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Abstract. In the current noisy intermediate scale quantum computing era, and after

the significant progress of the quantum hardware we have seen in the past few years,

it is of high importance to understand how different quantum algorithms behave on

different types of hardware. This includes whether or not they can be implemented at

all and, if so, what the quality of the results is. This work quantitatively demonstrates,

for the first time, how the quantum generator architecture for the style-based quantum

generative adversarial network (qGAN) can not only be implemented but also yield

good results on two very different types of hardware for data augmentation: the

IBM ibm torino quantum computer based on the Heron chip using superconducting

transmon qubits and the aria-1 IonQ quantum computer based on trapped-ion qubits.

The style-based qGAN, proposed in 2022, generalizes the state of the art for qGANs

and allows for shallow-depth networks. The results obtained on both devices are of

comparable quality, with the aria-1 device delivering somewhat more accurate results

than the ibm torino device, while the runtime on ibm torino is significantly shorter

than on aria-1. Parallelization of the circuits, using up to 48 qubits on IBM quantum

systems and up to 24 qubits on the IonQ system, is also presented, reducing the

number of submitted jobs and allowing for a substantial reduction of the runtime on

the quantum processor to generate the total number of samples.

Keywords: quantum machine learning, data augmentation, generative adversarial

models, quantum hardware implementation, trapped-ion qubits, superconducting qubits

1. Introduction

Quantum computing has seen great progress happening in the past few years, and is now

starting a shift from very early stages focused on hardware progress to more focused use-

case studies and applications. The current state of the art for the quantum hardware is

still that of the noisy intermediate-scale quantum (NISQ) computers, characterized by a

low number of qubits (of the order of maximally 1000 qubits for gate-based architectures,

5000 for quantum annealers, as of early 2024) and with capabilities limited by the noise

of the hardware and by the low number of couplers between the qubits. Despite these

limitations, the first advances toward quantum computational supremacy were shown

for superconducting processors in 2019 [1], photonic approaches in 2020 and 2022 [2, 3],

and in 2023 claims for quantum utility were presented in Ref. [4] on IBM 127-qubit

processors. Substantial improvement in encoding logical qubits have been presented in

Ref. [5] (with neutral atoms) and Ref. [6] (with trapped-ion qubits), a new quantum error

correction protocol with substantial improvement has been presented in Ref. [7] and very

recently a claim for quantum supremacy using quantum annealing has been presented

in Ref. [8] after several advancements in that direction [9, 10]. These results have in

turn boosted the research in classical tensor network architectures, see for example

Refs. [11–14], advancing both the field of classical and quantum algorithms.

Amongst the various algorithms designed for the NISQ era [15–17], quantum

machine learning (QML) [18, 19] is of high interest given the range of real-world

applications: financial services, healthcare, high energy physics, just to name a few [20].

We focus in this paper on quantum generative models [21–25], in particular quantum
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generative adversarial networks (qGANs) [26–34], for a recent review see Ref. [35].

These quantum architectures belong to the general class of quantum neural networks, or

parameterized quantum circuits [36–39]. Trainability of qGANs has been studied [40, 41]

and in particular Ref. [41] indicates that qGANs with shallow circuits for their quantum

generator do not suffer from barren plateaus, making them promising tools for generative

applications. We are in particular interested by data augmentation: A model is trained

with a small amount of input samples and it learns how to sample the underlying

distribution. This is particularly interesting in the financial sector for filling gaps in

time series [42–45], or in healthcare applications for which (good quality) datasets could

be too small to be used for further training of another machine learning model [46–48].

Quantum GANs are also promising for generative drug discovery [49–51].

The quantum algorithm we have selected for data augmentation is the style-based

qGAN which we have proposed with other colleagues in Ref. [33]. In the style-based

qGAN, the latent variables of the quantum generator are repeatedly encoded over the

entire quantum network and not only in the first quantum gates. This approach has

been proven to generalize the standard qGANs [28, 30, 32, 52]. The data augmentation

was demonstrated on real-world data provided by Monte Carlo event distributions

typically encountered in particle physics at hadron colliders and which display highly

non-Gaussian profiles [33]. Not only these type of distributions are a difficult playground

for classical GANs in the context of data augmentation, but it has been shown that

significantly smaller Kullback-Leibler (KL) divergences are achieved by the style-based

qGAN compared to the standard qGAN.

There has been tremendous progress in the past few years in the deployment of

NISQ gate-based hardware. The first type of hardware which has been accessible on the

cloud is the superconducting qubit type provided by IBM [53], with publicly available

devices up to 133 qubits as of early 2024‡. Google Sycamore processor [1] and Rigetti

Ankaa class processors [54] are other examples of superconducting qubit types. Other

types of quantum hardware, able to execute QML algorithms, have seen remarkable

progress in the past few years and are also accessible via cloud providers or via direct

cloud access from the hardware providers . The most commercially advanced quantum

computers besides superconducting qubit technology are trapped-ion qubits [55], such

as provided by IonQ [56], for which the current state-of-the-art device is Forte with

30 qubits [57] before the deployment of Forte Enterprise planned for end of 2024 with

35 (algorithmic) qubits and Tempo following after with 64 (algorithmic) qubits§; or

provided by Quantinuum [58] for which the current state-of-the-art quantum processor

is the 32-qubit H2 computer with the highest two-qubit gate fidelity of the market∥.
Besides superconducting qubits and trapped-ion qubits, quantum computers based on

photonic technology and on neutral atoms are also used for QML implementation [59–

62], for which prominent companies are e.g. Xanadu, QuEra, or Pasqal. Given all

‡ See the IBM quantum roadmap at https://www.ibm.com/quantum/technology.
§ See for example this article in The Quantum Insider, June 2023.
∥ See H2 processor specifications at https://www.quantinuum.com/hardware/h2.

https://www.ibm.com/quantum/technology
https://thequantuminsider.com/2023/06/22/ionq-and-quantumbasel-partner-to-deploy-of-two-generations-of-ionq-quantum-systems-in-europe/
https://www.quantinuum.com/hardware/h2
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this technical improvement, it is of great importance to understand how key quantum

algorithms, such as qGANs, behave on different types of hardware. In particular, we

are interested to test whether or not they can be implemented at all and, if so, what the

quality of the results is. This also indicates what hardware improvements are required

to improve the results. It can be expected that one- and two-qubit gate errors as well as

readout errors play an important role, while coherence time is less important since the

style-based qGAN circuits are usually shallow. It should be noted that error mitigation

and error suppression techniques, such as provided by IBM or other quantum providers

such as the Fire Opal tool from Q-CTRL, are also of great help to overcome the issues

with hardware errors.

This work has two goals: (1) Assess quantitatively whether the style-based qGAN

algorithm can perform good data augmentation on two different hardware architectures:

superconducting qubits, as provided e.g. by IBM, and trapped-ion qubits as provided

e.g. by IonQ. This was hinted in Ref. [33] but a quantitative study is still lacking.

(2) Compare the performance on these two architectures, and highlight their respective

advantages and drawbacks in the current NISQ era. Our results should be viewed

as experimental quantum algorithm research: We want to compare trapped-ion and

superconducting hardware technologies for the specific use case of data augmentation

using style-based qGAN, in the same spirit as done for example in Ref. [63] for

Heisenberg spin chain dynamics. We do not wish to characterize the performance of

the algorithm per se or compare it to other (quantum or classical) generative models,

as would be the work done e.g. in Refs. [64–66] for various quantum generative models.

However we note that Ref. [65] indicates that quantum generative models can outperform

classical models in the data-limited regime, which is precisely of high interest for data

augmentation applications; see also Ref. [67] for a characterization of qGANs indicating

the same conclusion. Because we want to compare the native hardware performance as

best as we can, we do not use any error suppression nor error mitigation of the results.

Such a study is important but goes beyond the scope of this work.

Compared to the work in Ref. [33] we also extend the algorithmic implementation of

the style-based qGAN using the parallelization of the base ansatz, allowing us to perform

our runs using up to 24 qubits on the aria-1 IonQ system and up to 48 qubits on the

ibm torino quantum computer of IBM using the latest Heron quantum processor. This

leads to a substantial reduction of the total time needed to obtain the total number of

generated samples.

The paper is organized as follows. In Section 2 we present the two quantum

computers on which we implement the style-based qGAN algorithm: the ibm torino

device based on the IBM Heron superconducting transmon qubits and the aria-1 device

based on the IonQ trapped-ion qubits. In Section 3 we summarize briefly the design and

architecture of the style-based qGAN. We also introduce the parallelization allowing for

reducing the number of effective runs required to obtain the total number of samples from

the quantum generator. In Section 4 we present the experimental results of the hardware

implementation in the context of data augmentation using Monte Carlo distributions
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Figure 1. Qubit coupling map of the 133-qubit ibm torino system based on the IBM

Heron chip.

for high-energy physics as real-world data, comparing the performance of aria-1 and of

ibm torino. In Section 5 we present our conclusion and outlook for further explorations.

In Appendix Appendix A we include a noise simulation for the IonQ aria-1 device

comparing runs using 512 shots and 1024 shots, while Appendix Appendix B presents

additional results on the IBM ibm cusco device based on the Eagle chip.

2. Superconducting transmon and trapped-ion quantum computers

We have implemented the style-based qGAN algorithm on two different hardware

technologies, namely superconducting transmon qubits as manufactured by IBM and

trapped-ion qubits as manufactured by IonQ.

IBM uses superconducting transmon qubits [68, 69] for their quantum chip. The

qubit is made out of a Josephson junction of the size of about 100 nm [70], acting

as a nonlinear inductor, coupled with a shunting capacitor. This circuit creates an

anharmonic oscillator. The qubits are cooled down to mK temperatures to enter the

superconducting regime and exhibit quantized energy levels. The typical resonance

frequency is around 5 GHz. Controlling of the qubits, including readout as well as gate

operations, is performed thanks to microwave resonators coupled to the chip [71, 72]. We

have used the ibm torino quantum system which is the latest IBM prototype using the

Heron architecture with 133 qubits. The qubit connectivity is defined by a heavy-hex

lattice¶ and the Heron chip, which is the baseline for the new IBM System 2 system,

is a substantial improvement over the previous Eagle chip with ten times better two-

qubit gate fidelity+. The qubit coupling map for the ibm torino quantum system using

¶ See this IBM blog post on heavy-hex lattice architecture.
+ See the different IBM quantum processor types in the IBM documentation.

https://www.ibm.com/quantum/blog/heavy-hex-lattice
https://docs.quantum.ibm.com/run/processor-types
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ibm torino aria-1

# of qubits 133 25

Coherence time T1 (µs) 157 108

Coherence time T2 (µs) 140 106

One-qubit gate time (µs) 0.032 135

Two-qubit gate time (µs) 0.101a 600b

Readout time (µs) 1.56 300c

One-qubit gate error rate 5.8× 10−4 3× 10−4

Two-qubit gate error rate 5.3× 10−3 6× 10−3

Readout error rate 2.7× 10−2 5.1× 10−3

aCZ gate; bMølmer-Sørensen gate; cOn all qubits at once.

Table 1. List of the most important parameters from the technical specifications of

the IBM ibm torino (left) and IonQ aria-1 (right) devices (average values over all the

qubits). The actual values change over time after each calibration of the system and

reflect the specifications at the time of our experiments (for IBM system: December

13th, 2023: for IonQ system: spanned over mid-February to mid-March 2024).

the Heron chip is displayed in Figure 1 and the most important parameters from the

technical specifications of the device are listed in Table 1.

Trapped-ion quantum computers use ionized atoms trapped with a laser [55]. IonQ

quantum systems are currently based on ytterbium ions [56], 171Yb+, confined on a chip

called a linear ion trap, featuring around 100 electrodes producing the rapidly oscillating

electromagnetic fields needed for the trap. The hyperfine transitions of the 2S1/2 ground

state are used as |0⟩ and |1⟩ qubit states. The ions are cooled by the lasers using a

combination of Doppler and resolved sideband cooling. The initial state is prepared

in the ground state |0⟩ via optical pumping. One- and two-qubit gate operations are

processed sequentially, using 355nm-pulsed Raman beams, SK1 pulses for one-qubit

operations [73] and Mølmer-Sørensen interactions for two-qubit operations [74, 75].

The readout is performed on all ions at once, using a 369-nm laser resonant with the
2S1/2 → 2P1/2 transition. The laser operations allow for an all-to-all connectivity of the

qubits. We have used IonQ aria-1 quantum system, with 25 qubits and the technical

specifications as listed in Table 1 for the most important parameters.

It is quite instructive to compare the parameters in Table 1 for the two quantum

computers aria-1 and ibm torino. Besides the very important difference in terms of

connectivity, with all-to-all for the trapped-ion architecture vs the heavy-hex lattice for

the superconducting transmon qubit architecture, the other salient differences lie in the

coherence time, the one-qubit gate error and the readout error.

Trapped-ion qubits have a very long coherence time, T1 = 100 s, compared to the

typical coherence time of order 200 µs for superconducting transmon qubits. This has

an impact on the number of gate operations that can be performed before measuring

just noise: IonQ systems can run in principle deeper circuits, as evidenced by the

T2-over-two-qubit-gate-time ratio which is of order 1400 on ibm torino and of order

1700 on aria-1. The higher this ratio is, the more operations you can perform in a

given quantum circuit before losing the whole quantum coherence. On the other hand,
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Quantum
Generator

Classical
Discriminator

Generated
samples

Loss

Reference
samples

Input 
distribution

Real Fake

Classical optimization

Latent 
variables

Quantum neural network model

Figure 2. Workflow of a qGAN training where the discriminator uses a classical

neural network while the generator is a quantum network. This is the setup of the

style-based qGAN algorithm we use in this work. The generated samples out of the

quantum generator are compared against the reference samples, the latter being taken

from the input training data. Both generated and reference samples are used to train

the discriminator, using an appropriate loss function for both the discriminator and

the generator. The parameters of both networks are then updated and the procedure

is repeated in an adversarial approach until desired precision is reached. The figure is

taken from Ref. [33].

operations on aria-1 take a much longer time compared to operations on ibm torino,

as there is a three-order- of-magnitude difference in the two-qubit gate operations time.

The two-qubit gate error rates are quite comparable, while the IonQ aria-1 device

has a significantly better readout fidelity than the IBM ibm torino device, by one order

of magnitude. We expect this readout fidelity to have more impact on the accuracy of

our data augmentation experiment than the difference in coherent time between the two

quantum devices, as our quantum circuits are quite shallow.

3. Style-based quantum GAN and parallelization

3.1. Workflow of a (quantum) GAN

We briefly present in this section how a GAN, be it classical or quantum, is implemented.

A GAN contains two competing networks, the generator and the discriminator, which

are trained alternately following an adversarial procedure [76]. The goal of the generator

is to produce candidate data (or “fake data”) out of random noise input, while the goal

of the discriminator is to distinguish the candidate data produced by the generator from

the training data it is fed with (the “real data”).
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|0〉 Ry Rz Ry Rz

Uent

. . . Ry

|0〉 Ry Rz Ry Rz . . . Ry

...
...

...
...

...

|0〉 Ry Rz Ry Rz . . . Ry

1 layer

1
Figure 3. Ansatz for the quantum generator of the style-based qGAN. Uent in our

case stands for controlled Rz rotations.The figure is taken from [33].

The training procedure follows a zero-sum two-player game until (ideally) a Nash

equilibrium is reached: the discriminator cannot discriminate between fake and real data

better than randomly selecting true or false, and the parameters of the generators have

now reached their final values so that the random input distribution of the generator

is converted into realistic data by the network. The step from a classical GAN to a

quantum GAN (qGAN) can be realized either by using a quantum architecture for

the generator, or for the discriminator, or for both [26, 35]. Note that game-theory

arguments indicate that a Nash equilibrium may not exist in all cases for GANs [77],

related to the fact that the training of classical GANs may be challenging with, amongst

other issues, vanishing gradients [78]. Interestingly this is another argument in favor of

qGANs which, for example, are more likely to avoid the problem of vanishing gradients

as indicated in Ref. [41] when the generator of the GAN is a quantum network.

The style-based qGAN algorithm uses the hybrid approach with a classical

discriminator network and a quantum architecture for the generator, as illustrated in

Figure 2. As explained in Ref. [33], using a classical discriminator leads to a faster

convergence of the loss function in our case. We also stress that the quantum generator

is what we eventually want to run extensively after the training: The discriminator

network is not useful in the deployment as the target is the generation of synthetic data

thanks to the generator, for which we are interested in the possibility of performance

improvements using a quantum device.

The classical discriminator is composed of a deep convolutional neural network

with 4 convolution layers. The exact details of its implementation can be found in the

code [79] which is based on the open-source Python quantum software development kit

qibo [80].

3.2. Quantum generator of the style-based qGAN and training procedure

The quantum generator of the style-based qGAN is depicted in Figure 3. It is essentially

a quantum neural network for a quantum feature map encoding the latent vector (the

random noise with a given latent dimension, generated from a standard Gaussian noise

distribution) into a quantum state |Ψ⟩. We then perform on this quantum state the
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measurement of an expectation value to obtain the fake samples. Each layer of this

quantum feature map is comprised of a set of alternating Ry and Rz one-qubit gates

followed by a set of entangling gates, that we chose as controlled rotations c-Ry as

explained in Ref. [33]. For our data augmentation experiment we use the same exact

hyperparameters as in our previous work: one layer and a latent dimension of five for

the latent vector r. The gate angles follow a simple affine function of both the latent

vector and the trainable parameters p, such that we have

Rl,m
y/z(p, r) = Ry/z(p

(l)r(m) + p(l−1)), (1)

with m running from 1 to Dlat = 5, the latent dimension, and l running from 1 to the

total number of trainable parameters, depending on the number of layers and on the

number of qubits. This encoding is the quantum equivalent of classical machine learning

encoding with weights and biases. The salient feature of the styled-based approach is the

encoding of the latent variables all over the network, in a data re-uploading approach.

The last layer of the quantum circuit contains the measurement operator. The

final sample x ∈ RN , where N is the number of distributions (equivalent to the number

of qubits in our data augmentation experiment for the base circuit), is generated as a

vector containing the expectation values of individual Pauli Z operators for each qubits

over the final state |Ψ(r)⟩ obtained with the circuit of Figure 3,

x =
(
−
〈
σ1
z

〉
,−

〈
σ2
z

〉
, . . . ,−

〈
σN
z

〉)
. (2)

We use a minmax pre-processing on the input data, so that the data for each distribution

is rescaled within the range [−1; 1], using the power transform from the Python package

scikit learn [81]. The data points generated by Equation 2 are post-processed

through the reverse power transform to obtain the actual generated distributions.

The training procedure for the style-based qGAN is described at length in Ref. [33].

We briefly sketch it in order to introduce the functions we have used for the loss function

and for the measure of performance of the quantum generator. We alternately train the

discriminator network and the quantum generator network in an adversarial game: The

discriminator is improved to distinguish the input (real) training data from the fake

data produced by the generator, and then the generator is improved to produce better

fake data to trick the discriminator. Both neural networks are trained with binary cross-

entropy loss functions. The training is achieved when the Nash equilibrium of the two

loss functions is reached:

min
pg

LG(pg,pd) ,

max
pd

LD(pg,pd) , (3)

where LG is the loss function of the generator, LD is the loss function of the

discriminator, pg and pd are the trainable parameters of the generator and the

discriminator, respectively.

Our set of real data for the data augmentation experiment is based on high-energy

physics, in particular Monte Carlo event generation for the Large Hadron Collider (LHC)
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at CERN. We use the same dataset as in Ref. [33], in which the style-based qGAN was

proposed, so that we can also compare our data augmentation experiment to the results

we obtained before on a different IBM chip. The training data is composed of 104 events

for the production process pp → tt̄ at a 13 TeV center-of-mass energy, the production

of top-antitop quarks at the LHC in the collision of two protons. We use the computer

program MadGraph MG5 aMC [82, 83] to produce the training data as well as the 105

reference samples to which we compare our generated 105 samples. We get a set of three

distributions corresponding to physical quantities describing the process: Mandelstam

variables s and t (both in giga-electronvolt squared, or GeV2) and the rapidity y. It is

important to note that the s and t distributions, in particular, are highly non-Gaussian

distributions. In order to quantify the quality of the generator, we use the Kullback-

Leibler divergence (KL) [84]. For two given distributions P (x) and Q(x) of discrete

samples x, the KL divergence quantifies how similar these two distributions are,

DKL(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
, (4)

which is essentially the difference between the entropy of the distribution P (x) with the

cross entropy of P (x) with Q(x). When the two distributions are identical, DKL = 0,

so that the smaller the KL divergence is, the more similar the two distributions are.

3.3. Circuit parallelization

Compared to Ref. [33] we have modified the implementation of the quantum generator

in several ways. As we want to perform our data augmentation experiment on the latest

IBM Heron device as well as on IonQ aria-1 device, we have updated the Python code

to now include qiskit primitive functions instead of backend.run calls. We have also

reorganized the access to the IBM hardware by using qiskit runtime services. Specifically,

we use the Sampler primitive to perform the measurement of the Pauli Z matrix for

each qubit, then marginalizing properly on each qubit for the base circuit to obtain

the corresponding quantum-measurement output for each physical distribution. This

output is then classically post-processed in order to get the final generated physical

distributions s, t, or y and their corresponding two-dimensional correlations. We have

used qiskit 0.43.1 [85] for generating our results, including also the qiskit-ionq provider∗
for running on IonQ devices.

In order to profit from the enhanced number of qubits compared to the IBM device

used in Ref. [33], we have also implemented a parallelization of the base circuit. The

implementation follows from preliminary work performed at the time of Ref. [33]. The

idea is to allow for replicating m times the N -qubit base circuit, where N qubits are

used to generate N distributions, so that only k/m runs (or k/m samples) are needed

to generate k actual samples, at the price of using m×N qubits for the complete circuit

which is run on the hardware.

∗ https://github.com/qiskit-community/qiskit-ionq

https://github.com/qiskit-community/qiskit-ionq
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q5

|0

|0

|0

|0

|0

|0

p[0]*r[0][0] + p[1]
RY

p[4]*r[0][2] + p[5]
RY

p[8]*r[0][4] + p[9]
RY

p[0]*r[1][0] + p[1]
RY

p[4]*r[1][2] + p[5]
RY

p[8]*r[1][4] + p[9]
RY

p[2]*r[0][1] + p[3]
RZ

p[6]*r[0][3] + p[7]
RZ

p[10]*r[0][0] + p[11]
RZ

p[2]*r[1][1] + p[3]
RZ

p[6]*r[1][3] + p[7]
RZ

p[10]*r[1][0] + p[11]
RZ

p[12]*r[0][1] + p[13]
RY

p[16]*r[0][3] + p[17]
RY

p[20]*r[0][0] + p[21]
RY

p[12]*r[1][1] + p[13]
RY

p[16]*r[1][3] + p[17]
RY

p[20]*r[1][0] + p[21]
RY

p[14]*r[0][2] + p[15]
RZ

p[18]*r[0][4] + p[19]
RZ

p[22]*r[0][1] + p[23]
RZ

p[14]*r[1][2] + p[15]
RZ

p[18]*r[1][4] + p[19]
RZ

p[22]*r[1][1] + p[23]
RZ

p[24]*r[0][2] + p[25]
RY

p[24]*r[1][2] + p[25]
RY

p[26]*r[0][3] + p[27]
RY

p[26]*r[1][3] + p[27]
RY

p[28]*r[0][4] + p[29]
RY

p[30]*r[0][0] + p[31]
RY

p[32]*r[0][1] + p[33]
RY

p[28]*r[1][4] + p[29]
RY

p[30]*r[1][0] + p[31]
RY

p[32]*r[1][1] + p[33]
RY

Figure 4. Example of a parallelization of a 3-qubit base circuit of the style-based

qGAN with two repetitions, using a total of 6 qubits. Only one layer is used with a

(base) latent dimension of five. For simplicity the measurement operations have been

omitted.

An example of the method is given in Figure 4 for the case with m = 2 and N = 3,

for our typical generation of 105 samples, k = 100, 000. We have 2 repetitions of the

base 3-qubit circuit, allowing for generating only k/m = 50, 000 samples to get the full

set of 105 samples. The total number of trainable parameters is the same as for the

base circuit with 3 qubits, the base latent dimension is also the same (here Dlat = 5)

but the total latent dimension♯ is m × Dlat = 10, so that we really have a pair of

actual samples generated for each time the circuit is run. In our experiment, we have

used 16 repetitions on ibm torino using 48 qubits and 8 repetitions on aria-1 using

24 qubits, so that we only generated 6250 samples on ibm torino and 12, 500 samples

on aria-1 to obtain our full data-augmented sample set. We have used the maximum

number of qubits available on aria-1 for our style-based qGAN experiment. It is in

general expected that the higher the number of qubits is used, the smaller the number

of samples from the quantum circuit is needed to generate the whole generated sample

set, leading to a reduced time spent on the quantum device.

4. Data augmentation results and discussion

We use the quantum generator of our style-based qGAN trained on 104 Monte Carlo

sample of pp → tt̄ process at the LHC, as explained in the previous section. In order

to also compare to the previous implementation on the IBM ibmq santiago device,

which was using a 5-qubit Falcon r4T chip, we have performed the data augmentation

experiments on ibm torino and on aria-1 devices using the same set of trained

parameters as in Ref. [33]. The quantum generator consists of one layer of the base 3-

qubit circuit displayed in Figure 3, replicated over the whole circuit in order to parallelize

the execution as explained in Section. 3.3 and presented in Figure 4.

Each run on the quantum hardware consists of a circuit execution to build the

♯ The latent vector r has been promoted to a latent tensor (rij) for better readability, with i being

the index running over the number of repetitions of the base circuit while j is the index running over

the base latent dimension Dlat.
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Figure 5. Results for the data augmentation experiment on the IBM ibm torino

device using the Heron chip, using the style-based qGAN generator trained with 104

samples of Monte Carlo data for the physical observables s, t, y in pp → tt̄ production

at the LHC. Top row: Marginal samples distributions for s, t, and y. Middle row:

The corresponding two-dimensional sampling projections. Bottom row: The ratio to

the reference underlying prior Monte Carlo distribution. Note that we choose a grey

background for the plots at the bottom row to more clearly highlight a ratio of one

between reference and generated samples, indicated by white.

quantum state and then a number of measurements (shots) of the Sampler primitive to

build the expectation values as displayed in Equation 2. We use nshots = 4000 on IBM

ibm torino as this is the nominal number of shots on IBM systems. Note that this a

factor of four higher than the number of shots chosen on the IBM ibmq santiago device

in Ref. [33]. In principle, the higher nshots is, the less sensitive a quantum experiment

is to the statistical error in building the expectation values out of the shots. As IBM

systems allow for sending circuits in parallel, for a maximum of 300 circuits, we have

performed 22 runs in total to obtain the full set of 105 samples: two sessions, each

consisting of 10 runs with 300 circuits and one run with 125 circuits.

The amount of time needed for any gate operation on trapped-ion quantum

computers is larger than the corresponding timing on superconducting transmon qubits
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Figure 6. Same as in Figure 5 but for the experiment on the IonQ aria-1 device.

systems as exemplified in Table 1. It is therefore required to chose nshots as small as

possible on aria-1, without degrading the quality of the output, while keeping in mind

that in general it is possible to chose a smaller number of shots than on superconducting

transmon qubits systems because the quality of the qubits is on average higher on

trapped-ion computers. We have performed a noise simulation study using aria-1 noise

model provided by IonQ with two different values for the number of shots: nshots = 512

and nshots = 1024. The results are presented in Appendix Appendix A and they lead

us to chose nshots = 512 for our data augmentation experiment on aria-1. We have

performed a total of 12, 500 runs on the IonQ aria-1 device as parallel circuit execution

is not (yet) available on IonQ systems.

We display in Figure 5 the results of the data augmentation on the IBM ibm torino

devices, with a grid of 100 linearly spaced bins for y and 100 log-spaced bins for s

and t. We will use this binning in all of our results. The parallelized circuit built

out of the base circuit of Figure 3 is transpiled to the ibm torino device, which is a

step adding more gates in the circuits as: 1) there is no all-to-all connectivity on the

Heron chip, resulting in the insertion of swap gates to connect some of the qubits; 2)
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Figure 7. Comparison of the data augmentation on IBM ibm torino (red lines) and

on IonQ aria-1 (blue lines) with the reference sample distribution (green lines) for

the marginal samples distributions s, t, and y.

the circuit has to be adapted to the set of native gates of the quantum device. In

the top row, we compare the one-dimensional projections of samples generated by the

quantum generator of the style-based qGAN with the reference input distribution using

105 samples. The KL divergences are small, and quite similar to the corresponding KL

divergences in Figure 7 of Ref. [33] obtained on the IBM ibmq santiago device. The

s projection is better on ibm torino with a KL divergence of 0.51, while the t and y

distributions are slightly worse (KL divergences of 0.31 and 0.44, respectively). The

second row of Figure 5 displays the results for the two-dimensional correlations between

the three distributions, while the bottom row displays the ratio between the reference

samples (105 samples) and the samples generated by the style-based qGAN, where the

white and light blue points signal regions of excellent agreement. The correlations are

better captured on ibm torino than on ibmq santiago. Overall, the results on the

IBM ibm torino device show that the data augmentation is performed quite well and

that the parallelization of the circuit works.

Our results for the data augmentation on the IonQ aria-1 device are presented

in Figure 6. Note that we have explicitly deactivated debiasing, which is the standard

error mitigation technique provided by IonQ on aria-1 and activated by default, while

it is not on the previous harmony device. Similar to Figure 5 we present the results for

the one-dimensional projections on the top row including the KL divergences comparing

the generated samples with the reference samples; the results for the two-dimensional

correlations on the middle row; and the ratios to the reference samples on the bottom

row. The KL divergences are small, with KLs of 0.25, 0.14, and 0.07 for s, t, and y

distributions, respectively. The correlation plots are also good and the ratio plots display

a sizable amount of white and light blue points. These results demonstrate that the data

augmentation on the IonQ aria-1 device has been successfully performed. Together

with the successful data augmentation on the IBM ibm torino device presented in the

previous paragraph, this demonstrates quantitatively, for the first time, that the style-

based qGAN can perform data augmentation on two different hardware technologies.

We can now compare the performance of the two hardware devices. The KL

divergences on aria-1 are a factor of two smaller than on ibm torino for the highly
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non-Gaussian s and t distributions and a factor of six smaller for the y distribution:

0.25 (0.14) on aria-1 compared to 0.51 (0.31) on ibm torino for the s (t) distribution,

0.07 on aria-1 compared to 0.44 on ibm torino for the y distribution. The comparison

of the bottom rows of Figures 5 and 6 also shows that the IonQ device captures the

correlations slightly better than the IBM device, with more white and light blue points,

even if the difference is not that big for the s and t distributions. Overall the accuracy

on IonQ aria-1 is higher than the accuracy on IBM ibm torino, as also exemplified

in Figure 7 where the one-dimensional distributions are compared. The red lines are

associated to ibm torino, the blue line correspond to aria-1, the green lines correspond

to the reference data set. In the y distribution, the blue line of aria-1 is closer to the

green reference line than the red line of ibm torino. It should be noted that out of the

48 qubits on ibm torino, the first 24 would be the best the machine can offer when

transpiling the quantum circuits to the actual hardware while the remaining 24 are likely

to be of less good quality. This contrasts with aria-1 where only 24 qubits are used.

However, we do not expect this difference to lead to a sizable difference in accuracy,

as the comparison between the results on ibmq santiago using 3 qubits [33] and the

results on ibm torino with 48 qubits shows no sizable difference in accuracy.

It should be noted that only one run has been executed for each device. Ideally

multiple runs would have to be executed in order to average the KL divergences over

these multiple runs, but this would have required far more resources. However, we have

estimated the error on the KL divergences by calculating the sample variance, which we

denote here as σ, on the expectation values of Equation 2 and using it as the exploration

of the 68% confidence-level interval on the KL divergences. We have generated 11 sets of

(s, t, y) distributions out of the post-processing of the sample vector (xi+ δj
√
σi), where

xi and σi are the components of the sample vector x generated by each run and the

components of the corresponding sample variance vector σ, respectively; δj = −1+0.2∗j,
for j running from 0 to 10. Selecting the maximal and minimal KL divergences amongst

the 11 sets and comparing them to the nominal KL divergences, we have obtained,

on the ibm torino device, KL divergences of 0.51+0.10
−0.07, 0.31+0.07

−0.01, 0.44+0.01
−0.05 for s, t,

and y distributions, respectively. The same exercise on the aria-1 device yields KL

divergences of 0.25+0.10
−0.07, 0.14

+0.09
−0.05, 0.07

+0.06
−0.01 for s, t, and y distributions, respectively.

These errors do mitigate the difference in accuracy we observe between the IBM and

the IonQ devices, such that the performance on the two devices are actually much closer

that expected by looking at only the nominal values of the KL divergences. However,

the IonQ device is still more accurate with lower KL divergences.

In order to get more insight into what could drive this difference in accuracy, we

have also performed another data augmentation experiment on the IBM ibm cusco

device based on the Eagle chip, for which the two-qubit gate error rate is one order

of magnitude larger than the error rate on the Heron chip in the ibm torino device,

as reported in Table B1 in Appendix Appendix B compared to the specifications of

ibm torino presented in Table 1. The results are presented in Appendix Appendix B,

demonstrating that overall the accuracy is quite similar, expect for the correlation plots
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which are much better with ibm torino than with ibm cusco. These results, when

compared to the results of aria-1 device, indicate that the two-qubit error rate has

a moderate impact on the accuracy. However, the readout error rate is significantly

different between IonQ devices and IBM devices, as presented in Table 1. The one-

order-of-magnitude improvement on IonQ aria-1 compared to IBM ibm torino are

likely to explain the difference in accuracy that we observe.

It is quite well known that superconducting qubits have a readout error of the order

of 1% whereas the error rate for gate operations can be much lower, see e.g. Ref. [86]

where single-qubit gate error rate falls below 10−4. There have been recent improvements

in the readout error, see for example Ref. [87] where two-state readout fidelity reached

99.5%. The readout error is part of the more general SPAM error (state preparation and

measurement error). A new interesting direction to improve significantly the SPAM error

rate on trapped-ion qubits has emerged in the past few years, by replacing ytterbium ions

by barium ions 137Ba+. Experiments by IonQ have demonstrated that they can reach a

SPAM error rate of only 0.04%†† while Quantinuum has pushed the limit even further

by reaching a SPAM error rate of 0.0096% [88]. We expect these radical improvements

to have a significant impact not only on the accuracy of (style-based) qGANs, but also

on the practical implementation of error correction which relies on repetitive mid-circuit

measurements.

We have also recorded the timing of the runs. The timing on aria-1 is much worse

than on ibm torino. This reflects the fact that trapped-ion qubits are significantly

slower than superconducting transmon qubits as exemplified in Table 1. The total

number of jobs on aria-1 is 12,500, equivalent to the total number of circuits executed

on the device, for an average execution time per job of 17.3±0.5 s, as reported by IonQ.

We have executed 512 shots on aria-1, so that the average execution time per circuit

and per shot is 34±1 ms. The total execution time in order to obtain the full generated

sample set on the IonQ quantum computer is 59 hrs, 57 min, 31 s.

On the IBM ibm torino device, however, the total number of jobs is 22 as we can

sent parallel multiple circuits in one job. We obtain an average QPU execution time per

job and per circuit of 1.078± 0.006 s, amounting to an average execution time per job

and per circuit, taking into account the various pre- and post-processing steps of the

results on the IBM cloud including the transpilation step, of 4± 3 s. We have executed

4000 shots on ibm torino, so that the average QPU execution time per circuit and per

shot is 0.269 ± 0.002 ms and the average execution time per circuit and per shot is

1.1± 0.7 ms. The total execution time in order to obtain the full generated sample set

on the IBM quantum computer is 6 hrs, 43 min, 47 s, out of which 1 hr, 52 min 11s on

the QPU only.

Comparing the total time spent to obtain the full generated sample set, including

the transpilation step, the IBM device is around 8.5 times faster than the IonQ device

for the total execution. We should note, however, that the runs on ibm torino have

††See https://ionq.com/resources/state-preparation-and-measurement-with-barium-qubits.

https://ionq.com/resources/state-preparation-and-measurement-with-barium-qubits
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been executed with 48 qubits, a parallelization level of 16, requiring in total only 6250

circuits but deeper ones, while the runs on aria-1 have been executed with 24 qubits,

requiring in total twice the amount of circuits. Nonetheless, at the level of a single

shot and single circuit execution, the difference is even larger for the execution time

including transpilation: around 34 ms on the IonQ device against around 1 ms on the

IBM device. This time difference is mitigated by the fact that we required many fewer

shots on aria-1 than on ibm torino in order to obtain our results. Our results are

a direct reflection of the sizable difference in the technical specifications reported in

Table 1 regarding the time needed for gate operations and measurement readout.

5. Conclusion

Given the significant progress of the quantum hardware we have witnessed in the last

years, understanding how different quantum algorithms behave on different types of

hardware is of high importance. In this work, we have demonstrated how a key quantum

machine learning algorithm, (syle-based) qGAN, can not only be implemented but also

yield good results on two very different types of hardware.

This demonstration relies on an implementation of the style-based qGAN on two

commercially available quantum computers: ibm torino provided by IBM and based on

their latest Heron superconducting transmon chip, and aria-1 system provided by IonQ

and based on trapped-ion qubits. Using the same set of real-world data as in Ref. [33]

where the style-based qGAN algorithm was introduced, namely the (s, t, y) distributions

for tt̄ production at the Large Hadron Collider, we have established quantitatively that

the style-based qGAN can successfully perform data augmentation on both IonQ aria-1

and IBM ibm torino, achieving small Kullback-Leibler divergences with a shallow

circuit and capturing well the correlations between the three distributions on both

architectures. This was hinted in Ref. [33] but a quantitative study was lacking. We

also note that we have not used any error mitigation nor suppression techniques, such

that a bare comparison of the two hardware architectures is performed as best as we

can, owing to the fact that we do not have a perfect control of all operations behind the

scene on each machine.

Furthermore, compared to the work in Ref. [33], we have rewritten the code for the

quantum generator using modern primitive functions in qiskit and we have parallelized

the algorithm such that, out of the base circuit with three qubits to represent the three

Monte Carlo distributions used as input data for the experiment, we have used up to

24 qubits on aria-1 and up to 48 qubits on ibm torino to generate 105 samples from a

training dataset of 104 samples. This has allowed us to substantially reduce the amount

of actual generated samples out of the quantum generator in order to get the full 105

sample set, leading to a substantial speedup of the calculation even if the transpiled

circuits on the quantum hardware are deeper, especially on IBM devices because of the

lack of all-to-all connectivity of the qubits.

Comparing the performance of the two devices, it has been shown on the one hand
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that the two quantum systems deliver good quality results, but the IonQ aria-1 device

achieves a somewhat higher accuracy than IBM ibm torino, in particular for the y

distribution but also for the highly non-Gaussian s and t distributions. While the two

devices have similar two-qubit gate errors, the readout error rate on the IBM system

is one order of magnitude higher than on the IonQ system. Furthermore, the all-to-all

connectivity on trapped-ion architecture implies a smaller transpiled circuit compared

to the heavy-hex topology on the IBM Heron chip, which in turn means less errors are

accumulated until the measurement is performed. These two salient differences between

the two hardware architectures are likely to explain the difference in accuracy, even if

it should be noted that the results have not been averaged over multiple experiments of

generating the 105 samples, which could have statistically mitigated a bit the observed

difference in accuracy. This would have required a much larger amount of quantum

resources. We have chosen instead to translate the sample variance of each run into

errors on the calculated KL divergences and have found that while it makes IBM and

IonQ devices performing much closer in accuracy, the IonQ device is still delivering

more accurate generated distributions. Note again that no error mitigation technique

has been used. In particular on IBM machines the readout error, likely driving the

difference in accuracy we have observed, can be easily mitigated in order to deliver

better quality results.

On the other hand, the execution time on ibm torino is significantly shorter than

on aria-1, which is due to the significantly faster qubit operations on superconducting

transmon qubits than on trapped-ion qubits. Even if the circuits on the IonQ device

are shallower as we have used fewer qubits, and even if we have used only 512 shots

per circuit on aria-1 compared to 4000 shots per circuit on ibm torino, in order to

speedup the calculation, the total execution time is still around 17 s for one circuit on

aria-1 while it is around 1 s for one circuit on the ibm torino QPU, and of the order

of 4 s when including the transpilation step.

We expect that improving the readout error and the coherence time on the IBM

Heron chip, as well as the newest more optimized transpilation algorithm, should

increase the accuracy of the results on superconducting transmon qubits, not to mention

readout error mitigation. A shorter execution time is foreseen on IonQ trapped-ion

quantum computer when the gate operations become significantly faster and when the

system allows for running multiple circuits in parallel. It is worth noting that improving

the readout error rates on IBM systems and the timing of gate operations on IonQ

systems are also a requirement for reliable error correction which relies on repetitive

mid-circuit measurement.

It would also be interesting to explore in future work the impact of error mitigation

and error suppression on the accuracy of the style-based qGAN. While the readout

error is easily mitigated, especially on IBM devices, and has a linear scaling, the

impact of other error mitigation techniques and of advanced error suppression remains

to be explored, as well as the impact of training the style-based qGAN on the

quantum hardware to potentially absorb some of the hardware errors as well. A new
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Figure A1. Noise simulation of our our data augmentation experiment using the

style-based qGAN generator model trained with 104 sample of Monte Carlo data for

the physical observables s, t, y in pp → tt̄ production at the LHC, using the noise model

of the IonQ aria-1 device. The results for the marginal distributions are displayed on

the top row for 512 shots and on the bottom row for 1024 shots.

implementation of the algorithm using the latest qiskit 1.0 Estimator primitive is also

expected, allowing for scaling the algorithm to a much higher number of qubits used in

this work.
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Appendix A. Noise simulation on IonQ

We have performed two simulations including the aria-1 noise model in order to assess

how many shots were required for the actual run on the IonQ hardware: with 512 shots

and with 1024 shots. We present the results in Figures A1, A2, and A3 for the marginal

(s, t, y) distribution, the corresponding two-dimensional sampling projections, and the

ratio to the reference 105 samples, respectively. In each figure the top row displays the

results using 512 shots while the bottom row displays the results using 1024 shots.
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Figure A2. Same as in Figure A1 but for the corresponding two-dimensional

sampling projections capturing the correlations between the distributions.
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Figure A3. Same as in Figure A2 but for the ratio to the reference underlying prior

Monte Carlo distribution. Note that we choose a grey background to highlight when

the reference and generated samples are identical.

The KL distances are not significantly different, the two-dimensional sampling

distributions are very similar and the ratios to the reference distribution display similar

patches of white and light blue points, indicating that the behavior of the simulation does

not significantly change from 512 shots to 1024 shots. The noise in the y distribution
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ibm cusco

# of qubits 127

Coherence time T1 (µs) 131

Coherence time T2 (µs) 102

One-qubit gate time (µs) 0.044

Two-qubit gate time (µs) 0.487a

Readout time (µs) 4.00

Two-qubit gate error rate 9.1× 10−2

Readout error rate 5.7× 10−2

aECR gate.

Table B1. List of the most important parameters from the technical specifications

of the IBM ibm cusco device using an Eagle chip (average values over all the qubits).

The actual values change over time after each calibration of the system and reflect the

specifications at the time of our experiment, on October 7th, 2023.

for 512 shots is of statistical nature and does not impact the results of the quantum

generator, as indicated by the very similar KL divergences when comparing runs with

512 shots and 1024 shots.

Note that only one run has been performed for each choice of the number of shots,

as done also in the hardware runs. Statistics indicates that the typical uncertainty on

the quantum measurement with 512 shots is around 8%. To get confidence into the

observation of the previous paragraph, we perform the same calculation of the sample

variance as in Section 4 for the hardware runs and we obtain, for nshots = 512, KL

divergences of 0.12+0.05
−0.04, 0.11

+0.03
−0.05, 0.09

+0.01
−0.01 for s, t, and y distributions, respectively.

The same exercise for nshots = 1024 results in KL values of 0.15+0.04
−0.04, 0.08

+0.04
−0.02, 0.07

+0.06
−0.01

for s, t, and y distributions, respectively. These errors do not change the picture of the

previous paragraph and we have thus chosen to perform the runs on the actual quantum

device using 512 shots to reduce the execution time.

Appendix B. Results on the IBM Eagle ibm cusco quantum system

We have also performed on October 7th, 2023, a run on the 127-qubit ibm cusco

device, based on the Eagle chip. The technical specifications given in Table B1 and the

comparison with Table 1 show that they are less good than on ibm torino, in particular

the one- and two-qubit gate error rates, while the readout error rate is comparable.

The results are displayed in Figure B1. It is quite instructive to compare them

to the results obtained with the ibm torino device. The marginal distributions are

not significantly different, better for the y distribution on the ibm cusco device while

the non-Gaussian t distribution is better on the ibm torino device. This observation

indicates that the readout error rate, being the dominant source of error and comparable

on both devices, drives the accuracy of the results on IBM systems as far as the marginal

one-dimensional distributions are concerned. As the readout error rate is significantly

smaller on the IonQ aria-1 device, the accuracy of the style-based quantum generator

is better on the latter.
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Figure B1. Results for the data augmentation experiment on the IBM ibm cusco

device, using the style-based qGAN generator trained with 104 samples of Monte Carlo

data for the physical observables s, t, y in pp → tt̄ production at the LHC. Top row:

Marginal samples distributions for s, t, and y. Middle row: The corresponding two-

dimensional sampling projections. Bottom row: The ratio to the reference underlying

prior Monte Carlo distribution. Note that we choose a grey background for the plots at

the bottom row to more clearly highlight a ratio of one between reference and generated

samples, indicated by white.

However, the comparison of the two-dimensional sampling projections does show

a difference between ibm cusco and ibm torino. The ibm torino device produces

more accurate projections, as exemplified e.g. by the comparison of the reference s− t

projection on the bottom row (left) of Figure B1 with both the s−t projection produced

by the ibm cusco device (middle row of Figure B1) and the corresponding projection

produced by the ibm torino device (bottom middle row of Figure 5). This reflects

the one-order-of-magnitude improvement in the two-qubit gate error rate in the Heron

ibm torino device compared to the Eagle ibm cusco device.
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[55] Bernardini F, Chakraborty A and Ordóñez C R 2023 European Journal of Physics

45 013001 URL https://dx.doi.org/10.1088/1361-6404/ad06be

[56] Wright K, Beck K M, Debnath S, Amini J M, Nam Y, Grzesiak N, Chen J S,

Pisenti N C, Chmielewski M, Collins C et al. 2019 Nature Communications 10

5464 (Preprint 1903.08181)

[57] Chen J S, Nielsen E, Ebert M, Inlek V, Wright K, Chaplin V, Maksymov A, Páez

E, Poudel A, Maunz P and Gamble J 2023 Benchmarking a trapped-ion quantum

computer with 29 algorithmic qubits (Preprint 2308.05071)

[58] Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M S, Baldwin

C H, Foss-Feig M, Hayes D, Mayer K, Ryan-Anderson C and Neyenhuis B 2021

Nature 592 209–213 (Preprint 2003.01293)

[59] Ghasemian E, Razminia A and Rostami H 2023 Quantum Information Processing

22 378

[60] Zhu H, Lin H, Wu S, Luo W, Zhang H, Zhan Y, Wang X, Liu A and Kwek L C 2024

Information 15 95 ISSN 2078-2489 URL https://www.mdpi.com/2078-2489/15/

2/95

[61] Henriet L, Beguin L, Signoles A, Lahaye T, Browaeys A, Reymond G O and Jurczak

C 2020 Quantum 4 327 ISSN 2521-327X URL http://dx.doi.org/10.22331/

q-2020-09-21-327

[62] Albrecht B, Dalyac C, Leclerc L, Ortiz-Gutiérrez L, Thabet S, D’Arcangelo M, Cline

J R K, Elfving V E, Lassablière L, Silvério H et al. 2023 Phys. Rev. A 107 042615
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D, Garcia-Saez A, Latorre J I and Carrazza S 2021 Quantum Science and

Technology 7 015018

[81] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel

M, Prettenhofer P, Weiss R, Dubourg V et al. 2011 Journal of Machine Learning

Research 12 2825–2830 ISSN 1532-4435 URL https://dl.acm.org/doi/10.5555/

1953048.2078195

[82] Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O, Shao H S,

Stelzer T, Torrielli P and Zaro M 2014 Journal of High Energy Physics 07 079

[83] Frederix R, Frixione S, Hirschi V, Pagani D, Shao H S and Zaro M 2018 Journal

of High Energy Physics 07 185

[84] Kullback S and Leibler R A 1951 The Annals of Mathematical Statistics 22 79–86

[85] Qiskit contributors 2023 Qiskit: An Open-source Framework for Quantum

Computing

[86] Li Z, Liu P, Zhao P, Mi Z, Xu H, Liang X, Su T, Sun W, Xue G, Zhang J N et al.

2023 npj Quantum Information 9 111 ISSN 2056-6387 (Preprint 2302.08690) URL

http://dx.doi.org/10.1038/s41534-023-00781-x

[87] Chen L, Li H X, Lu Y, Warren C W, Križan C J, Kosen S, Rommel M, Ahmed
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