
Benchmarking Optimizers for Qumode State
Preparation with Variational Quantum Algorithms

Shuwen Kan1*, Miguel Palma1*, Zefan Du 1

Samuel A Stein2, Chenxu Liu2, Juntao Chen1, Ang Li2, and Ying Mao1

1 Computer and Information Science Department, Fordham University,
{sk107, mip2, zdu19, jchen504, ymao41}@fordham.edu

2Pacific Northwest National Laboratory (PNNL), {samuel.stein, chenxu.liu, ang.li}@pnnl.gov

Abstract—Quantum state preparation involves preparing a tar-
get state from an initial system, a process integral to applications
such as quantum machine learning and solving systems of linear
equations. Recently, there has been a growing interest in qumodes
due to advancements in the field and their potential applications.
However there is a notable gap in the literature specifically
addressing this area. This paper aims to bridge this gap by
providing performance benchmarks of various optimizers used
in state preparation with Variational Quantum Algorithms. We
conducted extensive testing across multiple scenarios, including
different target states, both ideal and sampling simulations, and
varying numbers of basis gate layers. Our evaluations offer
insights into the complexity of learning each type of target state
and demonstrate that some optimizers perform better than others
in this context. Notably, the Powell optimizer was found to be ex-
ceptionally robust against sampling errors, making it a preferred
choice in scenarios prone to such inaccuracies. Additionally, the
Simultaneous Perturbation Stochastic Approximation optimizer
was distinguished for its efficiency and ability to handle increased
parameter dimensionality effectively.

I. INTRODUCTION

Quantum computing has the potential to solve computa-
tional problems that are simply intractable on classical com-
puters [1]. Superposition, an exponentially large computational
Hilbert space, and entanglement, give rise to a new model
of computation. Seminal algorithms such as Shor’s Algorithm
[2] or Digital Quantum Simulation of physical systems [3],
motivate the field to develop quantum computers powerful
enough to tackle these problems.

Despite this significant potential, hardware and software
problems limit the physical realization of quantum computers
[4]. Arguably, the largest challenge in quantum computing is
the inability to escape noise [5]. Imperfect control, decoher-
ence, and undesirable coupling, are problems that plague quan-
tum computing platforms today but quantum error correction
provides a path towards exponential error suppression [6].

Quantum computing diverges from today’s classical com-
puters, which rely solely on transistor-based technology, as
researchers have not yet standardized a single approach for
constructing the perfect qubit. Currently, the field features
multiple architectures, each with its own set of strengths
and weaknesses. Superconducting circuits, for instance, utilize

*Authors contributed equally

supercooled circuits to create an anharmonic oscillator [7],
offering rapid operation times. However, these systems face
challenges such as short decoherence times and limited qubit
connectivity. On the other hand, trapped ion quantum com-
puters employ lasers to manipulate and control charged atoms
held in place by magnetic fields [8]. While these systems boast
longer decoherence times and are generally more manageable,
they operate more slowly and present difficulties in optical and
electrical control.

Qumodes represent a promising approach in quantum com-
puting, characterized by their use of continuous variable
systems over infinite dimensional matrices [9]. Typically as-
sociated with bosonic modes, these systems theoretically can
reach infinitely high Fock levels. However, such levels are
not physically realistic, prompting the truncation of these
matrices to a manageable, finite dimension that reflects the
highest achievable Fock level. Despite being less explored than
other quantum systems, qumodes are particularly noteworthy
due to their natural alignment with real-world applications.
Examples include optimizing graph cliques [10], analyzing
point processes [11], and simulating molecular vibrational
spectra [12], showcasing their potential in practical scenarios.
There have been notable developments in qumode control and
readout [13]–[16]. Beamsplitter operations with gate fidelities
exceeding 99.98% [13] have been reported and show promise
that high-reliability physical implementations are possible in
the near future. Additionally, a compiler optimzation frame-
work for bosonic quantum acheived a 39.6% reduction of
Beamsplitter gate counts while maintaining fidelity at 98.00%
[14], improving the qumode software and compiler state of
the art.

Variational Quantum Algorithms (VQA) have garnered in-
terest due to their ability to mitigate the effects of noise in
contemporary quantum hardware [17]–[27]. VQAs operate by
utilizing quantum hardware to execute parameterized quantum
circuits, alongside classical systems that run optimization
algorithms to adjust these parameters. This dual-system ap-
proach enables the application of VQAs in a variety of fields,
including solving optimization and eigenvalue problems that
are prevalent in quantum physics and chemistry simulations.

State preparation is a crucial subroutine in various quan-
tum algorithms, notably in Variational Quantum Algorithms

ar
X

iv
:2

40
5.

04
49

9v
1

 [
qu

an
t-

ph
]

 7
 M

ay
 2

02
4

(VQA)-based quantum learning, Hamiltonian simulation, and
solving systems of linear equations [28]. This process, which
involves loading classical information into quantum devices
before computation, is notably resource-intensive. Specifically,
preparing N-dimensional vectors necessitates a circuit with
depth proportional to O(N) [29]. For practical applications to
realize Quantum Advantage, the development of an efficient
state preparation method is paramount. While traditional quan-
tum state preparation has been extensively studied [30]–[33],
qumode state preparation has received less attention.

In this paper, we focus on VQA-based applications and
investigate the quantum learning of a gate sequence tailored
for arbitrary qumode target states, aimed at enhancing qumode
state preparation efficiency. The key contributions of this
research are as follows:

• We conduct a comprehensive benchmark study on the
performance of various optimizers in qumode state prepa-
ration with different settings.

• Our evaluations compare various optimizers in the task
of Local and Non-local Gaussian states as well as Non
Gaussian using a 2-gateset VQA.

• The experiments demonstrate that learning Non-Gaussian
states posed a greater challenge, requiring up to 10 layers
to minimize state preparation error.

II. RELATED WORK

When discussing how quantum computers outperform clas-
sical devices, a crucial component is the loading of classical
data onto these quantum devices. The No Cloning Theorem
states that that arbitrary quantum states cannot be duplicated
the same way data can be duplicated on classical devices
[34], making it a non-trivial problem. The key problem can be
stated as determining the correct quantum gate sequence that
transforms an initial quantum state to the desired target state
with minimal error and in the least amount of time possible.

Quantum state preparation schemes are classified into two
broad categories: arithmetic decomposition (AD) and varia-
tional quantum state preparation (VQSP) [35]. AD approaches
employ a more analytical approach to generating circuits to
produce the target state, however they are affected by quantum
noise on real devices that throw off the results. VQSP, on the
other hand, uses the variational method to approximate the
target state by iteratively updating a set of parameters. This
approach is more suited to NISQ devices because of its limited
circuit depth and gate count.

Variational quantum algorithms (VQA) utilize classical op-
timizers to determine which direction to adjust parameters.
Optimizers are also organized under two categories: gradient-
based and gradient-free optimizers. The gradient is the deriva-
tive of the objective function that specifies the rate of change of
input to the output. Gradient-free methods sample the function
at various points to derive an estimated value of the gradient.
The choice of optimizer to use affects the quality of the output
and the number of iterations needed to approach a reasonable
approximate solution.

Bosonic quantum is a separate branch of quantum comput-
ing based on bosonic qumodes. The fundamental difference
is that these qumodes are continuous variable systems, as
opposed to the 2-state qubit system. However, this capacity
for an infinite number of states is truncated when simulating
on classical devices. Bosonic quantum has immense potential
to advance quantum algorithms because it presents a simpler
and more versatile way of encoding and representing quantum
information [36].

Despite the potential of bosonic qumodes and the necessity
of state preparation in quantum algorithms, there is barely
any research on preparation of target qumode states. A study
shows that an energy-dependent barren plateau phenomenon
is exhibited in the cost function of training bosonic VQCs
for state preparation [37]. Our contribution is to provide an
empirical benchmark and comparison of different optimizers
for this task.

III. BACKGROUND

A. Qumodes

Qumodes are a type of quantum system characterized
by having an infinite number of levels, which makes them
capable of being in a superposition of multiple Fock basis
states. These states are represented by a linear combination:
ρ = α0|0⟩ + ... + αn|N⟩, where α0, ... , αn are complex
numbers that sum to 1 when squared. When dealing with
systems comprising multiple qumodes, their overall state can
be described by the tensor product of the individual qumodes’
states. However, in practical applications, qumodes are often
truncated to a manageable number of Fock levels, ranging
from 0 (the vacuum state) to N , where N serves as the
cutoff value. This truncation simplifies calculations and makes
experimental realizations feasible.

B. Variational Qumode Circuits

Variational Quantum Algorithms (VQAs) are hybrid algo-
rithms that employ both quantum and classical computing
techniques to find approximate solutions to problems. These
algorithms are particularly effective in mitigating the lim-
itations of current quantum devices, which include limited
qubit counts and high susceptibility to noise. In VQAs, a
parametrized quantum circuit encodes the problem at hand,
while a classical optimization algorithm iteratively adjusts the
circuit’s input parameters to refine the solution. However, it is
important to note that VQAs do not guarantee the discovery
of an exact solution.

The effectiveness of VQAs in practical applications is often
hindered by several limitations. One significant challenge is
the Barren Plateau (BP) phenomenon, where the landscape of
the cost function is extremely flat across vast regions, with the
solution residing in a narrow, difficult-to-locate gorge [18].
In such scenarios, the optimizer struggles to find adequate
gradient information to effectively navigate out of the BP, often
resulting in prolonged convergence times or the acceptance of
suboptimal solutions. The expressiveness of the parametrized

circuit and the choice of initial parameters are crucial factors
that influence the likelihood of encountering BPs.

C. Optimizers

Optimizers play a crucial role in Variational Quantum
Algorithms (VQAs) as they navigate the cost landscape to
minimize the cost function. Integral to logistics planning, op-
erations research, and machine learning, these algorithms are
categorized into two primary groups: gradient-based methods
and gradient-free methods. This classification highlights the
varied approaches used to tackle optimization problems in
quantum computing environments.

The performance of these optimizers is assessed on sev-
eral fronts. Accuracy is crucial as it measures how closely
the optimizer’s solution approaches the global minimum and
its robustness against noise, essential for reliable quantum
computing. Speed, determined by the number of iterations
to convergence and the number of samples per iteration,
reflects the efficiency of the optimizer. Scalability indicates
the optimizer’s performance as the number of parameters
increases, important for complex systems. Lastly, consistency
evaluates the optimizer’s ability to deliver similar results across
different runs with randomized initial parameters, ensuring re-
liability and repeatability in outcomes. Together, these factors
determine the effectiveness of optimizers in practical quantum
computing applications.

IV. EVALUATION

This section evaluates the performance of various optimizers
for VQAs on qumode systems, specifically in learning param-
eter values to approximate arbitrary target states. The param-
eters are structured into layers, with each layer comprising
five real numbers: [vr, vi, θx, θy, θz]. Here, vr + vi ∗ i forms
the complex number for the VP gate, and θx, θy , θz serve as
input parameters for the RX, RY, and RZ gates, respectively.

For the experiments, we implement testing cases with
Qiskit Bosonic [38] along with customized gates and QuTiP
functions. This study employs the Python libraries Scipy [39]
and SPSA [40], renowned for their extensive use in sci-
entific computing and engineering. We have tested follow-
ing optimizers including L-BFGS-B [41], Conjugate Gra-
dient (CG) [42], Sequential Least Squares Programming
(SLSQP) [43], Constrained Optimization by Linear Approxi-
mation (COBYLA) [44], Nelder-Mead [45], Powell [46], Im-
plicit Filtering (ImFil) [47], Bound Optimization BY Quadratic
Approximation (PyBobyQA) [48], and Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [49].

Additionally, to evaluate the similarity between the learned
and target states, we utilize the SWAP test. Given the pro-
hibitive cost of state tomography, the SWAP test provides a
more efficient means of approximating state similarities due to
its lower sampling requirements. In our study, which focuses
on learning latent states and reproducing them parametrically,
the SWAP test is particularly suitable. It measures the squared
inner product between two qumode state vectors, translating

this measure into the probability of observing a ’0’ on an
ancilla coupled transmon, as determined by the algorithm.

A. System Setup

1) Basis gates: Given a qubit-coupled bosonic quantum
system, we opt to analyse applying layers of following com-
putationally complete sets of instructions:

Vp(α) = eiσz(αa
†−α∗a)

R(b̂, θ) = eiθb̂·σ̂

• α is a complex number for Vp gate
• θ is a real number in the range [0, 2π) for rotation,
• b̂ is a unit 3D vector,
• σ̂ = (σx, σy, σz) represents the Pauli matrices.
Layers are comprised of a complete U3 rotation on the

coupled transmon parameterised by two parameters, providing
complete control over the transmon, followed by an application
of the parametric displation gate (Vp). This is considered a
layer in further discussion.

2) Objective Function: Following the gate layer applica-
tions, the swap test is performed between the two qumodes.
The swap test results in the transmon having a P(|0⟩) of
0.5 + 0.5 × |⟨ΦΨ⟩|2. Our goal is to maximize the fidelity of
our learnt state and a target state, hence optimizing directly
over the swap test results can lead to gradient scaling issues
due to the squared fidelity term. To address this, we applied
a square root transformation to the swap test results, resulting
in 1 −

√
2× (P (|0⟩)− 0.5). Consequently, our final objec-

tive function becomes infidelity. In scenarios where sampling
simulation produces swap test results lower than 0.5, leading
to negative values inside the square root, a lower bound was
imposed to ensure that the swap test result remains greater
than 0.5.

3) Target State of Interest: Given the impracticality of sim-
ulating infinite dimensions, we truncate the bosonic systems to
a 10-level system for general experiments, which we deemed
sufficient to represent the distributions of interest. Three types
of target states were explored in our experiments: Local
Gaussian , Gaussian, and Non-Gaussian states. We selected an
identical target state for different optimizers under the same
settings. The target states we investigated were as follows:
Local Gaussian (mean = 0, std = 0.75), Gaussian distribution
(mean = 5, std = 1), and Non-Gaussian distribution (0, 0.209,
0.417, 0.209, 0, 0.417, 0.626, 0.417, 0, 0).

4) Workload: In this study, two primary metrics, the final
infidelity value and the number of function evaluations (nfev)
are evaluated for benchmarking purpose. Infidelity directly
relates to optimizer’s ability to approach global optimal. The
number of function evaluations directly relates to the runtime
efficiency for each optimizer, correlating to how many times
one would need to optimize over real life experiments. In
the result table, a standard deviation of 0 may be observed
for COBYLA and SPSA. This occurs because Scipy enforces
a 1000-iteration limit for the COBYLA optimizer, causing
certain results to display an nfev standard deviation of 0.

Furthermore, a custom iteration count of 1000 is utilized for
the SPSA optimizer. We conducted experiments with varying
numbers of layers and truncation levels. Each experimental
setup was replicated 30 times.

Each target state is tested by two simulation methods, ideal
simulation and sampling simulation. In ideal simulation, the
swap test results reflects the use of the statevector directly,
whereas sampling simulation incorporates a sampling process,
representing the real world experimental process.

5) Optimizers: The optimizers we tested fall into two cat-
egories: gradient-based optimizers and derivative optimizers.
Moreover, to effectively tackle the challenges arising from the
high-dimensional nature of the problem when multiple layers
are needed to approximate the target state closely, we uti-
lized the Simultaneous Perturbation Stochastic Approximation
(SPSA) optimizer.

In the context of gradient-based optimizers, the selection
of step size for finite difference gradient estimation is crucial.
Smaller step sizes tend to be heavily influenced by sampling
error, while larger sample sizes may be able to provide an
unbiased estimator of the gradient. Throughout our experi-
ments, we discovered that an adaptive step size approach was
prone to encountering local optima. Consequently, we opted
for a fixed step size of 0.03 for ideal simulation. However,
for sampling simulation, both the step size and sampling size
must be carefully addressed to ensure accurate results. Table I
illustrates the percentage of non-converging trials for L-BFGS-
B, a gradient-based optimizer, across various sampling sizes
and step sizes. We conducted 200 trials with sample sizes
ranging from 1024 to 8192, with increments of 1024 and step
size selection of [0.03,0.05,0.08].

The findings indicate that a sampling size of 1024 proves
insufficient for providing a meaningful gradient estimation
direction, resulting in non-converging trials ranging from 15%
to 38.5%. As sampling size reaches between 6144 and 8192,
percentage of non-converging dropped below 5%. Given that
increasing the sampling size corresponds to an increase in the
number of shots of measurement in practical implementation,
which can be costly, we opted to use a sampling size of 6144
for our subsequent sampling simulations.

It is notable that in ideal simulation, as indicated in Table II,
the L-BFGS-B optimizer is expected to attain an infidelity of
0.003. For trials that converge, the final infidelity is anticipated
to be close to this value, albeit subject to some sampling error.
Hence, the standard deviation is closely associated with the
number of non-converging trials, potentially yielding values
within the range of [0.3, 0.9].

B. Local Gaussian State

1) Ideal Simulation: The results can be found in Table II
and our we observe that the Powell optimizer was able to
minimize infidelity the most at the cost of also having the
highest average number of function evaluations. The mean
and std dev of infidelity remains more or less consistent even
when the cutoff and layer count values are changed while
the mean and std dev of the number of evaluations showed

TABLE I: Evaluation of Various Step Sizes and Sample Sizes
for gradient-based optimizer for Sampling Simulation

trial sample size step size infidelity mean infidelity std None converge(%)

200 1024 0.03 0.299 0.408 38.5
200 1024 0.05 0.198 0.354 25
200 1024 0.08 0.131 0.296 15
200 2048 0.03 0.210 0.362 25.5
200 2048 0.05 0.126 0.292 14.5
200 2048 0.08 0.113 0.281 11.5
200 3072 0.03 0.199 0.360 23
200 3072 0.05 0.0950 0.252 12
200 3072 0.08 0.0629 0.194 7
200 4096 0.03 0.198 0.361 23
200 4096 0.05 0.0604 0.184 9.5
200 4096 0.08 0.0418 0.115 5.5
200 5120 0.03 0.0844 0.233 10
200 5120 0.05 0.0510 0.159 5.5
200 5120 0.08 0.0427 0.128 7
200 6144 0.03 0.143 0.317 17
200 6144 0.05 0.0593 0.192 6

1000 6144 0.08 0.0332 0.192 4.8
1000 7168 0.08 0.0290 0.0948 3.5
1000 8192 0.08 0.0297 0.106 3.5

a lot more variation in the results. There is no observed
relationship between the number of layers and cutoff on the
average infidelity.

TABLE II: Local Gaussian State of Ideal Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.00358 0.00192 34.58 22.08
2 CG 0.00309 0.000722 140.4 65.32
1 L-BFGS-B 0.00353 0.00308 21.34 15.17
2 L-BFGS-B 0.00385 0.00504 53.66 25.93
1 SLSQP 0.00405 0.00208 18.24 14.31
2 SLSQP 0.00355 0.000948 23.48 10.86
1 SPSA 0.00740 0.0111 1000 02 SPSA XXXX XXXX
1 Nelder-Mead 0.00313 0.000442 254.9 60.77
2 Nelder-Mead 0.00300 0.000609 991.28 366.13
1 Powell 0.00330 0.000713 487.82 282.64
2 Powell 0.00339 0.000567 2415.06 1617.42
1 COBYLA 0.00369 0.00156 427.3 452.93
2 COBYLA 0.00425 0.000920 952.58 189.93

2) Sampling Simulation: The results are displayed in Table
III. The Powell optimizer showcases the highest robustness
against sampling errors. Generally, derivative-free optimizers
outshine gradient-based ones, as sampling error markedly
impacts the gradient estimation process. Among the three
gradient-based optimizers, CG is the most susceptible to sam-
pling error, while SPSA exhibits the most robustness. Notably,
increasing the layer from 1 to 2 for the CG optimizer helps
achieve results comparable to other gradient-based optimizers.

C. Gaussian State

1) Ideal Simulation: The results are displayed in Table
IV. With an increased number of layers, the dimensionality
of parameters expands, creating a more intricate optimization
space. Consequently, the number of function evaluations grows
nonlinearly with each additional layer. An unusual trend
observed in this table is that for layer=1, CG and L-BFGS-B
optimizers require a significantly higher number of function
evaluations. This anomaly arises because, with only one layer,
the final learned state fails to capture the full complexity of
the Gaussian distribution. Consequently, these two optimizers

TABLE III: Local Gaussian State of Sampling Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.156 0.162 32.85 8.526
2 CG 0.0188 0.0168 35.8 10.272
1 L-BFGS-B 0.0337 0.0336 17.2 5.205
2 L-BFGS-B 0.0142 0.0122 16.1 4.433
1 SLSQP 0.111 0.115 21.05 8.565
2 SLSQP 0.0152 0.0116 27 14.259
1 SPSA 0.0112 0.0161 1000 02 SPSA 0.00957 0.0119
1 Nelder-Mead 0.0943 0.0977 2773.15 67.729
2 Nelder-Mead 0.0797 0.209 2854.6 95.060
1 Powell 0.00516 0.00450 183.5 64.209
2 Powell 0.00778 0.00608 491.9 147.625
1 COBYLA 0.0154 0.0143 61.9 4.959
2 COBYLA 0.0250 0.0203 108.3 9.934

struggle to converge. Prior to termination, they expend addi-
tional iterations attempting to achieve convergence.

It’s important to note that Powell consistently outperforms
other optimizers despite this increase in complexity. While
derivative-free optimizers require a greater number of function
evaluations, they maintain efficiency in terms of time. It’s
crucial to acknowledge that gradient-based optimizers (CG,
L-BFGS-B, SLSQP) entail additional objective function eval-
uations for finite difference gradient estimation. This process
involves evaluating the objective function multiple times based
on the dimensionality of the parameter space. For example,
with two layers, each gradient estimation requires 20 func-
tion evaluations. Therefore, the overall number of objective
function evaluations for CG, L-BFGS-B, and SLSQP is 2499,
882, and 672, respectively. With three layers, these numbers
increase to 7920, 2759, and 1984, respectively, with CG being
the most inefficient. Since the number of objective function
evaluations directly affects the optimizer’s runtime, gradient-
based optimizers become less efficient as the number of layers
increases, making derivative-free optimizers more favorable in
terms of time efficiency.

TABLE IV: Gaussian State of Ideal Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.372 0.198 642.8 288.16
2 CG 0.128 0.0516 119.56 28.47
3 CG 0.0549 0.0489 264.7 94.92
1 L-BFGS-B 0.361 0.194 375.38 187.62
2 L-BFGS-B 0.140 0.0599 42.7 16.68
3 L-BFGS-B 0.0564 0.0501 88.9 37.05
1 SLSQP 0.363 0.196 115.8 33.50
2 SLSQP 0.131 0.0516 32.1 9.7
3 SLSQP 0.0502 0.0492 63.75 31.31
1 SPSA 0.384 0.227

1000 02 SPSA 0.180 0.0517
3 SPSA 0.119 0.0681
1 Nelder-Mead 0.382 0.200 227.05 41.73
2 Nelder-Mead 0.121 0.0438 1124.36 229.32
3 Nelder-Mead 0.0922 0.0406 1324.7 17.61
1 Powell 0.250 0.106 413.4 150.75
2 Powell 0.136 0.0552 2193.3 1101.89
3 Powell 0.0468 0.0274 8540.75 3671.44
1 COBYLA 0.313 0.173 80.7 10.56
2 COBYLA 0.142 0.0575 994.84 36.12
3 COBYLA 0.0977 0.0351 1000 0

2) Sampling Simulation: The results are displayed in Ta-
ble V. It’s noteworthy that Nelder-Mead displays the lowest
resilience to sampling errors, consistent with findings for both
local Gaussian and non-Gaussian states. Powell continues
to demonstrate superior performance among all optimizers,

TABLE V: Gaussian State of Sampling Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.518 0.274 32.15 9.65
2 CG 0.198 0.0638 40.95 14.03
3 CG 0.179 0.0693 41 13.05
1 L-BFGS-B 0.395 0.179 18.2 9.16
2 L-BFGS-B 0.234 0.0742 17.55 4.87
3 L-BFGS-B 0.170 0.0877 26.13 9.14
1 SLSQP 0.414 0.198 42.05 19.15
2 SLSQP 0.208 0.0677 67.25 32.64
3 SLSQP 0.176 0.0549 37.47 13.52
1 SPSA 0.341 0.183

1000 02 SPSA 0.175 0.0533
3 SPSA 0.118 0.0511
1 Nelder-Mead 0.659 0.299 2849.95 408.62
2 Nelder-Mead 0.429 0.223 2816.55 71.52
3 Nelder-Mead 0.447 0.259 2955.13 157.06
1 Powell 0.242 0.0179 189.8 68.24
2 Powell 0.183 0.0531 538.25 245.94
3 Powell 0.134 0.0503 1153.27 505.55
1 COBYLA 0.372 0.0978 64.2 9.71
2 COBYLA 0.225 0.0896 117.7 10.921
3 COBYLA 0.215 0.0894 163.8 11.37

with SPSA also showing favorable results. Despite this, all
optimizers yield final infidelity values of only 0.11 and 0.13 for
3 layers. Hence, achieving convergence in sampling simulation
for learning Gaussian states requires more than 3 layers.

D. Non-Gaussian State

1) Ideal Simulation: Learning a non-Gaussian state
presents inherent challenges compared to learning Gaussian
states due to its more complex structure. Gaussian states
typically have simpler parameterizations based on mean and
standard deviation, while non-Gaussian states may necessitate
more intricate parameterizations.

Another challenge associated with increasing layers is the
resultant increase in the number of parameters. Testing beyond
3 layers, particularly for gradient-based optimizers, becomes
computationally expensive. However, SPSA stands out as
an exception, reducing the number of function evaluations
required for each gradient estimation to just two, regardless
of dimensionality. Consequently, to investigate the required
number of layers for learning non-Gaussian states, we tested
layers 1 to 10 using the SPSA optimizer. The results shown
in Table VI indicate a nearly linear relationship for the SPSA
optimizer from 1 layer to 10 layers.

2) Sampling Simulation: Figure 2 presents a comparison
of the infidelity change over iterations for SPSA in both ideal
and sampling simulations for layer = 10. It highlights the
characteristics of sampling simulation, where the objective
function exhibits slight fluctuations due to sampling errors.

Similar to the ideal simulation, the error decreases almost
linearly and stabilizes as the number of layers approaches 10.
In summary, our findings suggest that employing 10 layers is
adequate to capture the features of the non-Gaussian state.

Furthermore, Figure 1 presents the Wigner function visu-
alization to illustrate the similarity between the learned and
target states across various layers. It distinctly depicts that with
1 layer, the learned state retains the shape of a local Gaussian
distribution. At 5 layers, corresponding to an infidelity value
of 0.125, the basic shape of a non-Gaussian state begins to
emerge. Finally, with 10 layers and an infidelity value of 0.04,

(a) Learnt State layer = 1 (b) Learnt State layer = 5 (c) Learnt State layer = 10 (d) target state

Fig. 1: Wigner Function of Learnt Stat at different Layer for Non-Gaussian State

TABLE VI: Non-Gaussian State of Ideal Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.340 0.187 656.45 274.83
2 CG 0.223 0.0964 2803.6 758.29
3 CG 0.112 0.0373 8209 2055.25
1 L-BFGS-B 0.340 0.187 335.5 187.34
2 L-BFGS-B 0.221 0.108 1173.9 489.98
3 L-BFGS-B 0.142 0.0353 3633.2 1456.66
1 SLSQP 0.341 0.189 113.45 28.14
2 SLSQP 0.205 0.0756 539.4 201.61
3 SLSQP 0.158 0.0305 1658.6 835.49
1 Nelder-Mead 0.361 0.196 240.45 43.37
2 Nelder-Mead 0.218 0.129 1025.85 306.71
3 Nelder-Mead 0.158 0.0252 1328.5 19.60
1 Powell 0.240 0.0892 319.85 124.35
2 Powell 0.170 0.0200 1769 774.26
3 Powell 0.148 0.0323 5774.4 2825.30
1 COBYLA 0.302 0.167 82.35 12.24
2 COBYLA 0.205 0.113 941.8 106.44
3 COBYLA 0.194 0.0542 1000 0
1 SPSA 0.480 0.0396

1000 0

2 SPSA 0.348 0.00937
3 SPSA 0.290 0.0111
4 SPSA 0.238 0.00330
5 SPSA 0.125 0.00330
6 SPSA 0.104 0.000678
7 SPSA 0.0780 0.00102
8 SPSA 0.0494 0.000446
9 SPSA 0.0408 0.000294

10 SPSA 0.0413 0.000179

the learned state closely resembles the target state. These plots
also aid in understanding how the infidelity value correlates
with the Wigner representation of Qumodes.

V. CONCLUSION

This paper evaluates various optimizers for preparing target
qumode states, focusing on three types: Local Gaussian, Non-
local Gaussian, and Non-Gaussian states. Each state type is
evaluated with specific parameters, including step size and
sampling size. In ideal simulations, both Local and Non-local
Gaussian states were effectively approximated within three
layers. However, simulations involving sampling required ad-
ditional layers to achieve similar accuracy. The preparation of
Non-Gaussian states proved more challenging, necessitating
up to 10 layers to minimize the state preparation error effec-
tively. The study also delves into the implications of increasing
the number of layers on runtime efficiency and optimization
success. It reveals that additional layers lead to more iterations
needed to find optimal points within an expanded parameter

TABLE VII: Non-Gaussian State of Sampling Simulation

layers method infidelity mean infidelity std nfev mean nfev mean

1 CG 0.672 0.202 38.8 14.30
2 CG 0.555 0.205 33.1 14.21
3 CG 0.310 0.150 41.8 20.26
1 L-BFGS-B 0.618 0.225 24.05 8.83
2 L-BFGS-B 0.552 0.209 23 11.23
3 L-BFGS-B 0.356 0.185 19.4 3.95
1 SLSQP 0.661 0.226 32.9 12.85
2 SLSQP 0.503 0.200 62.05 29.61
3 SLSQP 0.337 0.207 32.4 13.43
1 Nelder-Mead 0.574 0.267 2757.65 59.85
2 Nelder-Mead 0.468 0.232 2871.3 91.10
3 Nelder-Mead 0.412 0.196 2931.5 120.39
1 Powell 0.277 0.146 258.1 111.74
2 Powell 0.198 0.0263 563.05 260.35
3 Powell 0.208 0.0449 820 424.66
1 COBYLA 0.402 0.200 64 12.43
2 COBYLA 0.294 0.136 107.5 11.11
3 COBYLA 0.251 0.0761 157.2 20.00
1 SPSA 0.474 0.0147

1000 0

2 SPSA 0.417 0.0167
3 SPSA 0.270 0.00319
4 SPSA 0.218 0.00137
5 SPSA 0.158 0.00603
6 SPSA 0.111 0.000829
7 SPSA 0.0839 0.000943
8 SPSA 0.0567 0.000399
9 SPSA 0.0546 0.000165

10 SPSA 0.0455 0.000497

Fig. 2: Stochastic and non-Stochastic simulation

space. Furthermore, the analysis shows that gradient-based op-
timizers tend to struggle more with increases in dimensionality
compared to derivative-free optimizers. An exception is the
SPSA optimizer, which maintains efficient gradient estimation
capabilities irrespective of the system’s dimensionality. This
insight is crucial for optimizing quantum state preparation
processes, particularly in more complex quantum systems.

VI. ACKNOWLEDGEMENT

This research was supported in part by the National Science
Foundation (NSF) under grant agreements 2329020, 2301884
and 2335788. This work was partially supported by the U.S.
Department of Energy, Office of Science, National Quantum
Information Science Research Centers, Co-design Center for
Quantum Advantage (C2QA) under contract number DE-
SC0012704, (Basic Energy Sciences, PNNL FWP 76274).
This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231.

REFERENCES

[1] P. W. Shor, “Quantum computing,” Documenta Mathematica, vol. 1, no.
1000, pp. 467–486, 1998.

[2] ——, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp.
303–332, 1999.

[3] D. S. Abrams and S. Lloyd, “Simulation of many-body fermi systems
on a universal quantum computer,” Physical Review Letters, vol. 79,
no. 13, p. 2586, 1997.

[4] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[5] S. Resch and U. R. Karpuzcu, “Benchmarking quantum computers and
the impact of quantum noise,” ACM Computing Surveys (CSUR), vol. 54,
no. 7, pp. 1–35, 2021.

[6] J. Roffe, “Quantum error correction: an introductory guide,” Contempo-
rary Physics, vol. 60, no. 3, pp. 226–245, 2019.

[7] S. P. Upadhyay, M. A. Alam, and S. Ghosh, “Architectures
for quantum information processing,” 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:253511080

[8] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, 2019.

[9] S. L. Braunstein and P. van Loock, “Quantum information with
continuous variables,” Reviews of Modern Physics, vol. 77, no. 2,
p. 513–577, Jun. 2005. [Online]. Available: http://dx.doi.org/10.1103/
RevModPhys.77.513

[10] L. Banchi, M. Fingerhuth, T. Babej, C. Ing, and J. M. Arrazola,
“Molecular docking with gaussian boson sampling,” Science advances,
vol. 6, no. 23, p. eaax1950, 2020.

[11] S. Jahangiri, J. M. Arrazola, N. Quesada, and N. Killoran, “Point
processes with gaussian boson sampling,” Phys. Rev. E, vol. 101, p.
022134, Feb 2020. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevE.101.022134

[12] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A. Aspuru-
Guzik, “Boson sampling for molecular vibronic spectra,” Nature Pho-
tonics, vol. 9, no. 9, pp. 615–620, 2015.

[13] Y. Lu, A. Maiti, J. W. O. Garmon, S. Ganjam, Y. Zhang, J. Claes,
L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “High-fidelity
parametric beamsplitting with a parity-protected converter,” Nature
Communications, vol. 14, no. 1, Sep. 2023. [Online]. Available:
http://dx.doi.org/10.1038/s41467-023-41104-0

[14] J. Zhou, Y. Liu, Y. Shi, A. Javadi-Abhari, and G. Li, “Bosehedral:
Compiler optimization for bosonic quantum computing,” 2024.

[15] C. Fabre and N. Treps, “Modes and states in quantum optics,” Reviews
of Modern Physics, vol. 92, no. 3, p. 035005, 2020.

[16] G. Oberdieck and A. Pixton, “Quantum cohomology of the
hilbert scheme of points on an elliptic surface,” arXiv preprint
arXiv:2312.13188, 2023.

[17] S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, S. Xu, and
C. Ding, “Quclassi: A hybrid deep neural network architecture based on
quantum state fidelity,” Proceedings of Machine Learning and Systems,
vol. 4, pp. 251–264, 2022.

[18] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and
P. J. Coles, “Variational quantum algorithms,” Nature Reviews
Physics, vol. 3, no. 9, p. 625–644, Aug. 2021. [Online]. Available:
http://dx.doi.org/10.1038/s42254-021-00348-9

[19] S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, B. Fang,
and S. Xu, “Qugan: A quantum state fidelity based generative adver-
sarial network,” in 2021 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, 2021, pp. 71–81.

[20] S. Stein, N. Wiebe, Y. Ding, P. Bo, K. Kowalski, N. Baker, J. Ang, and
A. Li, “Eqc: ensembled quantum computing for variational quantum
algorithms,” in Proceedings of the 49th annual international symposium
on computer architecture, 2022, pp. 59–71.

[21] S. Stein, Y. Mao, J. Ang, and A. Li, “Qucnn: A quantum convolutional
neural network with entanglement based backpropagation,” in 2022
IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, 2022,
pp. 368–374.

[22] A. Zhao, A. Tranter, W. M. Kirby, S. F. Ung, A. Miyake, and P. J. Love,
“Measurement reduction in variational quantum algorithms,” Physical
Review A, vol. 101, no. 6, p. 062322, 2020.

[23] W. Mu, Y. Mao, L. Cheng, Q. Wang, W. Jiang, and P.-Y. Chen, “Iterative
qubits management for quantum index searching in a hybrid system,” in
2022 IEEE International Performance, Computing, and Communications
Conference (IPCCC). IEEE, 2022, pp. 283–289.

[24] B. Baheri, D. Chen, B. Fang, S. A. Stein, V. Chaudhary, Y. Mao,
S. Xu, A. Li, and Q. Guan, “Tqea: temporal quantum error analysis,” in
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S). IEEE, 2021, pp.
65–67.

[25] C. N. Self, K. E. Khosla, A. W. Smith, F. Sauvage, P. D. Haynes,
J. Knolle, F. Mintert, and M. Kim, “Variational quantum algorithm with
information sharing,” npj Quantum Information, vol. 7, no. 1, p. 116,
2021.

[26] A. D’Onofrio, A. Hossain, L. Santana, N. Machlovi, S. Stein, J. Liu,
A. Li, and Y. Mao, “Distributed quantum learning with co-management
in a multi-tenant quantum system,” in 2023 IEEE International Confer-
ence on Big Data (BigData). IEEE, 2023, pp. 221–228.

[27] R. L’Abbate, A. D’Onofrio, S. Stein, S. Y.-C. Chen, A. Li, P.-Y.
Chen, J. Chen, and Y. Mao, “A quantum-classical collaborative training
architecture based on quantum state fidelity,” IEEE Transactions on
Quantum Engineering, 2024.

[28] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[29] S. Aaronson, “Read the fine print,” Nature Physics, vol. 11, no. 4, pp.
291–293, 2015.

[30] A. W. Smith, J. Gray, and M. Kim, “Efficient quantum state sample
tomography with basis-dependent neural networks,” PRX Quantum,
vol. 2, no. 2, p. 020348, 2021.

[31] X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with op-
timal circuit depth: Implementations and applications,” Physical Review
Letters, vol. 129, no. 23, p. 230504, 2022.

[32] L. Lin and Y. Tong, “Near-optimal ground state preparation,” Quantum,
vol. 4, p. 372, 2020.

[33] X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, “Asymptotically
optimal circuit depth for quantum state preparation and general unitary
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2023.

[34] W. K. Wootters and W. H. Zurek, “The no-cloning theorem,” Physics
Today, vol. 62, no. 2, pp. 76–77, 2009.

[35] H. Wang, Y. Liu, P. Liu, J. Gu, Z. Li, Z. Liang, J. Cheng, Y. Ding,
X. Qian, Y. Shi, D. Z. Pan, F. T. Chong, and S. Han, “Robuststate:
Boosting fidelity of quantum state preparation via noise-aware varia-
tional training,” 2023.

[36] C. Weedbrook, S. Pirandola, R. Garcı́a-Patrón, N. J. Cerf, T. C. Ralph,
J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev.

https://api.semanticscholar.org/CorpusID:253511080
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
https://link.aps.org/doi/10.1103/PhysRevE.101.022134
https://link.aps.org/doi/10.1103/PhysRevE.101.022134
http://dx.doi.org/10.1038/s41467-023-41104-0
http://dx.doi.org/10.1038/s42254-021-00348-9

Mod. Phys., vol. 84, pp. 621–669, May 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.84.621

[37] B. Zhang and Q. Zhuang, “Energy-dependent barren plateau in bosonic
variational quantum circuits,” 2023.

[38] T. J. Stavenger, E. Crane, K. C. Smith, C. T. Kang, S. M. Girvin,
and N. Wiebe, “C2qa-bosonic qiskit,” in 2022 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2022, pp. 1–8.

[39] “SciPy - — scipy.org,” https://scipy.org/, [Accessed 30-04-2024].
[40] “Spsa,” https://pennylane.ai/qml/demos/tutorial spsa/, [Accessed 30-04-

2024].
[41] “L-bfgs,” https://en.wikipedia.org/wiki/Limited-memory BFGS, [Ac-

cessed 30-04-2024].
[42] “Conjugate gradient,” https://en.wikipedia.org/wiki/Conjugate gradient

method, [Accessed 30-04-2024].
[43] “Slsqp,” https://mdolab-pyoptsparse.readthedocs-hosted.com/en/latest/

optimizers/SLSQP.html, [Accessed 30-04-2024].
[44] “cobyla,” https://docs.scipy.org/doc/scipy/reference/generated/scipy.

optimize.fmin cobyla.html, [Accessed 30-04-2024].
[45] “Nelder-mead,” https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.

aqua.components.optimizers.NELDER MEAD, [Accessed 30-04-
2024].

[46] “Powell,” https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
powell.html, [Accessed 30-04-2024].

[47] “Imfil,” https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.
optimizers.IMFIL, [Accessed 30-04-2024].

[48] “Bobyqa,” https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.
algorithms.optimizers.BOBYQA, [Accessed 30-04-2024].

[49] “Spsa,” https://en.wikipedia.org/wiki/Simultaneous perturbation
stochastic approximation, [Accessed 30-04-2024].

https://link.aps.org/doi/10.1103/RevModPhys.84.621
https://scipy.org/
https://pennylane.ai/qml/demos/tutorial_spsa/
https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://mdolab-pyoptsparse.readthedocs-hosted.com/en/latest/optimizers/SLSQP.html
https://mdolab-pyoptsparse.readthedocs-hosted.com/en/latest/optimizers/SLSQP.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cobyla.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cobyla.html
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.components.optimizers.NELDER_MEAD
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.aqua.components.optimizers.NELDER_MEAD
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html
https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.optimizers.IMFIL
https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.optimizers.IMFIL
https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.optimizers.BOBYQA
https://docs.quantum.ibm.com/api/qiskit/0.37/qiskit.algorithms.optimizers.BOBYQA
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation

	introduction
	Related Work
	background
	Qumodes
	Variational Qumode Circuits
	Optimizers

	evaluation
	System Setup
	Basis gates
	Objective Function
	Target State of Interest
	Workload
	Optimizers

	Local Gaussian State
	Ideal Simulation
	Sampling Simulation

	Gaussian State
	Ideal Simulation
	Sampling Simulation

	Non-Gaussian State
	Ideal Simulation
	Sampling Simulation

	conclusion
	Acknowledgement
	References

