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POSITIVITY AND ENTANGLEMENT OF POLYNOMIAL

GAUSSIAN INTEGRAL OPERATORS

RICHÁRD BALKA, ANDRÁS CSORDÁS, AND GÁBOR HOMA

Abstract. We investigate the positivity of self-adjoint polynomial Gaussian

integral operators κ̂PG, that is, the multivariable kernel κPG is a product of a
polynomial P and a Gaussian kernel κG.

We show that κ̂PG can be only positive if the Gaussian part is positive.
This has an important corollary for the bipartite entanglement of the density
operators κ̂PG: if the Gaussian density operator κ̂G fails the Peres–Horodecki
criterion, then the corresponding polynomial Gaussian density operators κ̂PG

also fail the criterion for all P , hence they are all entangled.
We introduce a new preorder � on Gaussian kernels such that if κG0

� κG1

then κ̂PG0
≥ 0 implies κ̂PG1

≥ 0 for all polynomials P . Therefore, deciding
the positivity of a polynomial Gaussian operator determines the positivity of a
lot of another polynomial Gaussian operators which have the same polynomial
factor. This preorder has implication for the entanglement problem, too.

We also prove that polynomial Gaussian operators with polynomials of odd
degree cannot be positive semidefinite.

1. Introduction

1.1. History and motivation. The concept of self-adjoint integral operators has
been in the center of mathematical and physical research over the last century.
Fredholm, Hilbert, Mercer, and Schmidt were the first ones who established the
cornerstones of this area [1, 2, 3, 4, 5, 6], which is still an active field of research, see
the monographs [7, 8, 9, 10, 11, 12]. The foundation of quantum mechanics in the
1920s brought even more attention to the notions of integral operators and infinite
dimensional Hilbert spaces. One of the most important mathematical objects of
quantum information theory and quantum physics is the density operator which is
a positive self-adjoint trace class operator with trace one [13].

Technically, density operators acting on infinite dimensional Hilbert spaces can
be represented by L2 kernels in position representation, or equivalently by Wigner
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functions in phase space, or with characteristic functions in another phase space
[14, 15]. Phase space methods were first applied by Weyl, Wigner, Husimi, and
Moyal [16, 17, 18, 19], and they found many applications in mathematics, quantum
chemistry, statistical mechanics, quantum optics and quantum information theory
[8, 20, 21, 22, 23, 24, 25].

Despite the large literature on integral operators, it is still a very hard problem to
determine the spectrum, and even the positivity of operators in concrete cases. The
positivity check of different models of quantum mechanics has already started in the
1960s with the so-called KLM conditions [26, 27, 28], and later further studies of
trace class operators were carried out [11, 29, 30, 31, 32]. It is still an active area of
research to check the positivity of an operator without actually calculating the full
spectrum [12, 33]. The dynamics of the density operator of a subsystem are usually
given by master equations, where evolution in time is governed by partial differential
equations. Usually, a quantum-mechanical system interacts with external quantum
systems and these interactions significantly change the dynamics of the examined
subsystem, causing quantum dissipation and decoherence [34]. A good example
for this phenomenon is the quantum Brownian motion [35, 36], where the master
equations are derived from first principles and they may lead to positivity violations
of the density operator at a later time depending on the external parameters of the
model [37, 38, 39, 40].

At the beginning of modern quantum mechanics a new phenomenon, the quan-
tum entanglement and its complementary notion, the separability emerged [41, 42],
and they still pose serious challenges to both mathematicians and theoretical physi-
cists [43, 44]. In two breakthrough papers, Peres [45] and the Horodecki family [46]
independently found a necessary condition for bipartite separability by checking
positivity after the so-called partial transpose operation, which provides a very
important link between entanglement and positivity. Another important result is
due to Werner and Wolf, who proved (based on a previous work of Simon) that
the Peres–Horodecki criterion is a necessary and sufficient condition of separability
for all bipartite 1 versus n modes Gaussian quantum states [47, 48, 49, 50]. De-
termining entanglement of non-Gaussian density operators in infinite dimensional
Hilbert spaces is an extremely difficult task [51, 52, 53, 54]. Another approach to
the entanglement problem is using so-called witness operators given by Gühne and
Tóth [55]. The situation becomes even more complicated if we consider the time
evolution of the entanglement of composite quantum systems [15, 56].

Gaussian kernels occur quite frequently in physics, for example coupled harmonic
oscillators in thermal distribution can be described by Gaussian operators of the

form ρ̂ = exp
(
− βĤosc

)
/Tr

[
exp

(
− βĤosc

)]
, if the Hamiltonian operator Ĥosc is

at most quadratic in position and momentum operators [57]. The positivity of a
Gaussian kernel is fully determined by its covariance matrix (see [14]), while the
behaviour of non-Gaussian kernels is more subtle. Our main goal is to consider
more general polynomial Gaussian integral operators, that is, operators whose ker-
nels can be written as a polynomial multiple of a Gaussian, see (1.8) for the precise
definition. Contrary to the Gaussian case, for polynomial Gaussian operators no
finite positivity test is known. Polynomial Gaussian forms appear naturally in
physics. Examples in quantum optics can be found in [58]. Excited states of cou-
pled oscillators in position representation have also this form: polynomial Gaussian
operators can be obtained from those excited states by mixing some of them with
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positive weights [56, 59, 60]. Studying the entanglement of the above composite
system with the Peres–Horodecki criterion translates to checking the positivity of a
polynomial Gaussian operator. Our strategy is to prove results about the positiv-
ity of polynomial Gaussian operators, which can be translated to the language of
entanglement by the Peres–Horodecki criterion. The entanglement problems have
already found several applications in various disciplines e. g. quantum chemistry
[61], quantum information theory [62, 63], quantum optics [58], quantum commu-
nication [64] and quantum computers [65]. A recent mathematical breakthrough
[66, 67] in the area of quantum computational complexity provides connection to the
areas of quantum information, operator algebras, and approximate representation
theory; in particular it solves Tsirelson’s problem [68] from quantum information
theory, and the equivalent Connes’ embedding problem [69] from the theory of von
Neumann algebras. For the above problems see also [70], where it is stated that
“finite dimensional quantum models do not suffice to describe all bipartite corre-
lations”, emphasizing the role of operators acting on infinite dimensional Hilbert
spaces. This wide applicability and connections between different areas served as a
source of inspiration for us, too.

1.2. Theoretical background. We denote by L2 (Rn) the Hilbert space of the
complex-valued square integrable functions defined on Rn with the scalar product1

〈f, g〉 =
∫
Rn f(x)g∗(x) dx, where z∗ denotes the complex conjugate of z. A kernel

κ ∈ L2(R2n) defines a Hilbert-Schmidt integral operator κ̂ : L2 (Rn) → L2 (Rn) by
the formula

(1.1) (κ̂f) (x) =

∫

Rn

κ(x, y)f(y) dy,

see e. g. [71, 72]. We call κ̂ self-adjoint if κ̂ = κ̂†. For continuous kernels κ this
is equivalent to the property that κ(y, x) = κ∗(x, y) for all x, y ∈ Rn. We say
that κ̂ is positive semidefinite if 〈κ̂f, f〉 ≥ 0 for all f ∈ L2(Rn); we also use the
notation κ̂ ≥ 0. If κ̂ is positive semidefinite, it is necessarily self-adjoint. Every
Hilbert-Schmidt integral operator is compact, that is, the closure of the image of
the open unit ball under the operator is compact, see e. g. [73]. Therefore, it has
only countably many eigenvalues {λi}∞i=0, see [73, Theorem 4.25]. The eigenvalue
equation of κ̂ is a Fredholm-type integral equation

(1.2)

∫

Rn

κ(x, y)φi(y) dy = λiφi(x), where φi ∈ L2(Rn).

We say that the operator κ̂ is trace class if
∑∞

i=0 |λi| < ∞; in this case we define
the trace of κ̂ as

(1.3) Tr(κ̂)
def
=

∞∑

i=0

λi.

If κ is continuous, then (see [74] and the original [75]) we have the formula

(1.4) Tr(κ̂) =

∫

Rn

κ(x, x) dx.

The Schwartz space S(Rn) is the set of rapidly decreasing smooth functions defined
as follows. A smooth function f : Rn → C satisfies f ∈ S(Rn) if for all multiindices

1In physics the usual convention is 〈f, g〉 =
∫
Rn f∗(x)g(x) dx.
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α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn we have

sup
x∈Rn

|xα(Dβf)(x)| < ∞,

where we use the notation xα = xα1

1 · · ·xαn

n and Dβ = ∂β1

1 · · · ∂βn

n ; for more on
Schwartz functions see e. g. [76, Section V.3]. If κ ∈ S(R2n) is a Schwartz kernel,
then κ̂ is a trace class operator, see [9, Proposition 287] or [74, Proposition 1.1] with
the remark afterwards. Note that in quantum mechanical descriptions of physical
systems our eigenvalues are probabilities. Thus, we say that ρ̂ is a density operator
if it is positive semidefinite with Tr(ρ̂) = 1, so its eigenvalues satisfy λi ≥ 0 and∑∞

i=0 λi = 1. For more on Hilbert-Schmidt, compact, and trace class operators see
e. g. [9, 10, 72]. Let κ ∈ S(R2n) be a continuous kernel such that κ̂ is trace class.
The following theorem basically dates all the way back to Mercer [3].

Theorem 1.1 (Mercer). Assume that κ ∈ L2(R2n) is a continuous kernel. Then
κ̂ is positive semidefinite if and only if for all x1, . . . , xk ∈ Rn and c1, . . . , ck ∈ C

we have

(1.5)
k∑

i,j=1

cic
∗
jκ(xi, xj) ≥ 0.

For an operator κ̂ the Wigner–Weyl transform connects the position repre-
sentation κ(x, y) and the phase space representation2 W (x, p) such that for all
x, y, p ∈ R

n we have

(1.6) W (x, p) =
1

(2π)n

∫

Rn

exp
{
−ipTy

}
κ
(
x+

y

2
, x− y

2

)
dy,

and the inverse transform is

(1.7) κ(x, y) =

∫

Rn

W

(
x+ y

2
, p

)
exp

{
ipT (x− y)

}
dp;

for more on these concepts the reader might consult the monograph [8]. Note that
here we used the convention that the Planck-constant satisfies ~ = 1.

1.3. Statement of results. Let A,B,C ∈ Rn×n such that A and C are positive
definite and B is arbitrary. We consider the Gaussian kernel κG : R2n → C as

κG(x, y) = exp
{
−(x− y)TA(x − y)− i(x− y)TB(x+ y)− (x + y)TC(x + y)

}
.

Let P : R2n → C be a polynomial in 2n variables and define the polynomial Gaussian
kernel3 κPG as4

(1.8) κPG(x, y) = P (x, y)κG(x, y).

Since κPG ∈ S(R2n), the operator κ̂PG is trace class. Note that if κ̂PG ≥ 0 then P
must be self-adjoint, that is, P (y, x) = P ∗(x, y) for all x, y ∈ Rn.

2If κ̂ is a density operator, then W (x, p) is called Wigner function.
3The same terminology was used in [77] in a similar context.
4We could have added the linear term iDT(x − y) + ET(x + y) to the exponent of κG with

some given vectors D,E ∈ Rn. However, D does not change the spectrum of κ̂PG, and E does
not change its positivity, so they are irrelevant to us.
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1.3.1. When the Gaussian is not positive. The following theorem is the main result
of our paper, stating that if a Gaussian operator is not positive semidefinite, then
the corresponding polynomial Gaussians cannot be positive semidefinite, either.

Theorem 1.2. Let P : R2n → C be a non-zero polynomial and let κG : R2n → C

be a Gaussian kernel. If κ̂G is not positive semidefinite, then κ̂PG is not positive
semidefinite, either.

1.3.2. When the polynomial is of odd degree. We show that if a polynomial P is of
odd degree, then no corresponding polynomial Gaussian operator can be positive
semidefinite.

Theorem 1.3. Assume that P : R2n → C is a polynomial of odd degree, and
κG : R2n → C is any Gaussian kernel. Then κ̂PG is not positive semidefinite.

The above theorem generalizes [33, Proposition 3.1], where the significantly easier
n = degP = 1 case was settled. It also explains why polynomial Gaussian operators
with polynomials of odd degree do not really appear in physics.

Let us say that P is reducible to odd degree if there is an index set I ⊂ {1, . . . , n}
such that substituting xi = yi = 0 for all i ∈ I into P transforms P into a
polynomial of odd degree in 2(n − |I|) variables. Theorem 1.1 easily implies that
applying this transformation to a kernel maps a positive semidefinite operator into a
positive semidefinite one. Therefore, Theorem 1.3 immediately yields the following
generalization.

Theorem 1.4. Let P : R2n → C be a polynomial which is reducible to odd degree,
and let κG : R2n → C be a Gaussian kernel. Then κ̂PG is not positive semidefinite.

1.3.3. A useful preorder on Gaussian kernels. We introduce a relation which allows
us to vary the Gaussian part in polynomial Gaussian (and more general) kernels.
Fix a positive integer n, and consider matrices A,B,C ∈ R

n×n such that both A and
C are symmetric. Define self-adjoint Gaussian functions θ = θ(A,B,C) : R2n → C

as

θ(x, y) = exp
{
−(x− y)TA(x − y)− i(x− y)TB(x + y)− (x+ y)TC(x+ y)

}
.

Clearly θ is a kernel in L2(R2n) if and only if both A and C are positive definite.
We want to address the following problem.

Problem 1.5. Let σ : R2n → C be a given self-adjoint function and assume that
σθ(Ai, Bi, Ci) ∈ L2(R2n) for i ∈ {0, 1}. When is it true that

σ̂θ(A0, B0, C0) ≥ 0 =⇒ σ̂θ(A1, B1, C1) ≥ 0?

The following definition and theorem answer this problem completely.

Notation 1.6. Let In ∈ Rn×n denote the identity matrix. Let G(n) be the set of
triples (A,B,C) such that A,B,C ∈ Rn×n and A,C are symmetric. Let

G+(n) =
{
(A,B,C) ∈ G(n) : A,C are positive definite and θ̂(A,B,C) ≥ 0

}
.

Definition 1.7. We define a relation (G,�) on G(n) as follows. For two triples
(A0, B0, C0), (A1, B1, C1) ∈ G(n) we write (A0, B0, C0) � (A1, B1, C1) if there exists
r ≥ 0 such that

(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn) ∈ G+(n).
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For two Gaussian kernels κ0 and κ1 we write κ0 � κ1 if their defining matrix triples
satisfy (A0, B0, C0) � (A1, B1, C1).

Remark 1.8. In Definition 1.7 the matrices A1 −A0 and C1 −C0 are symmetric,
so for large enough r the matrices A1−A0+rIn and C1−C0+rIn are both positive
definite, yielding θ(A1−A0+rIn, B1−B0, C1−C0+rIn) ∈ L2(R2n). Theorem 1.15
will imply that if (A0, B0, C0) � (A1, B1, C1), then any choice of r ≥ 0 witnesses it
as long as the matrices A1−A0+rIn and C1−C0+rIn are positive definite. Hence
checking the relation � requires to determine the positivity of a single Gaussian
operator, which can be easily done by calculating the eigenvalues of a 2n × 2n
matrix as we will see in Claim 2.4.

The following theorem states that this is precisely the right definition for us.

Theorem 1.9. For (A0, B0, C0), (A1, B1, C1) ∈ G(n) the following are equivalent:

(1) (A0, B0, C0) � (A1, B1, C1);
(2) for each self-adjoint σ : R2n → C if σθ(Ai, Bi, Ci) ∈ L2(R2n) for i ∈ {0, 1}

and σ̂θ(A0, B0, C0) ≥ 0, then σ̂θ(A1, B1, C1) ≥ 0;
(3) for every self-adjoint Gaussian kernel σ if σθ(Ai, Bi, Ci) ∈ L2(R2n) for

i ∈ {0, 1} and σ̂θ(A0, B0, C0) ≥ 0, then σ̂θ(A1, B1, C1) ≥ 0.

The next corollary shows how to use this theorem in practice. It states that
deciding the positivity of a single operator determines the positivity of a lot of
other operators as well.

Corollary 1.10. Let a self-adjoint function σ : R2n → C and (A0, B0, C0) ∈ G(n)
be given such that σθ(A0, B0, C0) ∈ L2(R2n), and consider all triples (A1, B1, C1)
for which σθ(A1, B1, C1) ∈ L2(R2n). Assume that we have already determined the

positivity of σ̂θ(A0, B0, C0), then there are two possibilities:

(i) σ̂θ(A0, B0, C0) ≥ 0 ⇒ σ̂θ(A1, B1, C1) ≥ 0 for all (A1, B1, C1) � (A0, B0, C0);

(ii) σ̂θ(A0, B0, C0) 6≥ 0 ⇒ σ̂θ(A1, B1, C1) 6≥ 0 for all (A1, B1, C1) � (A0, B0, C0).

Theorem 1.9 (and directly Fact 4.1) imply that the relation � is transitive, and
clearly reflexive, which makes it a preorder. The following claim describes the
polynomials which define positive operators with any positive Gaussian factor.

Claim 1.11. We have (In, 0, In) � (A,B,C) for all (A,B,C) ∈ G+(n). Hence for
a self-adjoint polynomial P : R2n → C the following are equivalent:

(1) P̂ θ(A,B,C) ≥ 0 for all (A,B,C) ∈ G+(n);

(2) P̂ θ(In, 0, In) ≥ 0;

(3)
∑k

i,j=1 cic
∗
jP (xi, xj) ≥ 0 for all x1, . . . , xk ∈ R

n and c1, . . . , ck ∈ C.

As it is much easier to check (3) than (1), the above equivalence is especially
useful. We demonstrate this by the following example.

Example 1.12. Let P : R2 → R defined as P (x, y) = xℓym + xmyℓ with ℓ,m ∈ N.
Then P satisfies Claim (1.11) (1) if and only if ℓ = m. Indeed, if ℓ = m then
(3) is clearly satisfied. Assume to the contrary that ℓ > m. Applying (3) with
c1 = 2, c2 = −1, x1 = x, x2 = y and using the notation λ = y

x
we obtain that

(1.9) 0 ≤ 8xℓ+m − 4(xℓym + xmyℓ) + 2yℓ+m = 2xℓ+m(λℓ − 2)(λm − 2).

We can choose x, y > 0 such that λm < 2 < λℓ, which contradicts (1.9).
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Corollary 1.13. Let (Ai, Bi, Ci) ∈ G(n), i ∈ {0, 1}. Then
(1) (A0, B0, C0) � (A1, B1, C1) ⇒ A1 − C1 ≥ A0 − C0,
(2) A1−C1 ≥ A0−C0 and B1−B0 is symmetric ⇒ (A0, B0, C0) � (A1, B1, C1).

Notation 1.14. Let (Ai, Bi, Ci) ∈ G(n), (i = 0, 1). We define the equivalence
relation (A0, B0, C0) ≈ (A1, B1, C1) such that

(A0, B0, C0) � (A1, B1, C1) and (A1, B1, C1) � (A0, B0, C0).

The next theorem characterizes the equivalence of the triples (A,B,C) ∈ G(n).
Theorem 1.15. Let (Ai, Bi, Ci) ∈ G(n), i ∈ {0, 1}. The following are equivalent:

(1) (A0, B0, C0) ≈ (A1, B1, C1),
(2) A1 − C1 = A0 − C0 and B1 −B0 is symmetric.

1.3.4. Entanglement. Here we enclose an introduction of entanglement, then we
deduct some consequences of our earlier positivity results. A physical system in
quantum mechanics can be described by a density operator ρ̂ : H → H acting on
a complex Hilbert space H, see e. g. John von Neumann’s original works [13, 78].
Here we will consider the Hilbert space of square integrable complex functions
H = L2 (Rn), where n is the number of degrees of freedom in our physical system.
Our indices 1, . . . , n correspond to variables which might, for example, represent
the location or moment of some particles. We can divide our system to m physical
subsystems by partitioning our index set {1, . . . , n} into m pairwise disjoint sets
P1, . . . , Pm of sizes d1, . . . , dm, respectively, where

∑m

k=1 dk = n. For any k ∈
{1, . . . ,m} let Hk = L2

(
RPk

) ∼= L2(Rdk), which is the Hilbert space belonging to
the kth physical subsystem. This partition decomposes H to the tensor product

(1.10) H =

m⊗

k=1

Hk.

For more information on C∗-algebras see e. g. [79].

Definition 1.16. Let ρ̂ : L2 (Rn) → L2 (Rn) be a density operator and assume
that m physical subsystems are given by an m-element partition P = {P1, . . . , Pm}
of {1, . . . , n}, and let H1, . . . ,Hm be the corresponding Hilbert spaces. We call ρ̂
separable with respect to P if it can be written as

(1.11) ρ̂ =

∞∑

j=1

πj

m⊗

k=1

ρ̂
(k)
j , where πj ≥ 0 and

∞∑

j=1

πj = 1,

and ρ̂
(k)
j : Hk → Hk are density operators for all j ≥ 1. We say that ρ̂ is entangled

with respect to P if it cannot be written as (1.11).

Definition 1.17. Let P and P ′ be two partitions of {1, . . . , n}. We say that P is
a refinement of P ′ if for all P ∈ P there is a P ′ ∈ P ′ such that P ⊂ P ′.

The definition of separability easily implies the following, which allows us to
prove multipartite entanglement by proving bipartite entanglement for a coarser
two-element partition.

Fact 1.18. Assume that partition P is a refinement of P ′. If the density operator ρ̂
is separable with respect to P, then it is separable with respect to P ′. Equivalently,
if ρ̂ is entangled with respect to P ′, then it is entangled with respect to P, too.
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From now on, we only consider the bipartite case, that is, a 2-element partition
P = {P1, P2} of our index set {1, . . . , n} with given sizes d1, d2. We consider
the separability of density operators ρ̂ with respect to P . By varying the indices if
necessary, we may assume without loss of generality that P1 = {1, . . . , d1} and P2 =
{d1 + 1, . . . , n}. Recall that the Wigner–Weyl transform (1.6) and its inverse (1.7)
provide the connection between the phase space and the position representations.
If ρ̂ is separable with respect to P , similarly to (1.11) it can be written in phase
space representation as

W (x, p) = W
(
x(1), p(1);x(2), p(2)

)
=

∞∑

j=1

πjW
(1)
j

(
x(1), p(1)

)
·W (2)

j

(
x(2), p(2)

)
,

where πj ≥ 0 and
∑∞

j=1 πj = 1, and W
(i)
j is the phase space representation of the

density operator ρ̂
(i)
j coming from Definition 1.16 for all i ∈ {1, 2} and j ≥ 1, and

we used the notation

x = (x1, . . . , xn)
T, x(1) = (x1, . . . , xd1

)T , and x(2) = (xd1+1, . . . , xn)
T ;

p = (p1, . . . , pn)
T, p(1) = (p1, . . . , pd1

)
T
, and p(2) = (pd1+1, . . . , pn)

T
.

The partial transpose (PT) in the first partition is a transformation on the Wigner
function as follows, see e. g. [45, 48]:

(1.12) W
(
x(1), p(1);x(2), p(2)

)
→ W̃ (x, p)

def
= W

(
x(1),−p(1);x(2), p(2)

)
.

A similar definition for the partial transpose in the second partition is equivalent
for all practical purposes, see e. g. [55] for more details. In fact, this property
easily follows in the position representation. The following necessary condition of
separability were independently found by Peres [45] and the Horodecki family [46].

Theorem 1.19 (Peres–Horodecki criterion). If ρ̂ is separable, then W̃ (x, p) defines
a density operator.

It appears that the another direction of the above theorem also holds if ρ̂G is
Gaussian and one set in the partition contains a single element, that is, either
d1 = 1 or d2 = 1. The following theorem was first proved in the case d1 = d2 = 1
by Simon [48], and the proof was generalized for the d1 = 1 or d2 = 1 case by
Werner and Wolf [47]. Later Lami, Serafini and Adesso [50] simplified the proof
and summarized the current status of knowledge about this topic.

Theorem 1.20 (Werner–Wolf). Let ρ̂G be Gaussian and let d1 = 1 or d2 = 1. Then

ρ̂G is separable if and only if W̃G(x, p) represents a Gaussian density operator.

The kernel ρ(x, y) in position representation can be given according to (1.7),
which is separable if and only if we can write it in the following form:

(1.13) ρ(x, y) := ρ
(
x(1), y(1);x(2), y(2)

)
=

∞∑

j=1

πjρ
(1)
j

(
x(1), y(1)

)
ρ
(2)
j

(
x(2), y(2)

)
,

where πj ≥ 0 and
∑∞

j=1 πj = 1, and ρ
(i)
j is the position representation of the density

operator ρ̂
(i)
j for all i ∈ {1, 2} and j ≥ 1, and we used the notation

x = (x1, . . . , xn)
T, x(1) = (x1, . . . , xd1

)
T
, and x(2) = (xd1+1, . . . , xn)

T
;

y = (y1, . . . , yn)
T, y(1) = (y1, . . . , yd1

)
T
, and y(2) = (yd1+1, . . . , yn)

T
,
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see e. g. [79, Section 6.3]. The condition Tr(ρ̂) = 1 in position representation means

(1.14)

∫

Rn

ρ(x, x) dx = 1.

The PT operation in position representation is given as

(1.15) ρ(x, y) = ρ
(
x(1), y(1);x(2), y(2)) → ρ̃(x, y)

def
= ρ

(
y(1), x(1);x(2), y(2)

)
.

Note that if ρ̃2 denotes the PT operation in the second coordinates then

ρ̃(x, y) = ρ
(
y(1), x(1);x(2), y(2)

)
= ρ∗

(
x(1), y(1); y(2), x(2)

)
= (ρ̃2(x, y))

∗,

and conjugating the kernel does not change the spectrum of a self-adjoint operator,
so the two possible forms of the PT transform are equivalent for our investigation.
For the sake of completeness, here we enclose Theorems 1.19 and 1.20 in position
representation, too.

Definition 1.21. A density operator ρ̂ is called PPT (positive partial transpose),
if its partial transpose ρ̃(x, y) is a kernel of a density operator. A density operator
is called NPT (non-positive partial transpose) if it is not PPT.

Theorem 1.22 (Peres–Horodecki criterion). If ρ̂ is a separable, then it is PPT.

Theorem 1.23 (Werner–Wolf). Let ρ̂G be Gaussian and let d1 = 1 or d2 = 1.
Then ρ̂G is separable if and only if it is PPT.

Definition 1.24. Let P be a self-adjoint polynomial and ρ̂G be a Gaussian density
operator and assume that PρG is a kernel of a positive operator. Then we can
define the polynomial Gaussian density operator ρ̂PG such that its kernel ρPG is a
constant multiple of PρG, see (1.14) for the normalizing factor.

Recall the preorder � from Definition 1.7. The next corollary easily follows from
Theorem 1.9. It means that if we have an NPT polynomial Gaussian operator, then
we can find a lot of others by changing only its Gaussian factor.

Corollary 1.25. Let ρ̂G0
, ρ̂G1

be Gaussian density operators with ρ̃G0
� ρ̃G1

. Let
P be a self-adjoint polynomial and assume that ρ̂PG0

and ρ̂PG1
exist. Then

ρ̂PG1
is NPT =⇒ ρ̂PG0

is NPT.

From now on let P be a self-adjoint polynomial and let ρ̂G be a Gaussian density
operator such that the corresponding polynomial Gaussian density operator ρ̂PG

exists. Theorem 1.2 yields the next corollary.

Corollary 1.26. If ρ̂G is NPT, then ρ̂PG is NPT as well.

Theorems 1.2 and 1.23 imply the following corollary.

Corollary 1.27. If d1 = 1 or d2 = 1 and ρ̂G is entangled, then ρ̂PG is entangled.

The following problem asks whether Theorem 1.23 can be generalized to poly-
nomial Gaussian operators, that is, in the d1 = 1 or d2 = 1 case the entanglement
reduces to a positivity check.

Problem 1.28. Let d1 = 1 or d2 = 1. If ρ̂PG is entangled, is it necessarily NPT?
In other words, is it true that ρ̂PG is separable if and only if it is PPT?
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1.4. Structure of the paper. We prove Theorem 1.2 in Section 2. First we prove
it in one dimension in Subsection 2.1, then we summarize the knowledge on the
symplectic decomposition of Gaussian operators in Subsection 2.2, and finally we
fully prove Theorem 1.2 in Subsection 2.3 by tracing back the general case to the
one-dimensional result. Section 3 is dedicated to the proof of Theorem 1.3. The
results concerning our preorder will be proved in Section 4, namely Theorems 1.9
and 1.15, Claim 1.11, and Corollary 1.13.

2. When the Gaussian is not positive

The main goal of this section is to prove Theorem 1.2. First we will settle
the one-dimensional case in Subsection 2.1. Then in Subsection 2.2 we recall the
symplectic decomposition for Gaussian kernels, in particular we state Claim 2.4
which will be useful in Section 4, too. Finally, in Subsection 2.3 we trace back the
general case to the one-dimensional result using a symplectic decomposition based
on Williamson’s theorem [80].

2.1. The one-dimensional case. In this subsection we prove the following.

Theorem 2.1. Assume that P : R2 → C is a non-zero self-adjoint polynomial and
let κG : R2 → R be a Gaussian kernel of the form

κG(x, y) = exp
(
−A(x− y)2 − C(x + y)2

)

such that κ̂G is not positive semidefinite, that is, C > A > 0. Then κ̂PG is not
positive semidefinite.

Proof. Assume to the contrary that κ̂PG is positive semidefinite. First we show
that R(x) = P (x, x) is a non-zero polynomial. Indeed, assume to the contrary that
R(x) = P (x, x) = 0 for all x ∈ R, then by (1.4) the sum of the eigenvalues equals
to

(2.1) Tr (κ̂PG) =

∫ ∞

−∞

κPG(x, x) dx = 0.

As κ̂PG is not the zero operator, it has non-zero eigenvalues. Hence κ̂PG has a
negative eigenvalue by (2.1), which contradicts that it is positive definite.

Now define the polynomial Q : R2 → C as

Q(x, y) = P (x,−x+ y) + P (−x+ y, x).

As Q(x, 2x) = 2P (x, x), it follows that Q is not the zero polynomial. Therefore, we
can fix ε ∈ R such that Q(x, ε) is a non-zero polynomial of x. Applying Theorem 1.1
for κPG with n = 1, k = 2, c1 = 1, and c2 = −1 implies that for all x1, x2 ∈ R we
have

(2.2) κPG(x1, x1) + κPG(x2, x2) ≥ κPG(x1, x2) + κPG(x2, x1).

Substituting x1 = x and x2 = ε− x into (2.2) and using the notation

(2.3) E(x) = exp
(
4(A− C)x2 − 4Aεx+ (A+ C)ε2

)

we obtain that for all x ∈ R we have

(2.4) E(x)
[
R(x) +R(ε− x) exp(8Cεx− 4Cε2)

]
≥ Q(x, ε).

The term 4(A − C)x2 in (2.3) and A − C < 0 imply that the left hand side of
(2.4) tends to 0 as x → ∞. As Q(x, ε) is a non-zero polynomial of x, the limit
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lim
x→∞

Q(x, ε) 6= 0 exists, because Q is either constant or the limit is +∞ or −∞.

These and (2.4) imply that

(2.5) lim
x→∞

Q(x, ε) < 0.

Now consider the kernel

τ(x, y) = xyκPG(x, y).

As κPG satisfies the Mercer-type inequalities (1.5), so does τ . Therefore, similarly
to (2.2) for all x1, x2 ∈ R we obtain that

(2.6) τ(x1, x1) + τ(x2, x2) ≥ τ(x1, x2) + τ(x2, x1).

Substituting x1 = x and x2 = ε− x into (2.6) yields that for all x ∈ R we have

(2.7) E(x)
[
x2R(x) + (ε− x)2R(ε− x) exp(8Cεx− 4Cε2)

]
≥ x(ε− x)Q(x, ε).

The term 4(A − C)x2 in (2.3) and A − C < 0 imply that the left hand side of
(2.7) tends to 0 as x → ∞. Since lim

x→∞
x(ε− x) = −∞, inequality (2.5) yields

lim
x→∞

x(ε− x)Q(x, ε) = +∞, which clearly contradicts (2.7). �

2.2. Symplectic decomposition and Williamson’s theorem. The results of
this subsection are known, but we will need them in Subsection 2.3 and also in
Section 4. Recall that our Gaussian kernel κG : R2n → C is of the form

κG(x, y) = exp
{
−(x− y)TA(x − y)− i(x− y)TB(x+ y)− (x + y)TC(x + y)

}
,

where A,B,C ∈ Rn×n such that A and C are positive definite and B is arbitrary.
It is well known that in dimension 1 the operator κ̂G is positive semidefinite if and
only if A ≥ C > 0, see e. g. [33] where even the eigenfunctions are calculated.

Calculating the Wigner–Weyl transform of κG (see [81, (2.18) and (2.19)] with
a slightly different terminology) yields the following formula in the phase space:

(2.8) WG(x, p) = cG exp
{
−vTGv

}
,

where cG = 2nπ− 3
2
n(detC)

3
2 (detA)−

1
2 , and v = (x, p)T, and

(2.9) G =

(
4C +BTA−1B 1

2B
TA−1

1
2A

−1B 1
4A

−1

)

is a symmetric, positive definite5 real 2n× 2n matrix6. Define the 2n× 2n matrix

Ω =

(
0 In

−In 0

)
,

where In is the n × n identity matrix and 0 is the n × n zero matrix. A 2n × 2n
real matrix S ∈ Sp(2n,R) is called symplectic if it satisfies STΩS = Ω.

For the following important theorem see [9, Theorem 215], which states that
applying a symplectic transform in the phase space does not change the spectrum
of the operator.

5For the positivity of G one can simply check that vTGv ≥ 0 for all v ∈ R2n; it also follows from
the fact that the Wigner–Weyl transform maps L2(R2n) to L2(R2n), so W is square integrable.

6In the literature G−1 is called the Gaussian covariance matrix.
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Theorem 2.2 (Weyl correspondence). Assume that κ ∈ L2(R2n) and W is its
Wigner–Weyl transform, and let S ∈ Sp(2n,R) be a symplectic matrix. Then the

operator corresponding to W ◦ S equals Ŝ−1κ̂Ŝ with some operator7 Ŝ; note that κ̂

and Ŝ−1κ̂Ŝ are in the same conjugacy class.

The following theorem is due to Williamson [80], see also [14, Subsection 3.2.3],
[9, Theorem 93], or [10, Theorem 8.11].

Theorem 2.3 (Williamson’s theorem). Let G ∈ R2n×2n be a symmetric, positive
definite matrix. There is a 2n× 2n symplectic matrix8 S ∈ Sp(2n,R) such that

(2.10) STGS =

(
Λ 0
0 Λ

)
,

where Λ is the n× n diagonal matrix

Λ =



µ1

. . .

µn


 .

Furthermore, µk are positive and ±µk are the eigenvalues9 of the matrix M = iGΩ.

By Theorem 2.3 we can diagonalize G from (2.9) with a symplectic matrix, that
is, there is a symplectic matrix S ∈ Sp(2n,R) such that (2.10) holds. We apply the
linear transformation (x′, p′)T = v′ = Sv in the phase space; by Theorem 2.2 this
does not change the spectrum of κ̂G. Now (2.8) and (2.10) imply that the linear
transformation v 7→ Sv yields the product formula

WG(x
′, p′) = cG

n∏

k=1

WGk
(x′

k, p
′
k),

where

(2.11) WGk
(x, p) = exp

{
−µk(x

2 + p2)
}
.

The inverse Wigner transformation (1.7) allows us to factorize our kernel in position
representation as

(2.12) κ′
G(x

′, y′) = cG

n∏

k=1

κGk
(x′

k, y
′
k),

where (2.11) yields

(2.13) κGk
(x, y) =

(
π

µk

) 1
2

exp

{
− 1

4µk

(x− y)2 − µk

4
(x+ y)2

}
.

Clearly, κ̂′
G ≥ 0 if and only if κ̂Gk

≥ 0 for all k, and by (2.13) this is equivalent to
µk ≤ 1 for all 1 ≤ k ≤ n. We emphasize this result in the following claim.

Claim 2.4 (Positivity of Gaussian operators). The Gaussian operator κ̂G is positive
semidefinite if and only if all the eigenvalues µk from Theorem 2.3 satisfy µk ≤ 1.

7Note that the operator Ŝ is explicitly constructed in [10, 14, 82].
8Note that finding such a matrix S is not easy in practice, see [82] for tackling this problem.
9The reciprocals 1/µi are called the symplectic eigenvalues of the Gaussian covariance matrix.
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2.3. The general case. Before proving Theorem 1.2 we recall the following notion
tailor-made for our need. Define the partial trace10 (see [83]) of a kernel κ ∈ S(R2n)
in the coordinates x2, . . . , xn as the kernel η ∈ S(R2) satisfying

η(x1, y1) =

∫

Rn−1

κ(x1, x2, . . . , xn, y1, x2, . . . , xn) dx2 · · · dxn.

Fact 2.5. κ̂ and η̂ are trace class with Tr(η̂) = Tr(κ̂), and κ̂ ≥ 0 implies η̂ ≥ 0.

Proof. As κ ∈ S(R2n) implies η ∈ S(R2), we obtain that κ̂ and η̂ are trace class.
Applying (1.4) for both η̂ and κ̂, and using the definition of η imply

Tr(η̂) =

∫

R

η(x1, x1) dx1 =

∫

Rn

κ(x, x) dx = Tr(κ̂).

Now assume that κ̂ ≥ 0. Let x1, . . . , xk ∈ R and c1, . . . , ck ∈ C be arbitrary.
Theorem 1.1 implies that for every u ∈ Rn−1 we have

(2.14)
k∑

i,j=1

cic
∗
jκ(xi, u;xj, u) ≥ 0.

The definition of η and integrating both sides of (2.14) with respect to u imply

k∑

i,j=1

cic
∗
jη(xi, xj) =

k∑

i,j=1

cic
∗
j

∫

Rn−1

κ(xi, u;xj , u) du ≥ 0.

As x1, . . . , xk ∈ R and c1, . . . , ck ∈ C were arbitrary, Theorem 1.1 yields η̂ ≥ 0. �

Now we are ready to prove Theorem 1.2.

Theorem 1.2. Let P : R2n → C be a non-zero polynomial and let κG : R2n → C

be a Gaussian kernel. If κ̂G is not positive semidefinite, then κ̂PG is not positive
semidefinite, either.

Proof. Assume to the contrary that κ̂G is not positive semidefinite but κ̂PG is
positive semidefinite. Recall that κG in coordinate representation is

κG(x, y) = exp
{
−(x− y)TA(x − y)− i(x− y)TB(x+ y)− (x + y)TC(x + y)

}
,

where A,B,C ∈ Rn×n, and A,C are symmetric and positive definite. We will
use the notation and results of Subsection 2.2. We have seen in (2.8) that the
Wigner–Weyl transform of κG is

WG(x, p) = cG exp
{
−vTGv

}
,

where v = (x, p)T and the constant cG > 0 and the symmetric, positive definite
matrix G ∈ R2n×2n are given there. By differentiation under the integral sign we
obtain that the Wigner–Weyl transform of κPG satisfies

(2.15) WPG(x, p) = Q(x, p) exp
{
−vTGv

}
,

where Q is a polynomial in 2n variables. By Theorem 2.3 we can diagonalize G by
a symplectic matrix S ∈ Sp(2n,R), that is,

(2.16) STGS =

(
Λ 0
0 Λ

)
,

where Λ ∈ Rn×n is a diagonal matrix with positive diagonal entries µk.

10In physics the partial trace operation is applied for kernels of density operators.
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We will apply the linear transformation (x′, p′)T = v′ = Sv in the phase space.
By Theorem 2.2 the operator corresponding to WPG ◦ S has the same spectrum
as κ̂PG, so it remains positive semidefinite. Now (2.15) and (2.16) imply that the
linear transformation v 7→ Sv yields the product formula

WPG(x
′, p′) = Q(x, p)

n∏

k=1

WGk
(x′

k, p
′
k),

where

WGk
(x, p) = exp

{
−µk(x

2 + p2)
}
.

We have already calculated the inverse Wigner–Weyl transform (1.7) of the Gauss-
ian part

∏n

k=1 WGk
, see (2.8). By differentiating under the integral sign we easily

obtain that our inverse Wigner–Weyl transform only changes by a polynomial fac-
tor, that is, there is a polynomial R in 2n variables such that our kernel in position
representation is

κ′
PG(x

′, y′) = R(x′, y′)

n∏

k=1

κGk
(x′

k, y
′
k),

where κGk
are the one-dimensional Gaussian kernels calculated in (2.13). As κ̂G

is not positive semidefinite, and in κ′
G the same factors κGk

appear, we obtain
that there exists k such that κ̂Gk

is not positive semidefinite. We may assume
without loss of generality that this k equals 1. Now we can define the two-variable
polynomial

S(x′
1, y

′
1) =

∫

Rn−1

R(x′
1, . . . , x

′
n, y

′
1, x

′
2, . . . , x

′
n)

n∏

k=2

κGk
(x′

k, x
′
k) dx

′
2 · · · dx′

n.

Consider the partial trace of κ′
PG in the coordinates x′

2, . . . , x
′
n, which yields the

one-dimensional kernel η given by

η(x′
1, y

′
1) = S(x′

1, y
′
1)κG1

(x′
1, y

′
1).

By Fact 2.5 the partial trace operator preserves positivity and the trace as well,
so η̂ ≥ 0 and S is not the zero polynomial. However, η is the product of S and a
one-dimensional Gaussian kernel κG1

such that κ̂G1
is not positive semidefinite, so

the positivity of η̂ contradicts the one-dimensional result Theorem 2.1. �

3. When the polynomial is of odd degree

The main goal of this section is to prove Theorem 1.3, but first we need some
preparation. We will need the Fourier transformation F : L2(R2n) → L2(R2n), here
we use the convention that for all f ∈ L2(R2n) and u, v ∈ Rn we have

(3.1) F(f)(u, v) =

∫∫

R2n

f(x, y)e−i(uTx+vTy) dxdy.

We define the integral transformation L for polynomial Gaussian kernels κPG

such that for all u, v ∈ Cn we have

(3.2) L(κPG)(u, v) =

∫∫

R2n

κPG(x, y) exp
(
−iuT(x− y)− vT(x+ y)

)
dxdy.

In the following lemma we calculate the L-transform of a Gaussian kernel.
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Lemma 3.1. There is a positive constant c = c(A,B,C) such that for all u, v ∈ Cn

our integral L(κG)(u, v) equals to

c · exp
[
−
(
1

2
BC−1v − u

)T (
4A+BC−1BT

)−1
(
1

2
BC−1v − u

)
+

1

4
vTC−1v

]
.

Proof. For a positive definite real matrix M and b ∈ Cn the following formula is
well known, see e. g. [84, Section I.2. Appendix 2] for the proof:

(3.3)

∫

Rn

exp
[
−xTMx+ bTx

]
dx =

π
n

2

√
detM

exp

(
1

4
bTM−1b

)
.

First we make a change of variables from x, y to r = x − y and R = x+y
2 , note

that the determinant of its Jacobian matrix has absolute value 1. Then using (3.3)
with M1 = 4C and b1 = −2(v + iBTr), and again with M2 = A+ 1

4BC−1BT and

b2 = i
(
1
2BC−1v − u

)
we obtain that

L(κG)(u, v) =

∫∫

R2n

exp
[
−rTAr − 2irTBR− 4RTCR − iuTr − 2vTR

]
dR dr

=
π

n

2 exp
(
1
4v

TC−1v
)

√
det(4C)

∫

Rn

exp

[
−rT

(
A+

1

4
BC−1BT

)
r + i

(
1

2
vTC−1v

)
r

]
dr

= c exp

[
−
(
1

2
BC−1v − u

)T (
4A+BC−1BT

)−1
(
1

2
BC−1v − u

)
+

1

4
vTC−1v

]
,

where c = πn
(
det

(
4AC +BC−1BTC

))− 1
2 . This finishes the proof. �

Before proving Theorem 1.3 we also need a couple of facts.

Fact 3.2. Let Q : R2n → C be a polynomial with 2n real variables.

(i) If Q takes only real values, then all of its coefficients are real;
(ii) If Q has real coefficients and degQ is odd, then Q takes negative values.

Proof. First we prove (i). We can write Q = Q1 + iQ2, where the polynomials
Q1, Q2 : R

2n → R have real coefficients. As Q takes only real values, we obtain that
Q2(x, y) = 0 for all x, y ∈ Rn, which implies that Q2 ≡ 0. Then Q = Q1, and the
claim follows.

Now we prove (ii). Let d = degQ, which is odd by our assumption. Let us
decompose Q as Q = Q1 + Q2 such that Q1, Q2 : R

2n → R are polynomials with
real coefficients, andQ1 contains all the monomials of Q with degree d. Then clearly
degQ2 < d and Q1 is homogeneous of degree d, that is, Q1(cx, cy) = cdQ1(x, y)
for all c ∈ R and x, y ∈ Rn. Fix x0, y0 ∈ Rn such that Q1(x0, y0) 6= 0, and let
r0 = Q1(x0, y0). Let us define the one-variable polynomial R : R → R as

R(c) = Q(cx0, cy0) = r0c
d +Q2(cx0, cy0).

As degQ2 < d, we have degR = d and its leading coefficient is r0 6= 0. As d is odd,
R takes negative values, which implies that Q takes negative values as well. �

Fact 3.3. Assume that κ ∈ L2(R2n) is a self-adjoint kernel such that κ̂ is positive
semidefinite. Let g : Rn → C be a continuous function and suppose that the function
τ(x, y) = g(x)g∗(y)κ(x, y) satisfies τ ∈ L1(R2n). Then

∫∫
R2n τ(x, y) dxdy ≥ 0.
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Proof. As τ ∈ L1(R2n), the integral
∫∫

R2n τ(x, y) dxdy exists. For positive integers
n define gn : R

n → C such that gn(x) = g(x) if |x| ≤ n and gn(x) = 0 otherwise. As
g is continuous, we have gn ∈ L2(Rn). Therefore, the positivity of κ̂ implies that
for all n we have

0 ≤
∫∫

R2n

gn(x)g
∗
n(y)κ(x, y) dxdy →

∫∫

R2n

τ(x, y) dxdy

as n → ∞, hence
∫∫

R2n τ(x, y) dxdy ≥ 0 holds. �

Now we are able to prove Theorem 1.3.

Theorem 1.3. Assume that P : R2n → C is a polynomial of odd degree, and
κG : R2n → C is any Gaussian kernel. Then κ̂PG is not positive semidefinite.

Proof. Assume to the contrary that κ̂PG is positive semidefinite. Recall the integral
transformation L from (3.2), and note that

exp
(
−iuT(x− y)− vT(x+ y)

)
= gu,v(x)g

∗
u,v(y),

where gu,v(x) = exp(−iuTx− vTx). Thus Fact 3.3 implies that

(3.4) L(κPG)(u, v) ≥ 0 for all u, v ∈ R
n.

We want to calculate L(κPG) by differentiating under the integral sign of L(κG).
We define the differential operators Di for all 1 ≤ i ≤ 2n such that.

Di =





1
2

(
i ∂
∂ui

− ∂
∂vi

)
if 1 ≤ i ≤ n

− 1
2

(
i ∂
∂ui

+ ∂
∂vi

)
if n+ 1 ≤ i ≤ 2n.

For any polynomial R = R(x, y) and 1 ≤ i ≤ n by Lemma 3.1 we obtain that

(3.5) DiL(RκG) = L(xiRκG) and Dn+iL(RκG) = L(yiRκG).

For the polynomial P choose the set I ⊂ N2n such that

P (x, y) =
∑

(k1,...,k2n)∈I

a(k1, . . . , k2n)x
k1

1 · · ·xkn

n y
kn+1

1 · · · yk2n

n .

Let us define the differential operator P (D) as

P (D) =
∑

(k1,...,k2n)∈I

a(k1, . . . , k2n)D
k1

1 · · ·Dk2n

2n .

Then (3.5) implies that

(3.6) L(κPG) = P (D)L(κG).

Clearly (Dk1

1 · · ·Dk2n

2n )L(κG) = Qk1...k2n
L(κG), where Qk1...k2n

is a polynomial of
degree exactly k1+· · ·+k2n. Therefore, by (3.6) we obtain that there is a polynomial
Q such that degQ ≤ degP and

(3.7) L(κPG) = QL(κG).

As L(κPG) takes only real values, so does Q, hence the coefficients of Q are reals
by Fact 3.2 (i). Now it is enough to show that degQ = degP . Indeed, assume that
degQ = degP . Then by Fact 3.2 (ii) the odd degree polynomial Q takes negative
values, so L(κPG) takes negative values by (3.7) as well, but this contradicts (3.4).
Note that it is unclear yet why degQ < degP cannot happen due to cancellations
in the linear combination of the polynomials Qk1...k2n

, (k1, . . . , k2n) ∈ I.
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Finally, we prove degQ = degP . Assume to the contrary that degQ < degP .
Observe that (3.2) provides an easy connection between the transforms F and L.
Applying this twice with (3.7) implies that

F(κPG)(u, v) = L(κPG)

(
1

2
(u + v),

i

2
(v − u)

)

= Q

(
1

2
(u+ v),

i

2
(v − u)

)
L(κG)

(
1

2
(u+ v),

i

2
(v − u)

)

= Q′(u, v)F(κG)(u, v),

(3.8)

whereQ′(u, v) = Q((u+v)/2, i(v−u)/2), soQ′ is a polynomial with degQ′ ≤ degQ.
Now we will take the Fourier transform of both sides of the (3.8). On one hand, by
the Fourier inversion formula we have an absolute constant cn > 0 such that

(3.9) F(F(κPG))(x, y) = cnκPG(−x,−y) = cnP (−x,−y)κG(−x,−y).

On the other hand, differentiating under the integral sign similarly as earlier and
using the above Fourier inversion formula, we obtain that there is a polynomial Q′′

with degQ′′ ≤ degQ′ satisfying

(3.10) F(Q′F(κG))(x, y) = Q′′(x, y)F(F(κG))(x, y) = cnQ
′′(x, y)κG(−x,−y).

By (3.8) the Fourier transforms in (3.9) and (3.10) are equal, which yields that
Q′′(x, y) = P (−x,−y) for all x, y ∈ Rn. However, degQ′′ ≤ degQ < degP by our
indirect hypothesis, which is clearly a contradiction. This completes the proof. �

4. A useful preorder on Gaussian kernels

One of the main goals of this section is to prove Theorem 1.9, but first we need
some preparation.

Fact 4.1. Let µ, ν ∈ L2(R2n) be self-adjoint kernels such that µ̂ and ν̂ are positive
semidefinite. Then µν ∈ L2(R2n) and µ̂ν is positive semidefinite, too.

Proof. Clearly µν ∈ L2(R2n). By the spectral theorem [72, Theorem 6.2] the
operator µ̂ has nonnegative eigenvalues {si}i≥0 with eigenfunctions {fi}i≥0, and
similarly ν̂ has nonnegative eigenvalues {tj}j≥0 with eigenfunctions {gj}j≥0. This
easily implies that the kernels µ, ν can be written as

µ(x, y) =
∑

i≥0

sifi(x)f
∗
i (y) and ν(x, y) =

∑

j≥0

tjgj(x)g
∗
j (y),

where the sums converge in L2(R2n). Then clearly

(µν)(x, y) =

∞∑

k=0

∑

i+j=k

sitj(figj)(x)(figj)
∗(y),

where the sum converges in L2(R2n). As the kernels (x, y) 7→ (figj)(x)(figj)
∗(y)

define positive semidefinite operators and sitj ≥ 0 for all i, j ≥ 0, we obtain that
µ̂ν is positive semidefinite. �

Fact 4.2. Let τ ∈ L2(R2n) be a kernel, and let g : Rn → C be a Lebesgue measurable
function. Define κ : R2n → C as

κ(x, y) = τ(x, y)g(x)g∗(y).

If τ̂ is positive semidefinite and κ ∈ L2(R2n), then κ̂ is also positive semidefinite.
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Proof. Define h : Rn → R as h(x) = exp(−|g(x)|). Then h is Lebesgue measurable,
and 0 < |h(x)| ≤ 1 for all x ∈ Rn. Let

F =
{
P (x)h(x) exp(−|x|2) : where P : Rn → C is a polynomial

}
,

then [85, Corollary 14.24 or 14.7 Exercise 10] yields that F is dense in L2(Rn).
Now we show that 〈κ̂f, f〉 ≥ 0 for all f ∈ F . Fix an arbitrary f ∈ F . As hg is

bounded, clearly fg ∈ L2(Rn). Then τ̂ ≥ 0 yields 〈κ̂f, f〉 = 〈τ̂ (fg), fg〉 ≥ 0.
Finally, we prove that 〈κ̂f, f〉 ≥ 0 for all f ∈ L2(Rn). Since F is dense in L2(Rn),

there is a sequence fi ∈ F such that fi → f in L2(Rn). Clearly 〈κ̂fi, fi〉 → 〈κ̂f, f〉,
and we already showed that 〈κ̂fi, fi〉 ≥ 0, thus we obtain 〈κ̂f, f〉 ≥ 0. �

Now we are ready to prove Theorem 1.9.

Theorem 1.9. For (A0, B0, C0), (A1, B1, C1) ∈ G(n) the following are equivalent:

(1) (A0, B0, C0) � (A1, B1, C1);
(2) for each self-adjoint σ : R2n → C if σθ(Ai, Bi, Ci) ∈ L2(R2n) for i ∈ {0, 1}

and σ̂θ(A0, B0, C0) ≥ 0, then σ̂θ(A1, B1, C1) ≥ 0;
(3) for every self-adjoint Gaussian kernel σ if σθ(Ai, Bi, Ci) ∈ L2(R2n) for

i ∈ {0, 1} and σ̂θ(A0, B0, C0) ≥ 0, then σ̂θ(A1, B1, C1) ≥ 0.

Proof. The implication (2) ⇒ (3) is straightforward.
First we prove that (3) ⇒ (1). Choose r ≥ 0 such that the matrices −A0 + rIn

and −C0 + rIn are positive definite, and define

(4.1) σ = θ(−A0 + rIn,−B0,−C0 + rIn) ∈ L2(R2n).

Then σθ(A0, B0, C0) = θ(rIn, 0, rIn) ∈ L2(R2n), so clearly σ̂θ(A0, B0, C0) is posi-
tive semidefinite. Furthermore, (4.1) implies that

σθ(A1, B1, C1) = θ(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn) ∈ L2(R2n).

Therefore, (3) yields that

σ̂θ(A1, B1, C1) = θ̂(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn) ≥ 0,

which implies (1) by definition.
Finally, we prove the implication (1) ⇒ (2). Let σ : R2n → C be a self-adjoint

function such that σθ(Ai, Bi, Ci) ∈ L2(R2n) for i ∈ {0, 1} and σ̂θ(A0, B0, C0) is
positive semidefinite. Choose r ≥ 0 such that

θ̂(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn) ≥ 0.

Let us define the kernels µ, ν, κ ∈ L2(R2n) as

µ = σθ(A0, B0, C0),

ν = θ(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn),

κ = σθ(A1, B1, C1).

Then we have

(4.2) κ(x, y) = (µν)(x, y)g(x)g∗(y),

where
g(x) = exp

(
r|x|2

)
.

We need to prove that κ̂ ≥ 0. As µ̂ ≥ 0 and ν̂ ≥ 0, Fact 4.1 implies that µ̂ν ≥ 0.
Then (4.2) and Fact 4.2 with τ = µν yield that κ̂ ≥ 0. This completes the proof. �
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Now we are ready to prove Claim 1.11.

Claim 1.11. We have (In, 0, In) � (A,B,C) for all (A,B,C) ∈ G+(n). Hence for
a self-adjoint polynomial P : R2n → C the following are equivalent:

(1) P̂ θ(A,B,C) ≥ 0 for all (A,B,C) ∈ G+(n);

(2) P̂ θ(In, 0, In) ≥ 0;

(3)
∑k

i,j=1 cic
∗
jP (xi, xj) ≥ 0 for all x1, . . . , xk ∈ Rn and c1, . . . , ck ∈ C.

Proof. First we show that (In, 0, In) � (A,B,C) for all (A,B,C) ∈ G+(n). Indeed,
let (A,B,C) ∈ G+(n) and r = 1. Then

(A− In + rIn, B, C − In + rIn) = (A,B,C) ∈ G+(n),

which implies (In, 0, In) � (A,B,C) by definition.
Now we prove the equivalences. Clearly (1) ⇒ (2), and Theorem 1.9 yields

that (2) ⇒ (1). Since θ = θ(In, 0, In) satisfies θ(x, y) = E(x)E∗(y) such that
E(x) = exp(−|x|2), we easily obtain that (2) ⇔ (3). �

Notation 4.3. For U, V ∈ Rn×n we write U > 0 if U is positive definite, U ≥ 0 if
U is positive semidefinite, and U ≥ V if U − V ≥ 0.

Claim 4.4. Let A,B,C ∈ Rn×n such that A,C are positive definite.

(1) If (A,B,C) ∈ G+(n) then A ≥ C;
(2) if A ≥ C and B is symmetric then (A,B,C) ∈ G+(n).

Proof. First we prove (1). Applying Theorem 1.1 for θ = θ(A,B,C) with k = 2
and c1 = 1, c2 = −1 for vectors x and −x we obtain

θ(x, x) + θ(−x,−x) ≥ θ(x,−x) + θ(−x, x),

which easily implies that

2 exp
(
− 4xTCx

)
≥ 2 exp

(
− 4xTAx

)
.

Thus for all x ∈ Rn we have xT(A− C)x ≥ 0, so A− C ≥ 0, that is, A ≥ C.
Now we prove (2). Note that θ(A,B,C)(x, y) only differs from θ(A, 0, C)(x, y)

by factors of the form fi,j(x)f
∗
i,j(y), where

fi,j(x) = exp(−2iBijxixj) for all 1 ≤ i < j ≤ n.

Since these factors do not change the spectrum, we obtain that θ(A,B,C) ∈ G+(n)
if and only if θ(A, 0, C) ∈ G+(n). Hence we need to prove that θ(A, 0, C) ∈ G+(n).
By Claim 2.4 this is equivalent to the fact that all positive eigenvalues of M = iGΩ
are at most 1. We can calculate the characteristic polynomial as

P (λ) = det (M − λI2n) = det
(
λ2In −A−1C

)
.

Fix λ > 1, it is enough to show that the P (λ) 6= 0, for which it is enough to prove
that λ2In − A−1C is positive definite. As A ≥ C, we obtain that In ≥ A−1C, so
λ2In − A−1C = (λ2 − 1)In + (In − A−1C) is the sum of a positive definite and a
positive semidefinite matrix, hence it is positive definite. �

Claim 4.4 and the definition of � immediately imply Corollary 1.13.

Corollary 1.13. Let (Ai, Bi, Ci) ∈ G(n), i ∈ {0, 1}. Then
(1) (A0, B0, C0) � (A1, B1, C1) ⇒ A1 − C1 ≥ A0 − C0,
(2) A1−C1 ≥ A0−C0 and B1−B0 is symmetric ⇒ (A0, B0, C0) � (A1, B1, C1).



20 RICHÁRD BALKA, ANDRÁS CSORDÁS, AND GÁBOR HOMA

In order to prove Theorem 1.15 we need the following fact.

Fact 4.5. If (In, B, In) ∈ G+(n), then B is symmetric.

Proof. Assume that (In, B, In) ∈ G+(n). By Claim 2.4 all positive eigenvalues of
M = iGΩ are at most 1. We can calculate the characteristic polynomial of M as

P (λ) = det (M − λI2n) = det

[
(λ2 − 1)In − λ

i

2

(
B −BT

)]
.

It is clear that the constant term of P is P (0) = det(−In) = (−1)n, so by Vieta’s
formula all roots of P are ±1, both with multiplicity n according to Theorem 2.3.
This means that P (λ) = (λ2 − 1)n. Let L be the coefficient of λ2 in P (λ) minus
the coefficient of λ2 in (λ2 − 1)n; clearly L must be 0. Now we will calculate L
in another way. Let N(λ) = (λ2 − 1)In − λ(i/2)

(
B −BT

)
. In the determinant

P (λ) = det(N(λ)) if the term λ2 comes only from the main diagonal, then it has
the same coefficient as the coefficient of λ2 in (λ2 − 1)n. As every non-diagonal
element of N(λ) is a constant multiple of λ, our only other option is to choose −1
from the main diagonal n− 2 times, and if the remaining rows and columns are of
number j and k, then its contribution to L is

(−1)n−2

[
− i

2
(Bjk −Bkj)

i

2
(Bkj −Bjk)

]
=

(−1)n−1

4
(Bjk −Bkj)

2
.

We need to sum these for all pairs 1 ≤ k < j ≤ n, which implies that

L =
(−1)n−1

4

∑

1≤k<j≤n

(Bjk −Bkj)
2 .

As L = 0, we have Bjk = Bkj for all 1 ≤ k < j ≤ n, so B is symmetric. �

Now we can prove Theorem 1.15.

Theorem 1.15. Let (Ai, Bi, Ci) ∈ G(n), i ∈ {0, 1}. The following are equivalent:

(1) (A0, B0, C0) ≈ (A1, B1, C1);
(2) A1 − C1 = A0 − C0 and B1 −B0 is symmetric.

Proof of Theorem 1.15. Applying Corollary 1.13 (2) twice yields (2) ⇒ (1).
Now we prove (1) ⇒ (2). By Corollary 1.13 (1) we obtain that A1−C1 = A0−C0.

Let N = A1 −A0 = C1 − C0 and choose r ≥ 0 such that

(A1 −A0 + rIn, B1 −B0, C1 − C0 + rIn) = (N + rIn, B1 −B0, N + rIn) ∈ G+(n).

Then (2) ⇒ (1) implies that

(N + rIn, B1 −B0, N + rIn) ≈ (In, B1 −B0, In),

so (In, B1−B0, In) ∈ G+(n). Thus Fact 4.5 implies that B1−B0 is symmetric. �
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French. In: Ann. I. H. Poincare A 6 (1967), pp. 39–58.

[29] F. J. Narcowich and R. F. O’Connell. “Necessary and sufficient conditions for
a phase-space function to be a Wigner distribution”. In: Phys. Rev. A 34 (1
1986), pp. 1–6.

[30] F. J. Narcowich. “Distributions of ℏ-positive type and applications”. In: J.
Math. Phys. 30.11 (1989), pp. 2565–2573.
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