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Abstract. The imputation of missing data is a common procedure in data analysis
that consists in predicting missing values of incomplete data points. In this work we
analyse a variational quantum circuit for the imputation of missing data. We construct
variational quantum circuits with gates complexity O(N) and O(N2) that return the
last missing bit of a binary string for a specific distribution. We train and test the
performance of the algorithms on a series of datasets finding good convergence of the
results. Finally, we test the circuit for generalization to unseen data. For simple
systems, we are able to describe the circuit analytically, making possible to skip the
tedious and unresolved problem of training the circuit with repetitive measurements.
We find beforehand the optimal values of the parameters and we make use of them to
construct an optimal circuit suited to the generation of truly random data.
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1. Introduction

Missing data imputation is a common task in computer science and big data analysis.
In fact, datasets are often incomplete, as some of the data can have one or many entry
(attribute) values that are missing. The reason for this incompleteness can either be
because the data were not actually collected in the first place, or because they have
been lost. The mechanism of data loss itself is of great importance when analyzing the
data. Generally, we can distinguish among three situations [1, 2] that describe when
the data are either missing at random (MAR), missing completely at random (MCAR)
or missing not at random (MNAR).
In the MAR case, the loss or presence of the data is independent of the value of the
attribute, but depends on the value of other attributes. For instance, this is often the
case in clinical surveys, where particular groups of people tend to omit sensible data,
regardless of the values themselves.
In the MCAR case, the loss or presence of the data is truly random, and there is no
correlation between the loss and other attributes. This process can actually present
itself more often than expected, wherever communication errors or human mistakes
take place.
In the MNAR case, there is a correlation between the loss of an attribute and its value.
For instance, this happens in a survey when the datum itself is sensible and the person
does not want to reveal it.
In order to distinguish between the three scenarios, one should in principle know the
mechanism of data loss, but most of the times this is not clear.

In the attempt of working with a complete dataset, one could simply delete the
incomplete data. This procedure is discouraged, as the incomplete data can be a big
portion of the collected data, and the removal of them can highly affect the analysis.
However, even when the incomplete data are few, their instances could be of great
importance for understanding the statistical properties of the dataset. For these reasons,
several techniques based on statistical inference are used for the imputation of the
missing data, such as maximum likelihood estimation [3–5], and Bayesian inference
methods applied for single and multiple imputation [1, 2, 4].

Single imputation methods fill in the missing values of the dataset. Although this
procedure is appealing, as it allows us to work with a complete dataset, it generally
has the negative effect of producing biased estimates [2] even in the MCAR case. One
example of single imputation method is the mean imputation, where missing values are
filled in with the arithmetic mean of the available values of the variable. The cons of
this approach is that it changes abruptly the correlations among the variables and it
highly reduces the standard deviation of the dataset. A preferred strategy for single
imputation is stochastic regression, that is able to avoid biases in the MCAR case.
However in order to deal with MCAR and MAR cases, multiple imputation methods
are preferred, as they account for the deviation of the error that is brought by the
introduction of an unobserved value in the dataset. Multiple imputation is a Bayesian
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inference technique that uses multiple single imputed data to generate a statistics of
the missing values. We have to point out that multiple imputation has not the goal to
impute the missing value [6], but instead it aims to correctly use the incomplete data
for extrapolating information on the complete dataset statistics.

Nevertheless in many cases of relevance, single imputation is what is needed. This
is the case for image inpainting, a subclass of data imputation problems where the
goal is to fill holes in images or videos. In this field a parallel approach has been
provided by the field of machine learning (ML) which introduced new techniques such
as generative neural networks. The ML approach has been applied successfully both
for image inpainting problems [7–9] and for single imputation of more complicated
datasets [10].

In the wake of the enormous success of ML algorithms, the new field of quantum
machine learning has born in recent years [11], with the hope of bringing together
the versatility of ML algorithms with the great expectations lying in quantum
computing [12].

In this work we tackle the problem of estimating the missing value of a datum
using quantum variational algorithms. These algorithms belong to the field of quantum
machine learning (QML).

A famous QML algorithm is the Quantum Circuit Born Machine (QCBM), that
uses the Born rule to generate a target distribution. In particular, the QCBM [13]
with N qubits is a quantum variational circuit that takes as input the state |0⟩⊗N ,
evolves it with the parameter dependent unitary operator Û(Θ) and returns the state
|ψ(Θ)⟩ = Û(Θ)|0⟩⊗N . The M parameters Θ = (θ1, . . . , θM) are selected in order to
minimize a chosen cost function, such as the distance between the frequency distribution
of the measured output states and the target probability distribution. The optimization
of parameters involves updating their values based on multiple measurements of the
output state. This process poses a common challenge in optimization procedures. On
the one hand, a significant number of measurements must be taken to encompass all
potential measurement outcomes, typically on the order of 2N , with some exception for
particular distributions [14]. On the other hand, determining the optimal update for the
parameters is not straightforward, as quantum circuits often exhibit extensive regions
in parameter space where the cost function remains essentially constant, the well-known
problem of Barren Plateaus (BPs) [15]. Consequently, it is a hard problem to find the
best choice of the parameters.

Inspired by the general setup of the QCBM, we define a quantum circuit dedicated
to the imputation of missing data, the Quantum Imputation Circuit (QIC). Our analysis
of the QIC tries to solve the two aforementioned problems.

In Sec. 2.1 we describe our circuit, the QIC, that we use to impute the missing data.
In Sec. 2.5 we show the results obtained on several datasets with different distributions.
In Sec. 2.6 we test the ability of the QIC to generalize the imputation to instances that
it has not seen during the training. Finally Sec. 3 draws the conclusion and the outlooks
of the work.
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linear quadratic

|0⟩ H

|0⟩ H

|0⟩ Ry(α0) Ry(α1) Ry(α2) Ry(α3)

Figure 1. The Quantum Imputation Circuit (QIC) for the case of N = 2 input qubits
and 1 output qubit. The dashed box is used during the optimization, to construct the
superposition of all the possible inputs. The LINEAR box shows the linear circuit,
and the QUADRATIC box shows the additional part that constitutes the quadratic
circuit. Finally, only the output qubit needs to be measured.

2. Results

2.1. The Quantum Imputation Circuit

We describe now the proposed QIC for the imputation of missing data, that is shown
in Fig. 1.

Suppose our data is a collection of bit-strings X ∈ {0, 1}N+1 that are composed by
N + 1 binary variables and follow a certain probability distribution p(X). This is our
complete dataset that we will use for the training. Suppose now that we want that our
machine returns the value of the (N + 1)-th bit when the values of all the other N bits
are given, reproducing the probability distribution p(X).

The QIC acts on the target qubit, initialized in |0⟩, and modifies its state depending
on the values of the other qubits. For any input state |n⟩|0⟩, where |n⟩ is a binary
representation with N bits of the number n, the output of the circuit is

|n⟩(cos θn|0⟩+ sin θn|1⟩). (1)

The probability that the target qubit is set to 0 or 1 is conditioned by the dataset as

p(0|n) = cos2 θn,

p(1|n) = sin2 θn. (2)

In order to represent any possible probability distribution we would need a parameters
vector Θ = (θ0, . . . , θ2N−1) of dimension 2N . Since the circuits applies a transformation
only on the output qubit and uses the input qubits as control, the unitary transformation
U(Θ) that represents the QIC expressed in the computational basis is a block diagonal
matrix

U(Θ) =
2N−1⊕
n=0

Ry(θn), (3)

where Ry is the rotation matrix
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Ry(θn) =

(
cos θn − sin θn
sin θn cos θn

)
. (4)

From the explicit form of the unitary operator is clear that we need to give an
independent value to all the 2N parameters. U(Θ) can be reproduced using a sequence
of multiple qubits controlled gates CmNOT, with m = 1, . . . , N , where m qubits are
used as control and the (N+1)-th qubit is the target. Each l-th control gate is preceded
by a rotation Ry(αl) applied on the target qubit. The combination of the y rotations
and the CNOTs leads to a global unitary that has the form expressed in Eq. (3) as it
will be shown in the next section.

The number of ways we can place the CmNOT gates using the N input qubits is

(
N

m

)
.

Using all the possible combination of CmNOT gates we have a total number of gates
that is

N∑
m=1

(
N

m

)
= 2N − 1, (5)

that corresponds to 2N − 1 parameters, as each of the control gates is followed by a
parametric rotation Ry. In order to recover the 2N needed parameters, we apply an
extra parametric rotation on the target qubit. Therefore, our circuit starts and ends
with a parametric rotation.

Clearly, this circuit is able to reproduce any possible data distribution but it has
the negative feature of requiring an exponential number of gates. Hence, to improve the
feasibility of the circuit we restrict our set of gates to only CNOTs for reproducing
the dataset distribution. The number of controlled gates (and consequentially of
parameters) reduces to

M lin =
1∑

m=0

(
N

m

)
= N + 1, (6)

that is linear with N . We call this ansatz the linear QIC.
If we introduce also the C2NOTs, the number of controlled gates scales quadratically

with N , as

Mqua =
2∑

m=0

(
N

m

)
=
N2 +N + 2

2
. (7)

We call this ansatz the quadratic QIC.
Note that the term with m = 0 in the summations of Eqs. (6) and (7) accounts for

the extra final rotation.
In theory, following the same procedure, we could extend the circuits by adding

multi-controlled gates acting on a larger number of qubits (C3NOT, C4NOT,. . . )
followed by parametric rotations on the target qubit, up to a maximum number 2N .
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We call this the exponential circuit which, having an exponential number of
parameters, can attain a perfect reproduction of the original dataset [16]. Clearly,
the growing number of CNOTs makes both the circuit construction and the parameters
optimization unfeasible. For these reason, in this work we only analyzed the linear and
quadratic circuits which shows to have good performance with less parameters.

2.2. Analytical description of the output state

Since the QIC has a well defined structure, we can recover the analytical expression of
each θn angle expressed in Eq.(3) as a function of the rotations Ry(αi), with i = 1, . . . ,M

present in the circuit. In fact, we can pull all the Ry rotations at the beginning of the
circuit and collect them into a single rotation operator.

Starting with the linear circuit, there are in total N+1 rotation angles αi and N+1

qubits qn with n = 0, . . . , N , q0 being the imputation qubit. Thanks to this particular
topology the circuit’s unitary matrix is in a block-diagonal form. There are N blocks
where each is a (2× 2) matrix Ub, that form the total matrix:

U =
⊕
b

Ub, b = {b1, . . . , bN} ∈ {0, 1}N (8)

where b is every possible input bitstring. To understand the shape of each Ub we can
simplify the circuit structure by commuting all the Ry rotations to the beginning of the
circuit. Let us start with an example: move the second rotation Ry(α1) to the left of
the first CNOT (check Fig. 1). This means:

Ry(α1)q0CNOTq1,q0 = Ry(α1)q0 [|0⟩ ⟨0|q1 ⊗ 1q0 + |1⟩ ⟨1|q1 ⊗Xq0 ]

= [|0⟩ ⟨0|q1 ⊗Ry(α1)q0 + |1⟩ ⟨1|q1 ⊗Xq0Ry(−α1)q0 ]

= CNOTq1,q0Ry[(−1)b1α1]q0 (9)

where b1 = 0 (or 1) if qubit q1 is in state |0⟩ (or |1⟩). This commutation tells us that if the
control qubit q1 is in |1⟩ the gate Ry(α1) becomes Ry(−α1) (because it anti-commutes
with X). Now both Ry(α0) and Ry(α1) are at the beginning of the circuit and we can
combine them into one rotation:

Ry[(−1)b1α1]Ry(α0) = Ry[α0 + (−1)b1α1] (10)

Now, by commuting all the rotations at the beginning of the circuit we have a simpler
structure: a single initial rotation Ry(θq) followed by all the CNOTs. The total angle
of rotation θb is given by:

θb = α0 + (−1)b1α1 + (−1)b1+b2α2 + · · ·+ (−1)b1+b2+...bNαN

= α0 +
N∑

n=1

(−1)
∑n

j=1 bjαn (11)
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while the action of all the CNOTs introduces a possible X rotation conditioned on the
bitstring values:

Xb1+···+bn

where all the sums are intended modulo 2. In this way it is easy to obtain a relation for
the matrices Ub of eq. (8) by defining the bitstring-dependent partial sum up to qubit
n:

Sn(b) =
n∑

i=1

bi mod 2

where the sum runs from i = 1 because only the input qubits can affect this sum and
we set by definition S0(b) ≡ 0. For instance, if the bitstring of input qubits is b = 101

then:

S0(101) ≡ 0

S1(101) = 1

S2(101) = 1⊕ 0 = 1

S3(101) = SN = 1⊕ 0⊕ 1 = 0.

Consequently we can write θb =
∑N

n=0(−1)Snαn. Then, for every possible bitstring of
the input qubits we have the corresponding 2× 2 matrix:

Ub = XSNRy(θb). (12)

Note that the explicit expression of Ub can be related to the general formula of Eq. (3),
since if SN = 0, then Ub = Ry(θb) and if SN = 1, then Ub = Ry(θb + π/2).

For the quadratic circuit we can repeat the similar steps and obtain the analytical
form of the circuit function:

Uq = XSN+QN−1,NRy

(
N∑

n=1

θn

)
(13)

where QN ,θn and other details of this derivation are in Appendix B along with the
exponential circuit analytical form.

2.3. Limits of the QIC

Our purpose is to use the QIC to reproduce the target state

|ϕT ⟩ =
1√
2N

∑
a={0,1}

2N−1∑
n=0

√
p(a|n)|n⟩|a⟩, (14)

where the conditioned probability p(a|n) are defined in Eq.(2).
When a number M ≤ 2N of parametrized rotations is used in the circuit, the output
state |ψ(Θ̄)⟩ is a function of the 2N dimensional parameters vector Θ̄ = (θ̄0, θ̄1, . . . ),
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|ψ(Θ̄)⟩ = 1√
2N

2N−1∑
n=0

(cos θ̄n|n⟩|0⟩+ sin θ̄n|n⟩|1⟩), (15)

where only M of the angles θ̄n are linearly independent.
A common measure that accounts for the similarity between two distributions p

and q is the Hellinger distance [17], defined as

dH(p, q) =

√
1−

∑
x

√
pxqx, (16)

where the term
∑

x

√
pxqx is known as Battacharrya coefficient. The Hellinger distance

is chosen for its simplicity, and for its property of being a monotone function of other
commonly used distances between distributions, such as the Jensen–Shannon distance
and the Battacharrya distance [18]. We can calculate this value between the target
distribution represented by the state |ϕT ⟩ and the output state as

dH(ϕT , ψ(Θ̄)) =
√

1− |⟨ϕT |ψ(Θ̄)⟩| (17)

=

√√√√1−
( 2N−1∑

n=0

cos(θn − θ̄n)

2N

)
,

with −π
2
≤ θn − θ̄n ≤ π

2
. In order to understand what is the error that we could get in

reproducing |ϕT ⟩ using only M parameters, we calculate the maximum distance we can
get between all the possible distributions |ϕT ⟩ and the output state when the rotation
parameters Θ̄ are optimized, namely

max
|ϕT ⟩

min
Θ̄
dH(ϕT , ψ(Θ̄)).

The minimization of the distance is provided by the ansatz |ϕ̃⟩, that has without loss
of generality the firstM parameters equal to the correspondent target angles θ̄i = θ̃i = θi.
With this choice we can write the minimum of the distance as

min
Θ̄
dH(ϕT , ψ(Θ̄)) = dH(ϕT , ϕ̃) (18)

=

√√√√1−
(
M

2N
+

2N∑
i=M+1

cos(θi − θ̄i)

2N

)
.

The resulting 2N −M angles are linearly dependent on the first M fixed angles. Hence,
the ansatz does not ensure that the other parameters can be made equal to their
correspondent targets. The maximum value of the Hellinger distance among all the
possible distribution represents the maximum error we can get when we have optimized
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over the M parameters. It is obtained when the remaining angles are θi = θ̄i+ k
π
2
, with

i =M + 1, . . . , 2N , and k ∈ Z. This yields

max
|ϕT ⟩

min
Θ̄
dH(ϕT , ϕ̄) =

√
1− M

2N
. (19)

The ansatz |ϕ̃⟩ represents a circuit that has learned perfectly a subset of M parameters.
Eq. (19) provides an upper bound of the Hellinger distance between |ϕT ⟩ and |ψ(Θ)⟩ if
the optimization over the rotation parameters vector Θ was successful.

Thus, the upper bound we have found in Eq. (19) tells us what is the maximum
error we can get when we use the QIC.

2.4. Parameter optimization

One of the benefits of using the QIC for imputation and reproduction of conditional
distribution probabilities is given by the optimization of the parameters. Usually,
a quantum variational circuit, in particular the QCBM, has to deal with a series of
measurements and subsequent updates of parameters. However, this procedure presents
many problems. First, in order to get some significant statistics of the generated
distribution we need to take an exponential amount of measurements, as an N qubits
circuit has 2N potential outcomes. Second, the optimization process of the circuit is itself
problematic, as it has to deal with BPs [15] which represent a significant portion of the
parameter space where the cost function remains flat, thereby offering little guidance
on how to proceed with the optimization process. This makes gradient-based methods
utterly non-efficient, but it poses a fundamental challenge also to the application of
gradient-free methods, such as the Bayesian optimizations strategy. In Appendix A, we
provide evidence for the presence of BPs within our circuit by analyzing its entanglement
entropy [19]. Additionally, we demonstrate the limitations of standard parameter
measurement and update procedures in the context of BPs. While we attempted
to employ Bayesian optimization, its effectiveness was ultimately compromised by
the plateaus, preventing us from successfully minimize the cost function. We have
included these findings in Appendix A to distinguish our proposed method from previous
approaches.

In the QIC in fact, the optimal parameters can be found just solving a constrained
problem. In order to reproduce the results, the target distribution has to be such that
for each input value n, p(n, 0) + p(n, 1) = 1/

√
2N . This is a required pre-processing

that we need to do on the dataset. Finally the optimal parameters are chosen such
that the Hellinger distance (16) is minimal, where Θ̄n = arccos

√
p(0|n). The analytical

description of the circuit we have described in Sec. 2.2 and detailed in Appendix B
allows us to efficiently solve the optimization problem.
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Figure 2. (a) The Gaussian distribution of Eq. (20) and the respective output of
the linear and quadratic QICs. (b) The majority distribution of Eq. (21) and the
respective output of the linear and the quadratic QICs. The plots show a number
of input qubits N = 3 and represent the output of the circuit after the optimization
of the parameters. The linear circuit is able to reproduce well the main features of
the Gaussian distribution, whereas the quadratic circuit is needed to reproduce the
majority distribution.

2.5. Imputation of probability distributions

In this section we test the variational circuit for imputation of missing data. We
create several ad-hoc datasets where the probability of the state |n⟩|0⟩ follows different
distributions listed here.

Gaussian distribution. The Gaussian like distribution is defined as

p(n, 0) =
1√
2N

1√
2π
e−(n−(N−1)/2)2 ,

p(n, 1) =
1√
2N

(1− p(n, 0)). (20)

The distribution can be seen in Fig. 2(a) (dark histogram).

Majority distribution. The majority distribution shown in Fig. 2(b) (dark histogram)
assigns to the target qubit the value which corresponds to the most frequent value in
the input. We define the function fx(n) that gives the frequency of the bit x in the
binary representation of the number n. With fx(n) we create a probability distribution
in which each bitstring has probability:

p(n, x) =


1√
2N

if fx(n) > fx̄(n),
1

2
√
2N

if fx(n) = fx̄(n),

0 otherwise,

(21)

with x̄ = x⊕ 1.
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Figure 3. The Hellinger distance between the target distribution and the output
distribution of the optimized circuit. In (a) the target is the Gaussian distributions
g of Eq. (20), and in (b) the target is the majority distribution m of Eq. (21) . In
(c) the mean value of dH obtained for 100 random distributions for each number of
input qubits N . The coloured area represents the variance obtained from the different
random distributions.

2.5.1. Numerical simulations We have tested the performance of both the linear circuit
and the quadratic circuit on either the Gaussian or the majority distribution, using the
SLSQP classical optimizer to minimize expression (17). From Fig. 2 we can grasp how
the target distributions are reproduced by the circuit. For example, in Fig. 2(a) both
the linear and quadratic QIC are successful at reconstructing the Gaussian distribution
while in Fig. 2(b) we see that the linear circuit was not able to reproduce the majority
distribution, while the quadratic circuit could reach a much more similar output. The
similarity between the distributions is given by the Hellinger distance defined in Eq. (16)
and it is plotted in Fig. 3 for the Gaussian and the majority distributions as a function
of the number of input qubits.
In the case of the Gaussian distribution, the linear and the quadratic circuit give a
similar output. The quadratic circuit gives a worse result than the linear circuit for
N > 10 because of optimization errors. Both the distances reach a plateau for large
enough N . In the case of the majority distribution we see a great improvement when
using the quadratic QIC. We see that the circuit is more prominent to reproduce the
distribution for even values of N , that in the case of a same number of 0 and 1 gives an
equal probability to assign 0 or 1 to the output qubit.

In Fig. 3 (c) we plot the mean value of dH and its standard deviation obtained
optimizing the circuit for 100 random distributions for each number of input qubits.
Generally, both the linear and quadratic QICs reach a plateau value of the Hellinger
distance of less than 0.06 for large N .

2.6. Does the QIC generalize?

By generalization we mean the ability of the parametric circuit to correctly complete the
input data that were not present in the training set. The question whether a QCBM
does generalize has already been posed in the literature [13, 20, 21], and the answer
reflects the fact that the QCBM takes as input a vector where all qubits are set to |0⟩,
and applies a global unitary transformation to reproduce the dataset distribution. As
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a consequence, the generalization to unseen data is possible only if the cost function
during training does not go to zero, an event that would signify mere memorization of
the available data. This behaviour is related to the expressibility [22, 23] of the circuit,
that accounts for how much of the Hilbert space is spanned by the circuit. The QIC is
inherently different. Since the circuit acts only on the target qubit, there has to be an
output for any configuration x̃ of the input qubits, even if x̃ is not present in the target
distribution. The unseen data x̃ is expressed as a hole in the probability distribution,
which corresponds to the values px̃,0 = px̃,1 = 0. The contribution in the Battacharrya
coefficient in (16) for the unseen data is null, and the training tends to optimize with
respect to the seen data.

Because of the normalization of the probability distribution output of the QIC
(
∑

x px = 1), the distance dH cannot be 0, even in the case of optimal reproduction
of the training dataset. In order to encompass this issue, we calculate dH only on the
support provided by the seen data. This allows the minimum of dH to be 0, a condition
that would reflect a perfect reproduction by the circuit of the distribution of the seen
data. In the following we will show dH calculated on the probability distribution with
partial (seen) data pp, and with new (unseen) data pn, both renormalised such that∑

x p
p
x =

∑
x p

n
x = 1. Note that this condition represents another important difference

between the QIC and the QCBM: even when the Hellinger distance vanishes, the circuit
is able to generalize to unseen data, as we are going to show next.

2.6.1. Numerical simulations In order to understand if the QIC is able to generalize,
we subtract from the target distribution a certain percentage of data (10%, 30%, 50%
and 70%) and optimize the QIC with respect to the partial distribution. Fig. 4 shows
the dH obtained for the Gaussian distribution using the linear QIC. The results we
have obtained for the quadratic circuit are similar up to 10−2. In Fig. 4(a) we see
that the distance between the partial Gaussian distribution gp and the partial output
distribution ϕp tends to a constant value for N > 10. This is reflected in the Hellinger
distance between the unseen Gaussian distribution gn and the new output distribution
ϕn, plotted in Fig. 4(b), where the distance decreases for larger N , till it reaches a
plateau. Fig. 4(c) shows the distance of the outcome distribution ϕ with the Gaussian
distribution g.

The different curves converge to the same value for larger N (Fig. 4) and it is due
to the fact that increasing the number of qubits, the dataset becomes large enough that
even losing 70% of it the algorithm can still find the pattern in the data to reconstruct
the distribution.

We see therefore that for a large number of N the QIC is able to produce the
distribution of dataset and generalize to unseen data.

To analyse the behavior of the circuit with the majority distribution m for a partial
vision of the data, we choose a different approach. When for a given input string n there
is only one possible output x, i.e. p(n|x) = 1, as it happens for the distribution m, we
can describe the generalization capability of the QICs in terms of the number of correct
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Figure 4. The generalization capability of the QIC for the Gaussian distribution.
The Hellinger distance between (a) the partial distribution gp and the corresponding
output distribution ϕp, (b) the distribution of the unseen data gn and the corresponding
output distribution ϕn, and (c) the complete distribution g and the optimized output
distribution ϕ. Different coloured curves correspond to different precentages of missing
data.
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Figure 5. The generalization capability of the QIC for the Majority distribution
m. In the figure we show the ratio of the correct outcomes from No = 1024 random
extraction from the optimized random distribution ϕ in the case of a missing portion
of 70% . In (a) the ratio Np/No of extractions that belong to partial distribution mp,
in (b) ratio Nn/No of extractions that belong to the unseen distribution mn, and in
(c) the ratio Na/No of correct or extractions from the original distribution m.

strings that we obtain as output of the circuit. We define, out of No random outcomes,
the number of strings that belong to mp as Np, and the one that belong to mn as Nn.
In Fig. 5 we plot the results obtained when the portion of missing data is 70%. For this
distribution the results obtained by the linear and quadratic circuits are very different,
since the latter is more able to reproduce the original distribution m. We plot the ratios
Np/No, Nn/No and the ratio of acceptable outcomes Na/No with Na = Np + Nn, in
Fig. 5 (a), (b) and (c) respectively. The results show that even with a 70% of unseen
data, about 90% of the outcomes followed the original rule in the case of 24 input data,
and about 70% of them in the case of 216 input data.

3. Conclusions

In this work, we have explored the possibility of using a quantum computer to impute
a missing attribute of a data point, given a statistical distribution of the attribute
within a dataset. We have given a brief introduction to the most commonly used
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classical techniques, whether they are based on statistical inference or machine learning
algorithms. Consequently, inspired by the Quantum Born Machine, we have proposed
a quantum circuit, the QIC, for imputing classical data by employing parametric gates.

In the first part of the paper we introduced the QIC algorithm. We calculated the
theoretical upper bound of the loss function used for optimization depending on the
number of parameters of the algorithm. This limit can be used as a red flag. If the final
Hellinger distance exceeds this upper bound, it signals issues within the optimization
process.

Since the QIC has a relatively simple structure, we were able to find the analytical
solution of the optimal angles. However, our circuit was still able to develop
entanglement. We have tested this feature by calculating the entanglement entropy
between the input qubits and the target qubit, and by verifying the presence of BPs,
that are characteristic of circuits with entanglement. Furthermore our method avoids
the problem of sampling the output of the quantum circuit. We acknowledge that this
is not a standard procedure. However, by leveraging the particular circuit ansatz we
were able to avoid the optimization through successive measurements.

In the second part of the manuscript, we have tested our circuit to reproduce
several types of probability distributions, finding the the optimization goes well below
the upper bound limit, reaching values of the Hellinger distance in the order of 10−2

even for randomly generated distributions.
Finally, we have addressed the ability of the QIC to generalize to unseen data in the

dataset, i.e. we questioned if, given an implicit rule, the output of the optimized QIC
would follow that rule even for data points that did not belong to the training set. We
have tested the QIC on the Gaussian and the majority distributions with an increasing
portion of missing data. We have found that that algorithm was able to recover the
true value of the missing data even when the available data were a small fraction of the
dataset.

We believe these results can lead the way to the use of quantum circuits for the
imputation of classical data.
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Figure A1. The training of the Gaussian distribution using measurements for the
linear and the quadratic circuit. In (a) the distance dH at different steps of the Bayesian
optimization algorithm. In (b) the optimal value of dH varying the number of input
qubits N .
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Appendix A. Barren Plateaus in the QIC

In this appendix we analyze the emergence of Barren plateaus (BPs) in the circuit.
BPs are large portions of the parameter space where the gradient of the cost function
∂θiC for all the different parameters θi is zero. The BP are the consequence of the
concentration of measure in the exponentially increasing volume of the Hilbert space
of N qubits [15]. In such spaces, the variance of the gradient decays exponentially
with the number of qubits, as ⟨(∂θiC)2⟩ ∼ 2−N . This kind of behavior is an obvious
problem for gradient based optimization methods, but it can raise issues also for other
global optimization methods, as the Bayesian optimization strategy we adopt in this
analysis. In order to avoid the BPs, different strategies have been explored in several
papers [24, 25], but in summary they all convey that the BPs emerge when the system
is subjected to large entanglement, either in the circuit [24, 26] or in the definition of
the cost function [19, 27, 28]. We found this behavior also in our circuit.

In fact, the presence of BPs in the parameter space highly affects the ability of the
optimization algorithm of finding the global minimum.
Fig. A1(a) shows that the Hellinger distance reached by the Bayesian optimization
algorithm at a certain step. We stop the optimization algorithm after a number of
steps increasing with the number of qubits, with tmax = 100 + 50(N − 3)×max(3, N).
Fig. A1(b) shows the value of the Hellinger distance found after the optimization, varying
the number of input qubits N . Note that in Figs. A1(a) and (b) the target distribution is
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the Gaussian distribution, but analogue results have been obtained for the other tested
distributions.

In Fig. A2 we show the mean value and the variance of the gradient of the cost
function in the parameter space for (a) the linear circuit, where the number of parameters
scales as N and (b) the quadratic circuit, where the number of parameters scales as N2.
In both cases we see the exponential decrease of the variance and of the mean value, in
agreement with the expectation.

Figure A2. The mean value and the variance of the gradient of the cost function in
the parameter space varying the number of qubits N for (a) the linear circuit, and for
(b) the quadratic circuit. In (c) the mean value and the variance of the gradient of the
cost function varying the number of parameters M , with fixed N = 9.

In Fig. A2(c) we show how the mean value and the variance of the gradient vary
when the number of parameters is increased. In order to do so, we fix the number of
qubits to N = 9 and we add C2NOT gates to the linear circuit until it becomes the full
quadratic circuit. Contrary to the behaviour obtained for Figs. A2(a),(b) those curve
do not follow an exponential trend. We can explain this behaviour by analysing the
entanglement in the circuit.

In fact, the emergence of BPs in the parameter space is related to the presence of
entanglement in the circuit. We calculate the entanglement entropy S = −Tr[ρt log ρt],
on the state of the target qubit ρt, obtained tracing out the N input qubits. S quantifies
the entanglement between the target qubit and the rest of the circuit. In order to relate
the entanglement of the circuit to the landscape on the parameter space, we average S
over the volume VM of the M parameters α1, . . . , αM , yielding

S̄ =
1

VM

∫
VM

dMαS(α1, . . . , αM), (A.1)

that is the expectation value of S when we run the circuit with a random choice of the
parameters.

In Fig. A3(a) we plot S̄ for N = 3 and N = 4 as a function of the number of
parameters M . The entanglement increases until it reaches a plateau, when the number
of CNOTs (and therefore the number of parameters M) is the same as the number of
qubits. When the number of parameters exceeds the number of qubits, we introduce
C2NOTs in the circuit. We see that the addition of the C2NOTs doesn’t change the
level of entanglement in the circuit, and this is in accord with the curves in Fig. A2(c).
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Figure A3. (a) The mean value of the entanglement entropy S̄ as a function of the
number of parameters of the QIC, at fixed number of input qubits. (b) the mean value
S̄ obtained by the linear QIC varying the number of qubits.

In Fig. A3(b) we consider the linear circuit, with M = N+1 and we plot the mean value
of the entanglement entropy as a function of the number of qubits. In this case, we have
found S̄ ∼ 1 − a−b(N−c), with a ≈ 1.2, b ≈ 3.2, c ≈ 0.8, thus following an exponential
function of N .

Appendix B. Analytical Solution

In this appendix we show an example of matrix form of the unitary of the linear circuit
and then derive the formula for the quadratic and exponential cases.

Appendix B.1. Linear Circuit

In the main text we derived Eq. (12) for the linear circuit case. Let us as an example
plot the matrix form for a circuit with N = 3 imputation qubits.

Example The matrix of the circuit with 2 input qubits and one imputation qubit is:

U =


Ry

[
θ0 + θ1 + θ2

]
0 0 0

0 XRy

[
θ0 − θ1 − θ2

]
0 0

0 0 XRy

[
θ0 + θ1 − θ2

]
0

0 0 0 Ry

[
θ0 − θ1 + θ2

]
 ,

where

Ry(θ) =

(
cos θ − sin θ

sin θ cos θ

)
and

XRy(θ) =

(
sin θ cos θ

cos θ − sin θ

)
.
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Appendix B.2. Quadratic circuit

The quadratic circuit introduces a series of Toffoli gates that raises the total parameters
(and rotations) to a number proportional to the square of the input qubits. A quadratic
circuit is composed of an initial linear part, equivalent to the last section, plus the set
of parametric Toffoli gates as shown in Fig. B1.

linear quadratic
. . .

. . .

. . .

. . .

q3 |0⟩ H

q2 |0⟩ H

q1 |0⟩ H

q0 |0⟩ Ry(θ3) Ry(α1,2) Ry(α1,3) Ry(α2,3)

Figure B1. Example of a quadratic circuit with N = 3 input qubits.

Notice that the second set of angles is named αi,j where i, j represent the set of
control qubits in the preceding Toffoli gate.

As done before, to understand the shape of the total unitary we shift every rotation
to the beginning of the circuit. Starting with Ry(α1,2) we notice that the angle acquires
a phase −1 only if b1b2 = 1 mod 2, that is (−1)b1b2 . The rotation Ry(α1,3) consequently
acquires a phase (−1)b1b2+b1b3 that depends on both Toffoli gates preceding it. The same
goes for the third rotation. We can simplify the exponent by defining:

Qn,m(b) =
n∑

i=1

m∑
j=i+1

bibj mod 2 (B.1)

which is the exponent of the phase acquired by the angles when commuting with the
Toffoli gates. In this way we obtain the rule

Ry(α) = Ry

[N−1∑
n=1

N∑
m=n+1

(−1)Qn,mαn,m

]
(B.2)

where α represents the sum of all the angles. The same rule applies to the X rotation
enforced by the Toffoli gates, so the total action of only the quadratic part gives us
block matrices like such:

Uq = XQN−1,NRy

[N−1∑
n=1

N∑
m=n+1

(−1)Qn,mαn,m

]
(B.3)

Now, since these angles also need to commute with the CNOTs, in addition to Qn,m we
need to add the contribution from Sn to the phase. Putting it together with the results
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of the linear part (eq. (12)) we obtain

Uq = XSN+QN−1,N ×Ry

[
N∑

n=1

[
(−1)Snθn +

N∑
m=n+1

(−1)Qn,m+Snαn,m

]]
(B.4)

Appendix B.3. Exponential circuit

We define the exponential circuit as the circuit composed of the linear circuit plus
all possible combination of n-Toffoli gates with n = 2, . . . N . Notice that, with this
nomenclature, the quadratic is the sub-circuit of the exponential circuit with n = 2.

To unify and simplify notation we define the exponential phase:

EJ(n1, . . . , nJ ; q) ≡
n1∑

a1=1

n2∑
a2=a1+1

· · ·
nJ∑

aJ=aJ−1+1

ba1ba2 . . . baJ mod 2 (B.5)

so that we can regain the two previous phases:

E1(n1; b) =

n1∑
a1=1

ba1 ≡ Sn1 (B.6)

E2(n1, n2; b) =

n1∑
a1=1

n2∑
a2=a1+1

ba1ba2 ≡ Qn1,n2 (B.7)

In this way, we can define the (2× 2) matrix blocks with the recursive formula:

Uq = XE1(N)+E2(N−1,N)+...EN (1,...,N)

×Ry

[
N∑

n1=1

[
(−1)E1θn1 +

N∑
n2=n1+1

(−1)E2αn1,n2 +
[
. . .

+
N∑

nN=nN−1+1

(−1)ENαn1,...,nN

]
. . .

]]
(B.8)
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