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Abstract—Over the past decade, the rapid advancement of
deep learning and big data applications has been driven by vast
datasets and high-performance computing systems. However, as
we approach the physical limits of semiconductor fabrication in
the post-Moore’s Law era, questions arise about the future of
these applications. In parallel, quantum computing has made
significant progress with the potential to break limits. Major
companies like IBM, Google, and Microsoft provide access to
noisy intermediate-scale quantum (NISQ) computers. Despite the
theoretical promise of Shor’s and Grover’s algorithms, practical
implementation on current quantum devices faces challenges,
such as demanding additional resources and a high number of
controlled operations. To tackle these challenges and optimize
the utilization of limited onboard qubits, we introduce Re-
SaQuS, a resource-efficient index-value searching system within
a quantum-classical hybrid framework. Building on Grover’s
algorithm, ReSaQuS employs an automatically managed iterative
search approach. This method analyzes problem size, filters
less probable data points, and progressively reduces the dataset
with decreasing qubit requirements. Implemented using Qiskit
and evaluated through extensive experiments, ReSaQuS has
demonstrated a substantial reduction, up to 86.36% in cumulative
qubit consumption and 72.72% in active periods, reinforcing its
potential in optimizing quantum computing application deploy-
ment.

Index Terms—Quantum Unstructured Search; Quantum Re-
source Management; Qubit Efficiency; Self-adaptive Quantum
Search;

I. INTRODUCTION

Over the past decade, we have witnessed groundbreaking
advancements in deep-learning and big-data based applica-
tions. New algorithms, coupled with increased computational
power and modern design methodologies, have facilitated a
broad spectrum of applications, ranging from scientific data
processing to commercial image and speech recognition. At
the backend side, these developments are underpinned by
massive datasets and powered by high-performance computing
systems with substantial computational resources. However, in
the post-Moore’s Law era, we are confronted by the looming
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physical limitations of semiconductor fabrication. Combined
with the ceaseless growth of data volumes, this circumstance
compels us to reassess the future of these applications.

To navigate the challenges of this new era, researchers are
turning to emerging disciplines. Quantum computing provides
a promising alternative. For example, Google exhibited quan-
tum supremacy with a 53-qubit quantum computer, completing
in 200 seconds a task projected to take 10,000 years on
the world’s largest classical computer. Given the potential,
quantum-based applications are gaining increasing attentions
in both industry and academia.

Inherently rooted in quantum mechanics, quantum bits
(qubits) offer distinctive characteristics such as superposi-
tion and entanglement. Unlike their classical counterparts’
deterministic states, a qubit in superposition simultaneously
embodies both the ’0’ and ’1’ states, significantly enhancing its
representative capacity. Furthermore, two qubits can be placed
in an entanglement state, meaning the measurement of one
qubit is contingent on the measurement of another.

Leveraging these distinctive properties, many algorithms
have been proposed, aiming to achieve quantum speedups.
Among them, Grover’s algorithm stands as a representative
example. It targets on unstructured database search and out-
performs classical counterparts, yielding a quadratic speedup.
With Grover’s algorithm, the qubits start out in the uniform
superpositions such that the amplitudes of all data points are
the same. Then, it utilizes an oracle function O, a ”black box”
function that only reflects the amplitudes of the searching
targets and remains others untouched. Next, the algorithm
applies another reflection that can amplify the amplitude
of the searching targets and deamplify others. With certain
rounds of this amplitude amplification process, the targets
will have significantly higher amplitudes compared to others.
Each reflection is an invocation of Grover’s operator. While
classical unstructured searching algorithms operate with an
O(N) complexity, Grover’s algorithm impressively trims it
down to O(

√
N).

Grover’s search algorithm, along with its generalized ver-
sion Quantum Amplitude Estimation (QAE), has garnered
significant interest due to its genericity and quadratic speedup,
serving as a cornerstone for myriad quantum-based applica-
tions [1]–[7]. Brassard et al. [8] for instance, have proposed
a quantum counting algorithm that combines Grover’s and
Shor’s [9] algorithms to count the number of targets in a given
dataset. This can be perceived as an implementation of QAE
based on Quantum Phase Estimation (QPE). However, despite
Grover’s search and QAE’s potential for substantial speedups,
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its main component, QPE, grapples with two major obstacles:
the requirement for extra qubits and numerous controlled
operations. These challenges render QPE impractical in the
Noisy Intermediate-Scale Quantum (NISQ) era, characterized
by limited quantum resources, including qubits [10]–[13].

Optimized algorithms have been suggested to bypass QPE’s
reliance [10]–[13], potentially enhancing the efficiency of
quantum counting and searching on NISQ quantum comput-
ers [14]–[17]. However, these solutions maintain the same
problem size in each Grover’s search iteration and fails to
reduce the resources, e.g., qubits, requirement. In the literature,
IQuCS [18] successfully reduces the search size iteratively by
using classical data post-posting. However, its algorithms rely
on an administrator-specified threshold that lacks adaptability
in different search contexts.

The address the challenges, we introduce RESAQuS that
considers an unstructured dataset consisting of (index, value)
pairs. The input data from clients are values, and the index is
the unstructured number that represents data. RESAQuS uti-
lizes Grover’s algorithm to search for targeted data points.
However, instead of finishing the entire search with multiple
repeated invocations, RESAQuS sets breakpoints to divide
the entire search into multiple iterations. Each iteration is
an individual Grover’s search with a reduced number of
invocations. Based on the analysis of results after each it-
eration, RESAQuS filters out non-target pairs and uses the
remaining data for the next iteration. The reduced dataset
results in fewer qubits required. Furthermore, on the classical
part of the system, RESAQuS adopts a self-adaptive clustering
method for data filtering. Additionally, RESAQuS updates the
list of indexes and reconstructs the values iteratively, which
further reduces the number of required qubits. The following
summarizes the main contributions of this paper:

• We propose, RESAQuS, a resource-efficient and self-
adaptive quantum search algorithm in a quantum-classical
hybrid system for unstructured dataset of (index, value)
pairs.

• In RESAQuS, our self-adaptive algorithms re-generates
indexes and values to achieve resource efficiency. Mean-
while, it maintains the mapping from the generated data
points to original ones and returns the original searching
(index, value) pairs.

• Furthermore, RESAQuS utilizes a self-adaptive cluster-
ing algorithm analysis the analyze quantum state fidelities
after each iteration and filter out the non-target data points
without finishing the entire search. The self-adaptive
nature accommodate the searches with different problem
sizes.

• We implement RESAQuS with Qiskit, a popular quantum
programming framework. Intensive experiments are con-
ducted with both Qiskit cloud simulator and experiments
on IBM-Q. Additionally, we propose Cumulative-Qubit
Consumption (CQC) to evaluate the qubit resource usage.
The results demonstrate that RESAQuS reduced CQC
by up to 86.36% comparing to the state-of-the-arts.
Additionally, it reduces active periods by up to 72.72%
on quantum workers in the cluster mode.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III introduces the basics
of quantum computing and Grover’s algorithm. We present
our RESAQuS system design and algorithms in Section IV.
Comprehensive evaluations of the developed RESAQuS are
provided in Section V. Section VI concludes the work.

II. RELATED WORK

As the physical limits of semiconductor fabrication draw
near, the race for quantum computing development is inten-
sifying. Major players and emerging startups, including IBM,
Google, Amazon, and IonQ, have initiated public access to
quantum systems.

In the quantum landscape, foundational algorithms, such
as Grover’s algorithm [19], Shor’s algorithm [20], quantum
phase estimation [21], and variational quantum circuits [22],
attract tremendous attention that aims to observe a quan-
tum speedup on real devices in various applications. While
these algorithms, in theory, can deliver quadratic or even
exponential speedups [23]–[26], their practical deployment on
NISQ devices presents formidable challenges. Quantum phase
estimation, for instance, requires additional qubits and a sub-
stantial number of controlled operations, which are currently
unfeasible due to the constraints of low-qubit count and noise
in quantum hardware.

Building on these fundamental quantum components, ad-
vancements have been observed in the realms of quantum deep
learning [26]–[35], quantum visualization [36]–[41] and big
data analytics [42]–[45]. Despite these improvements, the high
quantum resource requirements remains a significant hurdle
to achieving commercial deployment at scale in real-world
scenarios. For instance, while QuGAN [29] and QuClassi [27]
demonstrate impressive performance in model building, their
results are based on a merely 4-dimensional dataset on the
IBM-Q platform. This is primarily due to the limitations of
current NISQ hardware which offer a limited qubits and suffer
from noise-related issues.

Various optimizations have been proposed to address the
resource-intensive nature of QPE operations in quantum count-
ing and searching, which hinders their practicality on NISQ
machines [2], [10]–[13]. An exemplary approach is the depth
optimization method presented in [2]. This approach har-
nesses multi-stage processing, along with global and local
applications of Grover’s operators, to achieve a substantial
20% reduction in circuit depth. Additionally, MLQAE [10]
combines multiple iterations of Grover’s algorithm with max-
imum likelihood estimation to reduce the qubit requirement.
Wie et al. [11] proposes the use of Hadamard tests as less
expensive alternatives to QPE. Another approach, introduced
in [12], presents a simplified quantum computing algorithm
that operates without QPE but introduces a significant over-
head. A recent effort called IQAE [13] reduces the overhead by
iteratively postprocessing quantum results using only Grover’s
operator. These optimized solutions have the potential to
improve the efficiency of quantum counting and searching
on NISQ computers [15], [17]. However, these optimizations
often focus on specific problems or can be challenging to
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implement. Additionally, existing approaches treat algorithms
as indivisible tasks with the same problem size in each iter-
ation. In contrast, IQuCS [18] proposes an iterative approach
that divides searching problems and effectively reduces the
problem size using classical data post-processing. However,
IQuCS relies on an administrator-specified threshold, which
lacks adaptability in different search contexts and imposes
additional deployment prerequisites.

Building upon IQuCS, our approach, RESAQuS, tackles a
quantum search problem that deals with (index, value) pairs.
Diverging from existing literature, RESAQuS places emphasis
on iteratively reducing the input dataset by filtering out non-
target elements. This reduction is achieved through quantum
state fidelity analysis performed on the classical part. Further-
more, we introduce self-adaptive algorithms to accommodate
diverse searching settings. By progressively reducing the input
data in each iteration, RESAQuS maximizes the utilization of
qubits, resulting in an efficient completion of the search task.

III. BACKGROUND AND MOTIVATION

The foundational unit in classical computing is the bit,
which represents a logical state with possible values 1 and
0. Classical computing commonly implements bits using elec-
tromagnetic phenomena.

The theory of quantum mechanics describes the physical
properties of nature at atomic and subatomic scales, provid-
ing the foundations for understanding quantum computing.
Two fundamental phenomena in the theory are superposition
and entanglement, which form the building blocks in this
field. Quantum bits, or qubits, are capable of realizing these
phenomena. Unlike classical bits, a qubit can simultaneously
represent 0 and 1 in the superposition. It collapses to a
deterministic state, 0 or 1, upon measurement.

A. Qauntum States

Orthogonal vectors can represent the states of a qubit.
Equation 1 represents a qubit’s 0 and 1 state.

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
(1)

A universal qubit’s state |q⟩ can be written as Equation 2,

|q⟩ = α|0⟩+ β|1⟩, (2)

where
|α|2+|β|2= 1 (3)

The vector |q⟩ is called a state vector of qubits, representing
the linear combination or superposition of two states associ-
ated with qubits [46]. In Equation 3, α and β, the amplitudes
associated with each state, can also be interpreted as the
probability for the qubit to be in states |0⟩ and |1⟩, respectively.
When the qubit’s state is measured, these amplitudes represent
the probability of the superposition collapsing into each state.
Equation 3 is derived from the normalization requirement,
which ensures the probability of a qubit being in any state.

B. Quantum Gates

Quantum computers encode and manipulate data using
quantum gates. The two main types of quantum gates are
rotation gates, which perform a rotation about an axis, and
controlled gates, which operate on a qubit depending on the
value of a control qubit.
Rotation Gates: Rotation gates enable qubit rotations by
adjusting parameters. The matrix representation of the gen-
eralized single-rotation gate R is presented in Equation 4.

R(θ, ϕ) =

[
cos θ

2 −ie−iϕ sin θ
2

−ie−iϕ sin θ
2 cos θ

2

]
. (4)

Three commonly used special cases of the general rotation
gate are the RX , RY , and RZ gates, as shown in (5)-(7).
These gates represent rotations in the x, y, and z planes,
respectively. They can be expressed as follows: RX(θ): This
gate represents a rotation about the x-axis by an angle θ. It
is a special case of the general rotation gate, where ϕ = 0.
RY (θ): This gate represents a rotation about the y-axis by
an angle θ. It is another special case of the general rotation
gate, where ϕ = π

2 . RZ(θ): This gate represents a rotation
about the z-axis by an angle θ. The derivation of RZ from
the general rotation gate is more involved and is not included
here. These special cases provide specific rotations around the
corresponding axes, enabling precise control over the quantum
state during quantum computations.

RX(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
= R(θ, 0) (5)

RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
= R(θ,

π

2
) (6)

RZ(θ) =

[
e

−iθ
2 0

0 e
−iθ
2

]
(7)

Hadamard Gate: The Hadamard gate is a fundamental gate
in quantum computation. It is a single-qubit gate that puts a
qubit into the superposition. The gate can be represented by
Equation 8:

H =
1√
2

[
1 1
1 −1

]
. (8)

The coefficient 1√
2

in (8) accounts for the normalization of
state amplitudes, ensuring that the sum of their squares is equal
to 1. Each state has a probability of 1

2 and an amplitude of
1√
2

.
Two-Qubit Rotation Gates: There are operations that act as
two-qubit rotations, applying an equal rotation to both qubits.
These gates are described by the following equations (9)–(11).
Note that these gates are represented by 4×4 matrices, unlike
the single-qubit gates that are 2× 2 matrices. This is because,
in a two-qubit gate, each qubit has two possible measurements,
resulting in four possible outcomes (|00⟩, |01⟩, |10⟩, |11⟩), as
opposed to the two outcomes seen in single-qubit gates.

RXX(θ) =


cos θ

2
0 0 −i sin θ

2

0 cos θ
2

−i sin θ
2

0
0 −i sin θ

2
cos θ

2
0

−i sin θ
2

0 0 cos θ
2

 (9)
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RY Y (θ) =


cos θ

2
0 0 i sin θ

2

0 cos θ
2

−i sin θ
2

0
0 −i sin θ

2
cos θ

2
0

i sin θ
2

0 0 cos θ
2

 (10)

RZZ(θ) =


e−i θ

2 0 0 0

0 e−i θ
2 0 0

0 0 e−i θ
2 0

0 0 0 e−i θ
2

 (11)

C. Controlled Gates
In addition to two-qubit gates that involve rotations, there

are also gates that utilize a control qubit and a target qubit.
These gates, known as controlled gates, perform specific
operations on the target qubit based on the value of the control
qubit. We introduce three main types of controlled gates below.
CNOT Gate: The CNOT gate is a commonly used example of
a two-qubit gate in quantum computing. It operates by flipping
the value of the target qubit if and only if the control qubit is
measured as 1. Otherwise, it leaves the target qubit unchanged.
The CNOT gate can be represented by the following matrix:

CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (12)

Controlled Rotation Gates: Equations (13)–(15) represent
controlled rotation gates in matrix notation. These gates are
similar to the CNOT gate, but instead of flipping the state of
the target qubit, they apply a rotation operation based on the
measurement of the control qubit.

CRX(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ

2 − sin θ
2

0 0 − sin θ
2 cos θ

2

 (13)

CRY (θ) =


1 0 0 0
0 1 0 0
0 0 cos θ

2 − sin θ
2

0 0 sin θ
2 cos θ

2

 (14)

CRZ(θ) =


1 0 0 0
0 1 0 0

0 0 e
iθ
2 0

0 0 0 e
iθ
2

 (15)

The CSWAP gate offers an advantage by requiring only
the measurement of the ancilla qubit. When qubits are di-
rectly measured, their states collapse, resulting in the loss
of superposition. However, with the SWAP test and the use
of the CSWAP gate, it becomes possible to maintain the
superposition of the other qubits. This is achieved by mea-
suring the quantum state fidelity through the ancilla qubit
instead of directly measuring the qubits themselves. Conse-
quently, this approach minimizes the information lost during
measurement. By leveraging the CSWAP gate and the SWAP
test, the superposition and entanglement of the qubits can be
preserved, allowing for accurate fidelity measurements without
compromising the quantum state.

D. Grover’s Algorithm

In classical computing, the linear or sequential search al-
gorithm is typically employed to search through an unsorted
database. This approach involves examining each element in
the database until the desired item is found. Consequently,
the time complexity of this algorithm is O(N), where N
represents the number of items in the database. On aver-
age, this method requires searching through approximately
N
2 elements before finding the target item. In the quantum

domian, Lov Grover proposed an algorithm that harnesses the
unique properties of quantum computing to achieve a quadratic
speed improvement for unstructured search problems. Grover’s
algorithm exhibits a complexity of O(

√
N). The algorithm

employs a black box function called an oracle to facilitate the
search process. This oracle alters the phase of the solution
states, effectively allowing the algorithm to home in on the
desired solution more efficiently. The oracle is expressed as a
diagonal matrix. In a two-qubit system, if the desired state is
|11⟩, then the oracle, Ut, admits the following form:

Ut =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (16)

For each state |x⟩ in the list, we have

Ut|x⟩ =

{
|x⟩, for x ̸= t,

−|x⟩, for x = t,
(17)

where t is our target item |11⟩.
The algorithm uses amplitude amplification to increase the

probability of measuring the target state. Beginning from a
uniform superposition |s⟩, which can be expressed as |s⟩ =
H⊗n|0⟩n = 1√

N

∑N−1
x=0 |x⟩, vectors |s⟩, |s′⟩ and |t⟩, can be

used to calculate the reflection angle θ. Assume vectors |s′⟩
and |t⟩ are perpendicular, then |s⟩ = sinθ|t⟩ + cosθ|s′⟩. By
solving for θ, the reflection angle can be expressed by [47]

θ = arcsin⟨s|t⟩ = arcsin
1√
N
. (18)

Next, we use the oracle reflection Uf to reflect the state |s⟩
across the |s′⟩. This switches the amplitude in front of the |t⟩
to negative. Then, we use another reflection Us on the state
|s⟩ where Us = 2|s⟩⟨s|−1 to map the state to UsUf |s⟩. These
two reflections make the state |s⟩ closer to the state |t⟩ and
decrease the amplitudes of the other states. We repeat these
two steps n times and obtain the state |ψn⟩, where |ψn⟩ =
(UsUf )

n|s⟩ [47].
A 3-Qubit Example: Figure 1 represents the quantum cir-
cuit with associated gate operations for a 3-qubit Grover’s
algorithm. The qubits required for Grover’s algorithm can be
calculated by n = log2N . In this example, we have N = 8,
which requires n = 3 qubits. The reflecting angle θ is

θ = arcsin
1√
8
. (19)

Let us start with finding one target state, e.g., |111⟩. As
shown on Figure 1, Hadamard gates are placed to all the qubits
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Fig. 1: Grover’s Algorithm with 3 qubits

Fig. 2: 3-Qubit Example: State Probabilities

to put them onto the superposition state, yielding the quantum
state |ϕ1⟩ at this moment,

|ϕ1⟩ =
1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩

+|101⟩+ |110⟩+ |111⟩).
(20)

Then, we use an oracle function to mark the target state,
which leads to state |ϕ2⟩

|ϕ2⟩ =
1√
8
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩

+|101⟩+ |110⟩ − |111⟩).
(21)

The third step is to apply the amplitude amplification
process to the qubits based on the following procedure:

1) Apply the Hadamard gates and the Rotation X gates to
all three qubits;

2) Apply a controlled Z gate with the control qubits q0 and
q1 and the target qubit q2;

3) Apply the Hadamard gates and the Rotation X gates to
all three qubits again.

Finally, we get probability distribution of the quantum states
as shown in Figure 2. Please note that under a larger dataset,
the amplification process will be repeated multiple times to
obtain targeted states.

Grover’s algorithm can be used to find multiple target states
in a list by resorting to the transformation of statevector. By
initializing the statevector with all states in |0⟩, we can switch
the state |0⟩ to state |1⟩ if it is a target state. For example,
if the target state is |000⟩, |010⟩ and |111⟩, the statevector
transformation will be

[0, 0, 0, 0, 0, 0, 0, 0]→ [1, 0, 1, 0, 0, 0, 0, 1]. (22)

Data
Preprocessing

Index/Value
Management

Quantum State
Analysis

Quantum Data
Encoding

Input
Data

Amplification 
Preparation

Quantum State
Measurement

Quantum Circuit
Executor

Output
Data

Logical Circuit
Generator

Quantum Computer 

Classical Computer

Fig. 3: RESAQuS System Architecture

When the quantum system is measured, we will observe
the target state with a higher probability compared to others.
However, to increase the difference of probabilities between
searching targets and others, the amplification process will be
repeated multiple times. With each repetition, target states’
probability continues to increase. The number of repetitions
required depends on several factors, including the number of
target states, the size of the dataset, and the number of qubit.

IV. RESAQUS SOLUTION DESIGN

This section presents our solution design for quantum
search, including the RESAQuS system architecture and the
algorithms.

A. System Architecture

We first introduce the problem setting and then describe the
system architecture of RESAQuS, a quantum-classical system
designed for searching targeted (index, value) pairs. The
system receives a set of n initial values, v1, ...vi, ...vn ∈ D,
each of which is associated with an index to form the (index,
value) pairs. The set of targets, vi, ...vj ∈ T , is specified by the
users, and the objective is to find the corresponding indexes
of the targets.

To achieve this goal, we utilize Grover’s search algorithm,
which is described in Section III-D. However, the original
algorithm cannot be directly applied. First, it only amplifies
the amplitude of the targeted states and does not output the
targets and indexes. Moreover, since both the indexes and
values need to be encoded, the qubit requirement is higher than
that of value-only searches. Therefore, our goal is to output
the targeted (index, value) pairs while reducing the number of
required qubits.

We propose a hybrid approach that combines quantum and
classical computing resources. Specifically, the system consists
of a quantum part and a classical part. The quantum part
is responsible for implementing Grover’s search algorithm to
amplify the amplitude of the targeted states, and the classical
part performs postprocessing to extract the (index, value) pairs
and reduces the required number of qubits.

The hierarchical structure of RESAQuS’s system archi-
tecture is displayed in Figure 3, which demonstrates a
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quantum-classical system design. Input data, e.g., unstructured
databases, is submitted to the classical component to the
Data Preprocessing module. During this phase, the module
analyzes the data’s size, index ranges, and extracts metadata
for subsequent processing.

The Index/Value Management module receives the data
from two possible sources, (1) Data Preprocessing and (2)
Quantum State Analysis. Its functionalities divided into two
scenarios. When the data comes from Data Preprocessing
module, the system employs its original index and value
associations. Otherwise, the module regenerates new indexes
and values after filtering out unlikely data points, as informed
by the Quantum State Analyst module. In this case, the
module maintains a mapping between generated and original
indexes/values in order to return the original values at the
end. Algorithm 1 Updating Indexes, Algorithm 2 Updating
Values and Algorithm 3 maintain the original Indexes are
implemented in this module which will be described in detail
in the next subsection.

The Quantum Data Encoder module accepts the processed
data from the Index/Value Manager and encodes the classical
data to quantum qubits. As our data updates every iteration, the
encoding should be updated accordingly. The Amplification
Preparation module calculates the number of amplitude am-
plifications, e.g., reflections, based on the iteration number and
previous results. This number is used by the Logical Circuit
Generator to prepare a logical circuit, e.g, construct the oracle
function, for quantum search.

The generated logical circuit is passed to a quantum com-
puter, where Grover’s search algorithm is conducted with a
given number of amplitude amplification within the Quantum
Circuit Executor module. The quantum states are measured
by the Quantum State Measurement module and transferred
back to the classical component for further processing at the
end of the search.

Upon receiving the results, the Quantum State Analyst
module is activated to perform Algorithm 4 Filter. If the algo-
rithm finds all solutions, their original indexes will be returned.
Otherwise, it conducts filtering to ensure that only potential
solutions enter the next iteration. With this feature, the problem
set is reduced when the Index/Value Management modules
are called in the second and following rounds. Consequently,
fewer qubits are required to continue the search. Meanwhile,
the mappings between current and original indexes and values
are maintained.

B. Algorithms Design

In this subsection, we describe the details of our algorithms
in the system. Table I summarizes the notations adopted in
the algorithms. RESAQuS aims to reduce the problem size
iteratively, which leads to a reduction of required qubits. The
system achieves the reduction by updating the indexes and
values of the input data at each iteration, except for the first
one that is input by clients. At the end, however, it returns
the original (index, value) pairs. Therefore, RESAQuS has
to preserve the mapping between original (index, value) pairs
with generated ones.

TABLE I: Notation Table
k the updating indexes of the original index

PM The dictionary map data set in the last iteration.
Qj The qubits that we need at iteartion j.
di The ith element in the input data set.
Dj The input data set at iteration j.
pi The ith element in the binary number set.
Pj The [index, value] pair binary number set which is generated by Dj at iteration j.
mi The ith element in the dictionary map.
Mj The dictionary map that pairs the index and value at iteration j.

GBP (d) The function that generates [index, value] pair
binary number set by input data set d.

GM(d) The function that generates the dictionary map
that pairs the index and value by input binary data set d.

GI(a,B) The function that gets the index of input a in a list B.
H(a) The function that generates the hash value of the input a.
MapI The dictionary map that pairs the current indexes k and original indexes mi.
GPj The probability dictionary that is generated by Grover’s Algorithm at iteration j.
gpi The ith element in probability dictionary.

CD(a, b) The function that computes the distance between a and b.
CQ(d) The function that computes the required qubits by input data set d.
ncei the mean value of ci

Algorithm 1 Updating Indexes, UI(Mj)

1: Input: Mj

2: Initialization: k = 0
3: for all mi ∈Mj do
4: MapI ← [mi(i), k]
5: k ++
6: end for
7: return MapI

Algorithm 2 Updating Values, UV(D,T )

1: Inputs: D: Input dataset, T : Searching targets
2: Initialization: L = [ ], C = [ ]
3: C ← H(T )
4: for all di ∈ D do
5: if H(di) ∈ C then
6: L← GI(H(di), C)
7: else
8: C ← H(di)
9: L← GI(H(di), C)

10: end if
11: end for
12: return L

1) Index Updates and Mapping Maintenance: Algorithm 1
is used to generate new indexes for input data Mj , which is
entered by client, at the beginning of each iteration except for
the first one. It first accepts the input data Mj and initialize
the index k (Line 1-2). Then, the algorithms creates a new
dictionary MapI to store the current index k from 0 and
the original index mi in dictionary to maintain the mapping
between them (Line 3-6). Lastly, it return the new dictionary
MapI that will be used by Algorithm 3 (Line 7).

2) Value Updates: Algorithm 2 aims to update remaining
values after each iteration so that the searching range in the
input dataset can be reduced to the number of different values.
It first accepts input data set D, and the target value T (Line
1). The system initializes two empty lists, L and C. and
appends the hash value of the target to C (Line 2 -3). Then,
RESAQuS directs into two branches for each date point in
D based on the hash value. (1) If the hash value is in C, its
index in C is appended to L as its new value; (2) If its hash
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Algorithm 3 Maintain Indexes, MI(Mj ,MapI)

1: Inputs: Mj ,MapI
2: Initialization: M = { }
3: for all mi ∈Mj do
4: M ← [MapI,mi(value)]
5: end for
6: return M

Algorithm 4 Filter, F(GPj)

1: Inputs: GPj

2: c1 = [ ], c2 = [ ]
3: ce1 = gp1
4: ce2 = gpn
5: repeat
6: for all gpi ∈ GPj do
7: if CD(gpi, ce1) < CD(gpi, ce2) then
8: c1← gpi
9: else

10: c2← gpi
11: end if
12: end for
13: nce1 = sum(c1)/len(c1)
14: nce2 = sum(c2)/len(c2)
15: until ce = nce or i = mi
16: if ce1 > ce2 then
17: return c1
18: else
19: return c2
20: end if

value is not in C, its hash value is appended to C first, then
its value is updated to the index of its hash value in C, and
appended to L (Line 4-11). Finally, it returns the output list
L of updated values (Line 12).

3) Maintain Index Mapping: While Algorithm 1-2 reduce
the searching range by reorganizing the indexes and values.
However, RESAQuS is designed to return the original (index,
value) pairs to the clients. Therefore, the system requires to
dynamically manage a mapping between generated (index,
value) pairs with the original ones.

Algorithm 3 maintains the mapping in each iteration except
for the first one. Initially, it accepts the dictionary map Mj that
pairs the index and value at iteration j, and the dictionary map
MapI that pairs the current indexes k and original indexes
mi. These information come from the previous iteration (Line
1). Then, it initializes the empty dictionary M (Line 2).
RESAQuS stores each original index which corresponds to
the element mi from MapI to the new dictionary M (Line 3-
5). It returns the generated dictionary with updated mappings,
M (Line 6).

4) Filtering Data Points: The Algorithms 1-3 focus on
updating (index, value) pairs and maintaining the mappings.
While these techniques can reduce the range of search space,
they fail to reduce the data points within the dataset. To further
reduce the problem size, we propose a self-adaptive filtering
algorithm to process the state probabilities after each quantum

search.
Algorithm 4 presents our filtering algorithm. Specifically,

it categorizes the data points into two clusters, potential
targets and non-targets. The input data is the state-probability
dictionary GPj that is generated by quantum search at iteration
j (Line 1). It then initializes two clusters c1 and c2 (Line
2). The maximum and minimum values in the probability
dictionary are used as the centroid of the two clusters (Line
3-4). Lines 5-15 represent a processing in each iteration. The
system first calculates the distance between each value in
the probability dictionary and the two centroids, and assign
them to the closer cluster. After the assignments, we calculate
the mean of the clusters to obtain new centroids. If the new
centroids are the same as the original centroids, it means that
we have reached convergence, and the loop ends. We also
set a maximum number of loops to prevent infinite looping.
Eventually, it return the cluster that has a larger centroid (Line
16-20). The principle of this algorithm is that in the probability
dictionary, the probability of the targets is much larger than
that of the non-targets.

5) Integrated Iterative Quantum Search: Based on the
Algorithms 1-4, the entire quantum-classical search process in
RESAQuS is shown in Algorithm 5. Initially, the input data
set D, target values T , and maximum iteration number J are
loaded (Line 1). The first iteration is different from the second
and following iterations as it processes the original (index,
value) pairs. It first calls Algorithm 2 to update the values
of the input data D. However, since Algorithm 2 defaults the
target values from 0 to n − 1, which the n is the number of
the searching targets, these updated target value corresponds
to Algorithm 1. Then, CQ calculates the number of qubits
required for this iteration Q1 (Line 4). Next, GBP converts
the input data D1 to binary data P1 (Line 5). After that, we run
Grover’s search with input binary data P1 (Line 6). Afterward,
the system obtains the generated probability dictionary GP1

using Algorithm 4 and converts the probability dictionary GP1

into a dictionary of indexes and values M1 (Line 7-8). At the
end of the first iteration, we update the maximum iteration
number j to 1, and initialize the dictionary map data set PM
which will be in previous iteration (Line 9-10).

From the second iteration onwards (Line 11-23), we start the
while loop with conditions. After each iteration, if the results
of this iteration differ from those of the previous one and the
maximum number of iterations has not been reached, the next
iteration will be performed (Line 11). If the results of this
iteration are the same as those of the previous iteration or the
maximum number of iterations has been reached, the iteration
stops. Then, it stores the results of the previous iteration and
uses Algorithm 1 to store the original indexes of the input
data in the beginning of the iteration (Line 12-13). Next, it
updates the values of the input data Dj using Algorithm 2
(Line 14-15). After we have the updated input Dj , we did the
same steps as the first iteration. It calculates the number of
qubits required for this iteration Qj with Dj , converts the input
data Dj to binary data Pj , runs Grover’s algorithm with input
binary data Pj , filters the generated probability dictionary GPj

using Algorithm 4, and converts the probability dictionary
GPj into a data dictionary of indexes and values Mj (Line
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Algorithm 5 Iterative Quantum Search, IQS(D,T, J)

1: Input:
D : input dataset
T : searching targets
J : maximum iteration number

2: D1 = UV (D,T )
3: T = [0, ...n− 1]
4: Q1 = CQ(D1)
5: P1 = GBP (D1)
6: GP1 = QuantumSearch(P1)
7: GP1 = F (GP1)
8: M1 = GM(GP1)
9: j = 1

10: PM = { }
11: while PM ̸=Mj & j < J do
12: PM =Mj

13: MapI = SI(Mj)
14: Dj =Mj(value)
15: Dj = UV (Dj , T )
16: Qj = CQ(Dj)
17: Pj = GBP (Dj)
18: GPj = Grover′sSearch(Pj)
19: GPj = F (GPj)
20: Mj = GM(GPj)
21: Mj = RI(Mj ,MapI)
22: j ++
23: end while
24: return Mj

16-21). Finally, It maps the original indexes of the input data
before the end of the iteration by using Algorithm 3 (Line 21).
At the end of the loop, it also update the iteration number j by
adding 1 (Line 22). Ultimately, it returns the targeted (index,
value) pairs (Line 24).

V. EVALUATION

In this section, we evaluate RESAQuS with different
settings and configurations.

A. System Implementation and Settings

RESAQuS is implemented in Python 3.8 and the IBM
Qiskit Quantum Computing simulator package. We use the Aer
simulator as our backend to simulate a noise-free environment.
Grover’s algorithm is implemented using Qiskit’s amplitude
amplifiers APIs [48], and the number of shots is set to 24000.

As mentioned in Section IV, we convert the input data into
binary values to run Grover’s algorithm. Each binary value
consists of an (index, value) pair: the first part is its index and
the second part is its value. For example, 001001 has 4 index
qubits and 2 value qubits, indicating that its index is 2 with a
value of 1. The evaluation considers two types of systems,

• Standalone Mode: one classical machine combined with
one quantum machine in the system. In this configuration,
the client, represented by the classical machine, commu-
nicates with the quantum machine directly.

• Cluster Mode: multiple classical machines integrate with
multiple quantum machines. In this configuration, the
clients, represented by multiple classical machines, sub-
mit searching jobs to a classical manager, who further
distributes the workload to multiple quantum workers.

B. Evaluation Metrics

In the experiments, we compare RESAQuS with two state-
of-the-art solutions in the literature.

• GSearch [49]: The Grover’s Search with IBM Qiskit im-
plementation. It is a quantum-only solution that utilizes a
single iteration with the optimal number of invocations of
Grover’s operator, e.g., amplitude amplification process.

• IQuCS [18]: The Grover’s Search with iterative post-
processing on classical computers. It is a threshold-based
solution, such that a pre-defined threshold is employed to
filter out non-target in each iteration.

We conduct the same experiments with GSearch, IQuCS
and RESAQuS to compare their performance. Specifically,
optimal num iterations method in the Grover APIs is used
to determine the optimal number of iterations for Grover’s
algorithm [50]. The both of GSearch and IQuCS algorithms
are threshold based. GSearch’s threshold set 0.01 to ensure
finding the target by filtering the non-target, and IQuCS’s
thresholds are 1 times of mean value of probability. There
will be a special case of IQuCS’s threshold, which will be
explained in the following subsection.

Furthermore, we utilize three key metrics to analyze and
compare the results: (1) accuracy: the percentage of targets
that have been successfully identified; (2) total number of
invocations: the number of invocations of Grover’s operator,
which is repeated amplitude amplification in Grover’s algo-
rithm, and (3) cumulative qubits consumption (CQC): the
value that represents the qubit consumption of an iterative
quantum-classical search algorithm. Specifically, the CQC is
defined by

CQC =

i=n∑
i=1

Ci ×Nqi , (23)

where i is the iteration number, Ci is the number of Grover’s
operator invocations at iteration i, and Nqi is the number of
qubits at iteration i. A larger value of CQC indicates a more
resource-intensive algorithm. In GSearch, CQC = Q × I ,
where Q is the qubits required by the algorithm and I is
the optimal number of iterations. In IQuCS and RESAQuS,
CQC =

∑i=n
i=1 Ii × Qi, where Ii is the number of Grover’s

algorithm invocation at iteration i and Qi is the number of
qubits required at iteration i. In IQuCS, the invocation number
equals 1 when the iteration number is odd. Otherwise, the
invocation number equals 2. In RESAQuS, the invocation
number always equals 1.

C. Standalone Mode

In this setting, we have one classical machine and one quan-
tum machine in the system. We conducted three experiments
with different data sizes and searching targets.
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Fig. 4: 15-5 Experiments: (a) Probabilities of GSearch in Iteration-1-Invocation-1 (Left) and Iteration-2-Invocation-2 (Right); (b)
Probabilities of IQuCS in Iteration-1-Invocation-1 (Left) and Iteration-3-Invocation-2 (Right); (c) Probabilities of RESAQuS in
Iteration-1-Invocation-1 (Left) and Iteration-2-Invocation-2

Each of the three experiments included a graph comparing
the results of three algorithms using the same invocation. The
X-axis represents the index value, while the Y-axis represents
probability, depicted through a blue bar chart. Within the
graph, the red line signifies the average probability of the
target, the green line represents the average probability of the
non-target, and the disparity between them is shaded in red
on the left and green on the right.

1) Dataset-15 with 5 searching targets: In this experiment,
our input data size is 15 with 5 searching targets. The initial
qubit requirement (e.g., the first iteration) is 8, with 4 qubits
for indexes and 4 qubits for values. Figure 4(a) shows the
probability distributions of GSearch with different numbers
invocations. Since GSearch is a single-iteration algorithm, this
figure illustrates two individual experiments.

The left graph of Figure 4(a) displays the results with only
1 invocation. Although the five largest probabilities in the
Figure 4(a) are clearly found, GSearch finds 9 targets in the
1 iteration, with the largest probabilities are 3.48% and the
smallest is 0.42%. The average probability of these 9 target
states is 2.00%, while the average probability value of the rest
states is 0.33%, the highest probability value in the non-target
is only 0.41%. The right graph displays the distribution with 2
invocations, it is as same as the left. 7 targets are selected by
GSearch this iteration with the largest probabilities are 8.77%
and the smallest is 0.31%. The average probability value of
the target is 6.09%, while the average probability value of the
non-target is 0.23%.

As the invocation increases, the difference between the
average probability of the target and non-target also increases.
It continues to grow until the invocation reaches 5, at which
point GSearch can successfully find all 5 targets, resulting in
an accuracy of 100%, and CQC is 8× 5 = 40. By comparing
with the other two algorithms, we can see that the target
average we finally found is much higher than the non-standard
average in Figure 4.

Figure 4(b) shows the results of IQuCS. As IQuCS is a

threshold-based solution, we set the threshold to 1. In the
first iteration, 10 states are filtered out, and in the second
iteration, no data is filtered out. According to its algorithm,
IQuCS reaches the termination condition. The left graph
of Figure 4(b) represents the results after the first iteration
with 1 invocation. At this point, the average probability of
the targets is 3.22%, and the average probability of the non-
targets is 0.33%. The right graph displays the results after
the second iteration, which is when IQuCS terminates. The
average probability of the targets increases to 19.18%, and
the average probability of the non-targets is 0.37%. The
significant difference between the two clearly indicates the
targets. Therefore, the accuracy is 100.00% in 3 invocations
with 2 iterations, and the CQC is 8× 1 + 4× 2 = 16.

Figure 4(c) shows the graph of RESAQuS. It also filters
out 10 states in the first iteration, which results in 4 qubits in
the second iteration. RESAQuS also finishes the search in 2
iterations and finds 5 target states, with the probability of the
targets and the average value the same as the IQuCS’s. The
CQC is 8 + 4 = 12, which is a 70.00% reduction of GSearch
and a 25.00% reduction of IQuCS.

2) Dataset-40 with 15 searching targets: In this experi-
ment, we increase the input data size to 40, with 15 targets to
be found. The increased data size requires more qubits. Our
initial qubits are 10, with 6 qubits for index and 4 qubits for
value.

In Figure 5(a), the left graph shows the first invocation, in
which we find 17 target states at this moment. Their average
probability of 0.75% is much higher than the average non-
target states probability of 0.09%. The right graph shows
the second invocation finding 16 targets with an average
probability of targets 2.03%, and an average probability of
non-targets 0.07%. This time, we find 15 targets when the
optimal iteration number become 6. The CQC of GSearch is
10× 6 = 60.

For IQuCS, when using 1 as the threshold, we encounter
an algorithm error. In the first iteration, 16 data items are
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Fig. 5: 40-15 Experiments: (a) Probabilities of GSearch in Iteration-1-Invocation-1 (Left) and Iteration-2-Invocation-2 (Right);
(b) Probabilities of IQuCS in Iteration-1-Invocation-1 (Left) and Iteration-3-Invocation-2 (Right); (c) Probabilities of
RESAQuS in Iteration-1-Invocation-1 (Left) and Iteration-2-Invocation-2

filtered out, and 24 remaining data items are sent to the next
iteration. In the second iteration, the system filters out 9 data
items. It looks like the algorithm find all the targets. However,
in the third iteration, 15 target data are filtered out by the
system. Since we do not have any data remaining, the system
terminates with an error message. The reason for this situation
is due to the erroneous threshold selection. The threshold of
IQuCS is too sensitive, and it is difficult for us to control
the threshold in iteration. This fact motivates us to develop
RESAQuS in replace of IQuCS.

When setting the threshold to 0.8, it uses 4 iterations to
find 15 target states. The remaining data after each iteration is
30, 21, 15, and 15. Figure 5(b) shows the results. The target
average probability and non-target average probability change
from 0.49% to 3.92%, and from 0.09% to 2.42%, respectively.
The CQC is 10 + 10× 2 + 9 + 5× 2 = 49

Figure 5(c) shows the results of RESAQuS. It only takes two
iterations to find 15 target values. The average probability of
the targets and the average probability of the non-targets are
similar to the results of IQuCS. The accuracy is 100.00%, and
the CQC is 10 + 5 = 15. This represents a 75.0% reduction
compared to Grover’s algorithm and a 69.39% reduction
compared to IQuCS.

3) Dataset-80 with 20 searching targets: This experiment
involves finding 20 targets among 80 data points. Our initial
qubits are 12, with 7 qubits for index and 5 qubits for value.

Figure 6(a) displays the probability distribution graph of
GSearch. This time, the final optimal iteration number is
11. We can observe that the optimal iteration number also
increases as the number of input data and required qubits
increases. The CQC is 12 × 11 = 132. In invocation 1, the
system only finds 23 target states. In invocation 2, the system
still finds 22 target states. The average target probability
increases from 0.20% to 0.53%, and the average non-target
probability decreases from 0.023% to 0.021%.

Figure 6(b) gives us the process graph of IQuCS. In this
case, we set the threshold to 1. It uses 4 iterations and
finds exactly 20 targets. After each iteration, the number of
remaining data is 51, 34, 20, and 20. In each iteration, the
number of qubits is 12, 10, 8, and 6, respectively. The CQC
is 12 + 10× 2 + 8 + 6× 2 = 52.

The iterative process of RESAQuS is Figure 6(c). It still

only uses two iterations and finds all 20 targets. In the first
iteration, 60 data are filtered out. In the second iteration, the
system only uses 6 qubits to implement the algorithm. The
result of iteration 2 is the same as the result of iteration 1, so
we stop the iteration and find the targets, with an average target
probability of 4.79% and an average non-target probability of
0.09%. The CQC is 12 + 6 = 18, which indicates an 86.36%
reduction of GSearch and a 65.38% reduction of IQuCS.

According to three experiments conducted using three
different algorithms, /sol employed fewer invocations than
GSearch. Not only did /sol use fewer invocations, but it also
had fewer iterations. Furthermore, from small to large datasets,
the average target probability of /sol and /soll exceeded the val-
ues of non-average target probability. From Figure 6(c) (left),
we can observe that the difference between the average target
probability and non-average target probability for /soll is even
greater than that of /sol at the same iteration. Additionally, the
average target probability of /soll is more than 2 times greater
than the non-average target probability in all experiments, even
10 times greater in Dataset-80.

4) Cumulative Qubits Consumption Comparison: Fig-
ure 7 presents the qubits consumption for GSearch, IQuCS,
and RESAQuS in the above mentioned experiments, and
the result is normalized with respect to GSearch for com-
parison. Without post-processing, GSearch utilizes the same
number of qubits throughout the entire algorithm. Therefore,
its qubits consumption graph is always a rectangle, represented
by the shaded area. The light area stacked with the dark
part is the qubits consumption graph of IQuCS. We can see
that it starts reducing the qubits requirement in the second
iteration due to post-processing on the classical side. The
dark area is the qubits consumption graph of RESAQuS. It
sharply reduces the required qubits as well as the number
of iterations in all experiments. The area presents the CQC
value in the figure. Compared to GSearch, the CQC value
of IQuCS decreases by 60.00% and the CQC value of
RESAQuS decreases by 70.00% in the first experiment; the
CQC value of IQuCS decreases by 18.33% and the CQC value
of RESAQuS decreases by 75.00% in the second experiment;
and the CQC value of IQuCS decreases by 60.61% and the
CQC value of RESAQuS decreases by 86.36% in the third
experiment. As the data size increases, we can observe that
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Fig. 6: 80-20 Experiments: (a) Probabilities of GSearch in Iteration-1-Invocation-1 (Left) and Iteration-1-Invocation-2 (Right);
(b) Probabilities of IQuCS in Iteration-2-Invocation-1 (Left) and Iteration-3-Invocation-2 (Right); (c) Probabilities of
RESAQuS in Iteration-1-Invocation-1 (Left) and Iteration-2-Invocation-2

our algorithm RESAQuS performs increasingly better than
IQuCS and GSearch, with increasing savings in the number
of iterations, qubits required, and CQC.

Fig. 7: Qubits Consumption

D. Cluster Mode

In this configuration, our hybrid system contains multiple
classical machines and multiple quantum machines that form
a computing cluster.

In our experiments, we submit 12 tasks to the hybrid
system that contains 3 classical machines and 3 quantum
workers. Specifically, we focus on resource utilization of
different solutions. These 12 tasks are repetitions of the above-
mentioned 3 different experiments, with each submitted 4
times. Figures 8,9 and 10 represent resource utilization of
Gsearch, IQuCS, and RESAQuS on 3 quantum workers,
respectively, each configured with 12 qubits. The x-axis rep-
resents the number of invocations. The largest value on the
x-axis is set to 35 because, with Gsearch, worker-2 utilizes 34
invocations which is the largest value among all experiments.
The y-axis represents the normalized CQC values on each
worker. The colored areas in the figures represent the active
periods when qubits are occupied by searching tasks, and
the shaded areas represent idle periods when resources are
available. The dashed lines represent this specific worker’s
average normalized CQC value during active periods.

Figure 8 shows the results of GSearch in the 3-worker
system. When processing the same task, the number of qubits
remains constant with each invocation as it completes the

entire search within one iteration. Therefore, the CQC value
also remains constant until the task is completed. For example,
in Figure 8c, during the periods of invocations 12 to 16, it
represents the execution of a single task in Experiment 1. This
task requires 8 qubits which is 66.67% when normalized to the
maximum value of 12 qubits. The average CQC usage across
each worker is 83.95% in worker-1, 86.27% in worker-2, and
93.83% in worker-3, respectively. Thus, the average CQC
usage across all workers is 87.88%. The percentage active
times for the three workers are 77.14%, 97.14%, and 77.14%,
respectively. The average percentage active time across all
workers is 83.81%.

Figure 9 presents the CQC using IQuCS. The average CQC
usage across each worker is 53.17% in worker-1, 65.08% in
worker-2, and 69.05% in worker-3. The average CQC across
all workers is 62.90%, which is a 28.43% reduction of the
GSearch’s. The percentage active times are 51.43%, 60.00%,
and 60.00%, with an average of 57.14%, which is a 31.82%
reduction of the GSearch’s.

Figure 10 presents the CQC using RESAQuS. The average
CQC usage across each worker is 50.00%, 62.50%, and
75.00%, with an overall average of 62.50%. This yields a
reduction of 28.88% compared to GSearch and a reduction of
0.64% compared to IQuCS. Furthermore, the active periods for
all workers amount to 22.86%, which is a 72.72% reduction
compared to GSearch and a 60.00% reduction compared
to IQuCS. Therefore, using RESAQuSeffectively conserves
computational resources which reduces the overall activity
time. This fact is evident by comparing the shaded idle areas
in Figures 8-10.

VI. CONCLUSION

In this work, we present RESAQuS, a resource-efficient and
self-adaptive quantum-classical system for (index, value) un-
structured search. Based on the Grover’s algorithm, it utilizes
a classical postprocessing approach to analyze the resulting
quantum state probabilities iteratively. Additionally, it filters
out the data points that are unlikely to be searching targets
according to the analysis. The remaining dataset is further
processed into new (index, value) pairs with a mapping to
the original ones. With this design, RESAQuS is able to
reduce the dataset iteratively. The reduced dataset is fed to
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(a) Worker 1 (b) Worker 2 (c) Worker 3

Fig. 8: GSearch: Resource Usage in a 3-Worker Cluster Mode

(a) Worker 1 (b) Worker 2 (c) Worker 3

Fig. 9: IQuCS: Resource Usage in a 3-Worker Cluster Mode

(a) Worker 1 (b) Worker 2 (c) Worker 3

Fig. 10: RESAQuS: Resource Usage in a 3-Worker Cluster Mode

RESAQuS in the next iteration for further processing until it
becomes stable.

With classical postprocessing, RESAQuS can signifcantly
reduced the qubit requirement and improve the resource effi-
ciency. We implement RESAQuS with Qiskit and evaluate it
with extensive experiments under both standalone and cluster
modes. The results demonstrate that RESAQuS reduced
cumulative-qubit consumption by up to 86.36% comparing to
the state-of-the-arts. Moreover, it reduces active periods by up
to 72.72% on quanutm workers in the cluster mode.
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