

Tr
[
⟨a′i′ |ai⟩ |a′i′⟩⟨ai|O

]
=
∑
i,i′

Tr
[
|a′i′⟩⟨a′i′ |ai⟩⟨ai|O

]
=Tr

[(∑
i′

|a′i′⟩⟨a′i′ |
)(∑

i

|ai⟩⟨ai|
)
O
]

=Tr [O] . (A11)

In particular, this immediately implies that the KD
representation of an arbitrary quantum state (or indeed
of an arbitrary trace-1 operator when using the
frame rather than the dual representation) satisfies the
normalization property in Eq. (16) of the main text,∑

i,i′

µ(i, i′|ρ) = 1. (A12)

In addition, the representation of a trace-preserving
channel in every KD representation satisfies Eq. (15) of
the main text, namely∑

j,j′

Γ(j, j′|i, i′, E) = 1 ∀i, i′, E (A13)

This follows from∑
j,j′

Γ(j, j′|i, i′, E) =
∑
j,j′

Tr [Fj,j′E(Di,i′)]

=Tr [E(Di,i′)] = Tr [1E(Di,i′)]

=Tr
[
E†(1)Di,i′

]
= Tr [Di,i′ ] = 1, (A14)

where in the second equality we used Eq. (A10), in
the penultimate step we used that E is trace-preserving,
which implies its adjoint E† is unital, and in the last step
we used Eq. (4).
A final fact one might note is that

|µ(i, i′|ρ)| ∈ [0, 1]. (A15)

This is because from Eq. (A2), we have
|µ(i, i′|ρ)| = |⟨ai| ρ |a′i′⟩||⟨a′i′ |ai⟩|. The first term
in the product satisfies |⟨ai| ρ |a′i′⟩| ≤ 1, since the
spectral decomposition ρ =

∑
k pk |ψk⟩⟨ψk| gives

|⟨ai| ρ |a′i′⟩| =
∑

k pk|⟨ai|ψk⟩||⟨ψk|bj⟩| ≤
∑

k pk = 1. Then,
since |⟨a′i′ |ai⟩| ∈ [0, 1], we get |µ(i, i′|ρ)| ∈ [0, 1].
In fact, we can slightly generalize the results from

Ref. [84] from pure states to mixed states, to note that
any complex number µ(i, i′|ρ) = |∆|eiϕ must satisfy that

1− 3|∆| 23 + 2|∆| cos(ϕ) ≥ 0, (A16)

for all possible |ai⟩, |a′i′⟩ and state ρ, with respect to any
Hilbert space HA. This is true since µ(i, i

′|ρ) = Tr[Fi,i′ρ]
is linear with respect to ρ. Therefore, for any convex
combination of pure states ρ =

∑
λ αλ |ψλ⟩⟨ψλ|, we have

that µ(i, i′|ρ) is also a convex combination of pure state
KD-phase space points µ(i, i′|ψλ). Ref. [84] showed
that any µ(i, i′|ψλ) must be in the region described
by Eq. (A16), but since this region forms a convex
set of points in C, any convex combination of terms
µ(i, i′|ψλ) must also lie inside this region. This shows
that the phases and absolute values of the numbers
µ(i, i′|ψλ) satisfy non-trivial constraints—constraints
which moreover relate to relevant physical facts. For
example, maximal negativity is relevant for work
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extraction beyond classical thermodynamic limits [16,
17]. Eq. (A16) implies that the maximal negative
and imaginary values any KD distribution can
attain are min{ai}i,{a′

i′}i′ ,ρ
Re[µ(i, i′|ρ)] = −1/8 and

max{ai}i,{a′
i′}i′ ,ρ

Im[µ(i, i′|ρ)] = 1/4 [84].
Finally, we comment on our choice to only define KD

representations using bases {|ai⟩}i and {|a′i′⟩}i′ for the
Hilbert space such that ⟨ai|a′i′⟩ ≠ 0 for all i and i′.
This choice is fairly standard—but not universal—in
the literature. Making this choice ensures that the
representation we construct is faithful. As also pointed
out in the main text, only in this case does learning a
KD representation of a quantum process imply that one
can reconstruct the given process, in which case ways
of measuring the KD representation are simply ways of
carrying out tomography (as recognized for the case of
states in Ref. [99]). Additionally, this property implies
that the representation of the identity operator is the
all-ones vector (Eq. (14)), which is crucial for interpreting
these KD distributions as quasistochastic in general—i.e.,
for normalization to be given by summing up all elements
of the state.

1. Relationship with frame representations and
real-valued quasiprobability representations

The terms quasiprobability representation and
frame-representation sometimes refer only to real-valued
representations of quantum theory, but are sometimes
rather used to subsume complex-valued representations
(such as KD representations). Similarly, the term frame
is sometimes used specifically for bases for the space
of Hermitian operators [1, 30–32]; however, the origins
of the term ‘frame’ allow for arbitrary bases of more
general inner product spaces [33, Sec. 1.1], so one can
use these terms in the context of complex-valued KD
representations, as we have herein.

Frame representations are strictly more general than
KD representations (as we have defined them).3 For
one thing, KD representations use complete bases,
while frame representations may use either complete
or overcomplete frames (although the latter do not
represent the identity as the quasistochastic identity
map [30]). For another, the operator basis used in a
standard KD representation is constructed to have a
particular form (that in Eq. (1)), whereas any basis of
operators may be used in a frame representation; for
instance, the operators in the former case (but not in
the latter) must be nonHermitian and rank one.

3 Note however that some distributions under the KD moniker are
not faithful (see e.g. Ref. [23, App. A]), and so are not frame
representations.

Appendix B: Proving stochasticity for all
nonnegative KD representations

We now prove that if a KD representation is real and
nonnegative for some set of processes, then in fact it
represents all those processes as substochastic matrices
(and consequently, the representation constitutes a valid
ontological model for the processes).
We begin by showing that the representation of any

state is a valid probability distribution in this case. By
assumption, µ(i, i′|ρ) ≥ 0 for all ρ under consideration,
and by Eq. (A12) we have that

∑
i,i′ µ(i, i

′|ρ) = 1. So
µ(i, i′|ρ) is a valid probability distribution.
Next, we wish to show that a POVM element is

in this case represented by a valid ‘response function’:
that is, a real vector whose elements are between 0
and 1. By assumption, ξ(E|i, i′) ≥ 0 for all E under
consideration. Moreover, a POVM element E can only
arise in a theory or fragment of quantum theory as
part of a measurement—a set of effects that sums to
the identity effect 1. Consequently, the POVM element
1 − E is necessarily also in the scenario or fragment
(one can measure this effect by doing any measurement
containing POVM element E and coarse-graining all
the outcomes other than E). So (again by the
assumption of nonnegativity) we have ξ(E|i, i′) ≥ 0 and
ξ(1− E|i, i′) ≥ 0 for every E under consideration. By
linearity of the representation, the latter implies that
ξ(1|i, i′)− ξ(E|i, i′) ≥ 0. By Eq. (14), i.e., ξ(1|i, i′) = 1,
we further have 1− ξ(E|i, i′) ≥ 0 and so

0 ≤ ξ(E|i, i′) ≤ 1 (B1)

for all i, i′ and for all E under consideration, as required.
Finally, we show that under the assumption of

nonnegativity, any KD representation of a quantum
channel is a substochastic matrix. For quantum channels
(which are trace-preserving), this is immediately evident
from the assumption of nonnegativity together with
Eq. (A13), namely

∑
j,j′ Γ(j, j

′|i, i′, E) = 1 for all i, i′. If
E is a trace-decreasing quantum operation, the argument
is much the same as for effects: E can only arise in
a scenario where it is complemented by some other
complementary trace-decreasing quantum channel Ẽ such
that E + Ẽ is trace-preserving (so that each corresponds
to the selective update rule for two possible outcomes of
some quantum instrument). By linearity, one has

1 =
∑
j,j′

Γ(j, j′|i, i′, E + Ẽ) (B2)

=
∑
j,j′

Γ(j, j′|i, i′, E) +
∑
j,j′

Γ(j, j′|i, i′, Ẽ)

for all i, i′. By assumption, all the terms in these sums
are nonnegative, so none of them can be larger than 1.
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So for a trace-decreasing operation E , one has∑
j,j′

Γ(j, j′|i, i′, E) ≤ 1, (B3)

as required for the representation to be substochastic.

Appendix C: Proof of functoriality

We now prove that every KD representation, as
we have defined it, commutes with composition of
quantum processes—formally, that it is a symmetric
strict monoidal functor, or ‘is diagram-preserving’.

First, we prove that the quantum identity is
represented as the identity on phase space:

Γ(̄i, ī′|i, i′, I) = Tr
[
Fī,ī′I(Di,i′)

]
= Tr

[
Fī,̄i′Di,i′

]
= δī,iδī′,i′ , , (C1)

where we have used the duality of the frames, i.e., Eq. (2).

Second, we prove that the KD representation preserves
sequential composition, that is, for E1 transforming
system A to system B and E2 transforming system B
to system C, we have

Γ
(
k, k′|i, i′, E2 ◦ E1

)
=
∑
j,j′

Γ(k, k′|j, j′, E2)Γ(j, j′|i, i′, E1). (C2)

Expanding the expression in the second line, we have∑
j,j′

Γ(k, k′|j, j′, E2)Γ(j, j′|i, i′, E1)

=
∑
j,j′

Tr[Fk,k′E2(Dj,j′)] Tr[Fj,j′E1(Di,i′)]

=Tr

Fk,k′E2

∑
j,j′

Tr[Fj,j′E1(Di,i′)]Dj,j′


(A3)
= Tr[Fk,k′E2 (E1(Di,i′))]

=Tr[Fk,k′(E2 ◦ E1)(Di,i′)]

=Γ
(
k, k′|i, i′, E2 ◦ E1

)
, (C3)

where we used the linearity of the trace operation and
the channel at the third equal sign, and the definitions
of KD representations and the reconstruction equations
at various places.

Third, we prove that KD representations preserve
parallel composition, that is, for E1 transforming system
A to system C and E2 transforming system B to system

D, we have that the representation of the two channels
in parallel, namely E1 ⊗ E2, satisfies

Γ(k, k′|i, i′, E1)Γ(l, l′|j, j′, E2)
=Γ(k, k′; l, l′|i, i′; j, j′, E1 ⊗ E2). (C4)

We expand the expression in the second line as

Γ(k, k′; l, l′|i, i′; j, j′, E1 ⊗ E2)
=Tr[Fk,k′;l,l′E1 ⊗ E2 (Di,i′;j,j′)]

=Tr[(Fk,k′ ⊗ Fl,l′) E1 ⊗ E2 (Di,i′ ⊗Dj,j′)]

=Tr[Fk,k′E1(Di,i′)⊗ Fl,l′E1(Dj,j′)]

=Tr[Fk,k′E1(Di,i′)] Tr[Fl,l′E1(Dj,j′)]

= Γ(k, k′|i, i′, E1)Γ(l, l′|j, j′, E2), (C5)

where the second equality follows from the definition of
the frame and the dual frame for two systems (namely
Eqs. (17) and (18)), and where the second to last
equality uses a simple property of the trace, namely that
Tr[A⊗B] = Tr[A] Tr[B].
Last, we prove that the quantum swap channel is

represented as the corresponding swap channel in the
representation. Consider the swap channel S such that

S(O1 ⊗O2) = O2 ⊗O1, (C6)

where O1 and O2 are any operators, each of which is on a
(potentially different) Hilbert space. Note that the order
O1⊗O2 is reflected on Γ via the order of the basis indices.
We then need to show that in the KD representation
of the swap, the order i, i′, j, j′ of the input indices is
swapped in the output to j̄, j̄′, ī, ī′. Mathematically,

Γ(j̄, j̄′; ī, ī′|i, i′; j, j′,S)
=δī,iδī′,i′δj̄,jδj̄′,j′ , (C7)

for all indices. We expand the expression in the first line:

Γ(j̄, j̄′; ī, ī′|i, i′; j, j′,S)
=Tr

[
Fj̄,j̄′ ;̄i,̄i′S(Di,i′;j,j′)

]
=Tr

[
Fj̄,j̄′ ⊗ Fī,̄i′S (Di,i′ ⊗Dj,j′)

]
=Tr

[
(Fj̄,j̄′ ⊗ Fī,̄i′)(Dj,j′ ⊗Di,i′)

]
=Tr

[
Fj̄,j̄′Dj,j′

]
Tr

[
Fī,̄i′Di,i′

]
=δī,iδī′,i′δj̄,jδj̄′,j′ , (C8)

where the second equality follows from the definition of
frame and dual frame for two systems (namely, Eqs. (17)
and (18)).
These facts together imply [29] that every KD

representation of quantum theory (as we have defined it)
respects composition of quantum processes. Formally,
such representations are symmetric strict monoidal
functors—or in other words, diagram-preserving maps.
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