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Improving semi-device-independent randomness certification by entropy accumulation
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Certified randomness guaranteed to be unpredictable by adversaries is central to information
security. The fundamental randomness inherent in quantum physics makes certification possible
from devices that are only weakly characterised i.e. requiring little trust in their implementation. It
was recently shown that the amount of certifiable randomness can be greatly improved using the so-
called Entropy Accumulation Theorem generalised to prepare-and-measure settings. Furthermore,
this approach allows a finite-size analysis which avoids assuming that all rounds are independent
and identically distributed. Here, we demonstrate this improvement in semi-device-independent
randomness certification from untrusted measurements.

I. INTRODUCTION

Randomness is a fundamental resource [I] for a variety
of applications in the modern world including informa-
tion security [2, [3], simulations of physical systems [4H8],
games, and gambling. Cryptographic protocols in par-
ticular require unpredictability relative to potential ad-
versaries of the random numbers used to generate keys.

For pseudo-random number generators [9] and ran-
domness generated from classical physical processes, cer-
tification of unpredictability requires assumptions about
the information and computational power available to
the adversaries. The inherent randomness of quantum
measurements, on the other hand, enables randomness
certification directly from fundamental physical laws and
measurable properties of the devices used [I0HI3]. From
a characterisation of states and measurements on a given
system, the entropy (quantifying unpredictability) rela-
tive to any adversary constrained by quantum mechanics
can be bounded. In fact, by exploiting quantum nonlo-
cality [I4], the need for a thorough characterisation can
even be eliminated, allowing randomness certification in
a black-box setting, provided the devices violate a Bell
inequality [I5HI7]. This corresponds to a very strong
level of security, known as device independence (DI),
since minimal trust in the devices is required [I8H22).
DI schemes, however, are also more technologically chal-
lenging to implement than device-dependent ones with
well characterised devices. Hence, it is desirable to iden-
tify good trade-offs between ease of implementation and
how little trust is required to certify randomness, i.e.
to explore semi-DI quantum random number generators
(QRNGs). A number of different prepare-and-measure
schemes with partially characterised sources or measure-
ments have been explored [23H45].

Randomness in a variable b with respect to an adver-
sary Eve is typically certified by bounding the capacity of
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this adversary of guessing b. Here, we look at a semi-DI
prepare-and-measure scenario with untrusted measure-
ments and b as measurement outcomes. Considering that
Eve has bounded knowledge and control over the setup
used to generate b, one can find certifiable bounds on
Eve’s guessing probability p, which can be used to com-
pute the min-entropy H,,;n = —logy(pg) [46] of the mea-
surement record. While the single-round min-entropy has
served as a benchmark quantifier of randomness, it has
been shown that one can bound the min-entropy of a
sequence of outcomes in terms of the single-round Shan-
non entropy instead if the experiment runs over a large
number of rounds [47]. This provides more randomness
but the statement is valid only under the unrealistic as-
sumption that all rounds are independent and identically
distributed (i.i.d.). However, it has recently been shown
that one can circumvent the i.i.d. limitation using the
so-called Entropy Accumulation Theorem (EAT) gener-
alised to prepare-and-measure scenarios [48] [49].

In this work, we demonstrate a simple semi-DI QRNG
to showcase the power of the EAT in prepare-and-
measure scenarios. Our protocol is able to certify more
than one bit of randomness per round from measurements
on a single quantum state. We implement the scheme in
a setup using time-bin encoded states and single-photon
detection. The protocol employs a prepare-and-measure
setup with three states and a single three-outcome mea-
surement. The scheme is semi-DI in the sense that the
only assumption on the source is a bound on the pair-
wise overlap of the prepared states, and the measurement
is completely uncharacterised. Randomness is extracted
from one of the inputs, and the amount of certified ran-
domness achievable with the generalized EAT is com-
pared with the traditional min-entropy approach. The
other two inputs enable self-testing the device, by ex-
ploiting that the setup can also be interpreted in terms
of a state discrimination task.

In quantum state discrimination [50H52], a measure-
ment device aims to determine which state out of a known
set was prepared, subject to certain constraints. In un-
ambiguous state discrimination (USD) [63H55], the er-
ror rate is nullified, at the cost of adopting an addi-
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FIG. 1. a) Sketch of the semi-device independent prepare-
and-measure scenario with three preparations and one un-
trusted measurement (black box). b) The USD protocol is il-
lustrated on the Bloch sphere, with Bloch vectors correspond-
ing to the prepared states |1)) (red and green) and POVM
elements m;, (blue).

tional measurement event which gives no information on
which state was prepared (formally called an inconclu-
sive event). The minimum attainable rate of inconclusive
events in USD is given by a rank-1 (hence extremal) and
unique measurement, which greatly benefits the amount
of certifiable randomness on the measurement outcome.
Here, we implement a protocol which uses USD during
the self-test rounds as in [35], allowing us to make use
of the additional inconclusive event in two-state discrim-
ination to reach randomness values greater than one bit
per round. Then, we choose a third state that yields
equiprobable outcomes when involved in the state dis-
crimination scenario.

The remainder of the paper is organised as follows. In
Sec. [l we introduce the state discrimination scenario
and specify the measurement strategy. Later, we ex-
plain how we evaluate the randomness, continue with the
main semi-device independent assumptions we consider
and explain how we deal with finite size effects assum-
ing independent and identically distributed (i.i.d.) and
non-i.i.d. rounds. We end the section by experimentally
implementing the protocol in an optical platform using
coherent states of light and present the results we observe
both in the experiment and in simulations. In Sec. [T we
conclude our work, outlining the main result. We end the
paper detailing some important particularities involved
in the experimental implementation in Sec.

II. RESULTS

A. Prepare-and-measure

In order to illustrate the main idea of the protocol, con-
sider the scenario in Fig. [Lh, where one party (namely
Alice) owns a device that receives inputs z € {0, 1,2}
with prior probabilities p, and prepares the following

pure quantum states,

[tho) = cos% |0) + sing 1) (1)

vr) = cos 510) —sin S 1)

and a third qubit state [i9) which shall remain un-
specified for now. These states are sent to a second
party (namely Bob) who owns a device which will per-
form a measurement described by the POVM {m,} for
b € {0,1,2}. Over many rounds of the experiment,
one can estimate the conditional probability distribution
p(b‘.’l’:) =Tr [pa:ﬂ'b]a for p, = |wm> <waz|

Our first task is to find Bob’s optimal measurement,
according to a particular state discrimination protocol,
to identify whether Alice prepared x = 0 or x = 1, ig-
noring the third possible input x = 2. This will yield
correlations reproducible only with extremal and unique
POVMs. Then, the idea is to properly design a state
|th2) such that, with that optimal measurement, all out-
comes are equiprobable whenever that state is prepared
(i.e. p(blz = 2) are equal ¥b). In order to do that, we
take USD as our target strategy.

B. TUnambiguous State Discrimination

The task in USD is to identify which state was pre-
pared without making any errors, i.e. perror := pop(1]0)+
p1p(0]1) = 0 [63H5E]. That can be done if one pays the
price of having some rounds in which the measurement
result turns inconclusive. In the present case, USD tar-
gets preparations = 0 and « = 1, and the inconclusive
events will be labeled with b = 2. The goal of USD
is to minimize the rate of inconclusive events pin. :=
pop(2]0)+p1p(2]1). In two state discrimination, the min-
imum pji,c is proportional to the overlap of the prepared
states, which in our scenario is | (¢glt)1)| = cos¢, ac-
cording to . In this case, the minimum p;,. is lower
bounded by [56]

Pinc > 2\/?0101 COS¢ . (2)

The POVM that represents an optimal USD measure-
ment must be given by rank-1 POVM elements, pro-
portional to the projectors onto the orthogonal states of
[tho) and |t1). Concretely, for equiprobable preparations
po=p1=1/2,

1
Wozmhﬁfﬂ f‘|
1
W1:m|¢3—><¢d—| (3)

my=1—-mg—1m1,

where (1, ]1)L) = 0. Consider now a third preparation
x = 2. We aim to find a state |[¢)2) which triggers all
three outcomes b = 0,1,2 of the measurement in



with the same probability. That means, it must satisfy
(1o mp |1h2) = 1/3 Vb. As illustrated on the Bloch sphere
in Fig. [Ip, a good candidate is the state

0 .
[12) =cos |0) —&—ism§|1) . 4)
The three outcomes will be equiprobable when
1—2cos¢
cosfh = Jeoso (5)

Since —1 < cos# < 1, this condition can only be satisfied
for cos ¢ > 1/5, meaning that equiprobable outcomes in
this setting are only achievable in that range. One can
then use these equiprobable outcomes, which are only re-
producible through a unique and extremal POVM in a
qubit space, to greatly improve the randomness certifica-
tion. Note, though, that this is only true for qubit states.
In semi-DI randomness certification, one wants to keep
the number of assumptions at minimum. We will later
show how we can get rid of the assumption of a fixed
dimension.

C. Randomness certification

We proceed to explain how we certify randomness
in the measurement outcomes, relative to an adversary
Eve. Eve has knowledge of the preparation (z) and
measurement device, and can share classical correlations
with the measurement according to the distribution
q(\). We begin explaining how we certify single-round
randomness using the min-entropy. Then, we leverage
the power of the EAT to accommodate the finite-size
effect from experimental data and bound the Shannon
entropy.

Min-entropy: We certify randomness only from
rounds where state |¢)2) is prepared. The rounds where
states |¢g) and |i1) are prepared can be thought of as
self-test rounds. During the rounds where |t¢9) is pre-
pared, Eve’s guessing probability averaged through each
round can be written as

Pg=) g(\)max {p(blz =2, \)} , (6)

A

for p(blz, A) = Tr [pam}] (ps = [t62) (t62]) being the prob-
ability that the measurement outcome is b given state
preparation x and the measurement strategy .

We aim to find an upper bound on p4 in @ over all
strategies of Eve, i.e. all distributions ¢(A) and measure-
ments 7727 subject to reproducing the observed statistics
on average p(blz) = 3, q(A) Tr [ppm;]. This optimisa-
tion problem can be rendered as a semi-definite program
(SDP) [57]. As we detail in App. |Al we can write Eve’s
guessing probability as

Py =Y _ Tr[psM}] . (7)

A

An upper bound pj; > p, can be found by maximizing @

over all possitive semidefinite D x D matrices Mb)‘ that
fulfil the constraints

ZMI,A:;)H[ZM,?]HVA, (8)
p(blz) = ZTr Mpp.] Wb,z . (9)

where D is the eavesdropper’s dimension. The random-
ness of the measurement outcomes is quantified through
the min-entropy Hmin = —log, (pg), which gives the
number of (almost) uniformly random bits which can be
extracted per round of the protocol [46].

Shannon entropy: Due to the non-linear nature of
the Shannon entropy, it is very difficult to find linear
schemes that provide tight numerical bounds in single-
party prepare-and-measure scenarios. For example, in
Ref. [39] the authors design a hierarchy of SDPs to bound
the Shannon entropy in scenarios with energy-restricted
correlations. Here, our correlations are bounded by a
constraint on the overlaps and thus, we find the follow-
ing method more suitable. As shown in Ref. [58], ap-
plying the Gauss-Radau quadrature to an integral rep-
resentation of the logarithm yields a variational upper
bound for the quantum relative entropy D (p|lo) :=
Tr [p (log p — log 0)]. This can be related to the Von Neu-
mann entropy, and consequently to the Shannon entropy
for classically correlated eavesdroppers. In App. |B| we
show how to use this technique to derive the following
bound on the Shannon entropy,

S>8" =Y TgNfb, (10)
7,0,
for
{}i: mf {1+p bz, )\)( +(1— ) ﬂh }

7,’7,

where we introduced 7; := w; /(t;log(2)) for {¢;, w;} being
the nodes and weights respectively, corresponding to the
Gauss-Radau quadrature. The right-hand side in
should be minimised over strategies of Eve. This can
be done through a series of SDPs operating in a see-saw
manner. That is, alternate the optimisation over the ar-
bitrary scalars {Z’\b,ﬂ{\ b} for fixed probability distribu-

tions {q(/\),p(b|x,z)\)} with the constraint

1 20
(Z_,\b n?b) >0, (11)

K3 ?

and the optimisation over D x D positive semidefi-
nite matrices M;* that fulfill the constraints in and
(). We let the see-saw optimisation run over a lim-
ited number of rounds n and store the average differ-
ence between solutions in consecutive rounds, i.e. Ay :=
Z:in(l—f—k) |S; — S:—&-l’ /n, for k = 0,1,2,.... The pro-

cess is repeated as long as Ay > 1074 or unless a critical



k is reached, at which point the algorithm is re-started
with an alternative random point.

We note that the see-saw approach is not guaranteed,
in principle, to attain a global minimum and thus gen-
erally provides only an upper bound on the minimum
of the right-hand side in , while what we need is a
lower bound. However, we have tested extensively that
the minimisation provides stable results under changes
to initial conditions and stopping criteria. Furthermore,
preliminary comparison to new methods under prepara-
tion [59], that provide true lower bounds, show that the
see-saw does attain the true minimum in our case.

D. Semi-DI characterization

We do not wish to assume the prepared states above to
be completely characterised, nor do we wish to assume
that the dimension of Eve’s system is known. Instead,
we will assume only knowledge about the overlaps (non-
orthogonality) between the states. For two preparations,
this allows using two fixed qubit states in the SDP with-
out loss of generality, because unitary rotations of the
state pair will not affect the optimum, and Eve will not
gain any extra information by extending the measure-
ments beyond the two-dimensional span of the pair [38].
In our case we consider three states, which means that
Eve’s maximal useful dimensionality will not exceed a
qutrit space. Hence, we need to assume that the three
prepared states span a three-dimensional space. That is,
the third state is

(o) = Valie) +vVI—al2) (12)

for |12) in (4) having support on the bi-dimensional space
spanned by |1)g) and [¢1) in , and |2) has only sup-
port on an additional orthogonal dimension, such that
(z]2) = 0 Vax. One can see that, if both overlaps
| (tha)tbo) |? and | (12 |11) |? are simultaneously fixed to be

[ (Galo) P = | (alihn) = 5 (1+ cospeosd) . (13)

then the normalisation in imposes a = 1, and all
three preparations must have support on a qubit space.
However, strict equalities can be hard to satisfy in the
lab. In App. [C] we show how one can relax this assump-
tion to lower bounds on the overlaps | (¥z|1y) | > day.
This, in turn, bounds the access of the eavesdropper to
an additional third dimension, as a fulfills

d2, + d%, — 2dg1doad
o> 02 T dig 201 o2d12 (14)
1—dg,
Also, since a < 1, one also finds the following relation
1> d(2)2 + d%Q + d(2)1 — 2dgy1doadys (15)

which must hold true for any dimension. Equation
defines the surface of an inflated tetrahedron with curved

4

faces (see App. . The amplitude a decreases towards
the center of the tetrahedron. Thus, in other words,
bounding | (¢z|¥y) | > dy, implies that we forbid Eve
to access the interior of the tetrahedron.

This semi-DI characterisation allows us to compute the
certifiable randomness beyond the two-qubit case and
avoid direct dimensional constraints. In our implemen-
tation, we employ coherent states of light. We control
the pairwise overlaps of the preparation and use (14]) to
bound their support outside a two-dimensional subspace.

E. Finite-size effects — i.i.d. vs. entropy
accumulation

In actual experiments, probabilities are estimated from
frequencies. Due to the finite number of data points,
the observed frequency of events freq.(blz) = npy/ng,
for np, denoting the total number of events b given a
state preparation x does not exactly represent the true
conditional probability p(b|z). To deal with finite-size
effects, we take two different approaches.

First, we assume that all rounds from the experiment
are considered to be independent and identically dis-
tributed (i.i.d.). Under this assumption, we recall the
asymptotic equitation property (AEP). The AEP estab-
lishes that the output of a random experiment is certain
to come from the typical set, under the limit of large
number of repetitions. In Ref. [47] a generalisation of
the AEP to quantum theory is developed, establishing
that the smooth min-entropy HE,, (i.e. the maximum
min-entropy for any state e-close to a fixed state [60])
converges to the conditional Von Neumann entropy up
to an error term. Our case simplifies this statement to
the Shannon entropy, because only classical side informa-
tion is considered here. Specifically,

1 0
~ Hinin (BY BN, 2 = 2) ZS*_W , (16)
for HZ;, (BY|EN,x = 2) being the smooth min-entropy
accumulated over a total of N experimental rounds for
a particular preparation x = 2, and § a parameter de-
fined in App. [E] By S* we denoted a lower-bound on the
single-round Shannon entropy assuming i.i.d., which can
be estimated from the see-saw optimisation of Sec. [[IC|
Next, we go beyond the i.i.d. assumption and perform a
second characterization of finite size effects. In this case,
we use the entropy accumulation theorem (EAT) gener-
alised to prepare-and-measure scenarios [48, 49], which
allows us to quantify the amount of entropy accumulated
per round also when they are not i.i.d. The EAT places a
bound on the conditional smooth min-entropy, which de-
pends only on the Von Neumann entropy per round plus
a correction term which depends on the total number of
rounds in the experiment. Every round of the experi-
ment is described by a channel M; which maps Bob’s
(B;) and Eve’s (E;) systems to their corresponding sys-
tems in the next round (B;11 and E; 1 respectively). To
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FIG. 2. Experimental implementation. The time-bin-encoded input states are generated by an electro-optic modulator (EOM)
and an acousto-optic modulator (AOM). The feedback control at the EOM stabilizes the amplitude of the pulsed weak coherent
states. After optimizing the polarization (pol. controller), the pulses are sent to the superconducting single-photon detector
(SSPD). From the statistics of preparations and detector counts, randomness is extracted and certified.

make the EAT applicable in our experiment, we assume
a no-signaling constraint between Bob and Eve’s devices.
The marginal of the new side information E; without the
new output B; must be reproducible only with past side
information E;_; (i.e. any new E; should depend on
past E;_; alone). This forbids that Eve’s information E;
is passed along Bob’s systems B;_1, which would mean
that, in some cases, E;_1 holds no information on Bob’s
outcome but E; does. In App.[E|we explain in more detail
how we apply the EAT to our results to certify the ran-
domness outside the i.i.d. assumption. Concretely, we are
able to bound the smooth-min-entropy on the measure-
ment outcome using the single-round Shannon entropy
plus a correction term, i.e.

w(BY|EN 2 =2)> 5" -~ 0O1/VN), (17)

where again S* is a lower bound on the i.i.d. Shannon
entropy and can be estimated from the see-saw optimi-
sation of Sec. [ICl

Finally, to extract the randomness from the whole se-
quence of Bob’s outcomes, we use a randomness extrac-
tor. Here we shortly introduce the meaning of this func-
tion and the main result we use in this work. For a
more detailed explanation refer to Ref. [49]. Consider
HE, (BN|EN) > h. A quantum-proof strong (h, egpxT)-
extractor is defined as a function EXT that receives a
quantum state ppg ® 7g and acts on the classical sys-
tems B and S with dimension equal to ng X ng bits.
The [-bit dimensional output EXT(ppgr ® 7s) is Egxr-
close to 77, ® pgp ® T7g. Here 71 and 7g are maximally
mixed states of dimension 27 and 2!, and ppE is the
classical-quantum state shared by Bob and Eve after the
measurement. The input in system S is called the seed of
the extractor. The security parameter of this extractor is
given by égxT := egxT+4€, which can be arbitrarily cho-
sen. Furthermore, there exists a quantum-proof strong

(h,egxT)-extractor from which we can extract a total of
I < h—2log, (1/egxr) random bits [60]. In all results
from this work we consider egxt = 1078, which implies
an additional correction of ~ —26/N in the extractable
randomness per round.

F. Implementation

We implement the protocol using time-bin encoded co-
herent states and single-photon detection. Our approach
is inspired by previous works in similar settings [35] [42].
The setup is illustrated in Fig. In the following, we
briefly sketch its working principle. In Sec. [[V] we pro-
vide more detail.

Our photon source is a 1550 nm continuous-wave
laser. We use an electro-optic modulator (EOM) and
an acousto-optic modulator (AOM) to carve the output
of the laser into 10 ns-width pulsed coherent states with
appropriate amplitude. In each round, the pulses can
emerge in an early or a late time-bin. The two self-testing
states for x = 0 and = 1 are prepared using a coherent
state with amplitude « in the early and late bins, respec-
tively. We write this as |1g) = |a0) and [1)1) = |0c). On
the other hand, the third state, x = 2, used for random-
ness extraction is prepared using amplitude 8 in both
early and late bins, |i2) = |80).

The measurement is performed by a superconduct-
ing single-photon detector (ID Quantique ID281) with
a quantum efficiency of 94% which detects photons from
the carved, attenuated laser beam. The outcome b is de-
termined by in which time bin the detector clicks. We la-
bel events with clicks in only the early time-bin by b = 0,
events with clicks only in the late time-bin by b = 1,
events with no clicks in either bin by b = 2, and events
with clicks in both bins by b = 3. As discussed in App.
the fourth outcome is binned with the first two. Using
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FIG. 3. a) Bound on the raw min and Shannon entropies (i.e. without accounting for finite size effects) as a result from the
SDPs presented in Sec. [[IC| for a limited range of coherent amplitudes. Red regions denote more than one bit of randomness
per round. The targeted amplitudes ar = 0.4 and Br = 0.66 are denoted with black-dashed lines. b) Slice of the color plots
at the chosen amplitudes. We compare the raw min-entropy, the Shannon entropy and the certifiable randomness through
the AEP (non i.i.d.) and generalised EAT (i.i.d.). The results of the experiment are shown in a cross/circle/square with their
corresponding error bars. The chosen parameters are m = 8, ¢ = 10~% with photon loss 1 — 1 = 0.06, dark count probability
of pac = 107° and total number of samples N ~ 107 over 11 distinct repetitions.

the measurement setup, in a calibration step, we also de-
termine the AOM and EOM voltages required to prepare
coherent states |a) and |3) with the desired overlap.

G. Simulation and observation

In order to find optimal experimental settings, we first
simulate the system, computing the randomness for vary-
ing coherent-state amplitudes. In Fig. [3| we show the
min-entropy under realistic conditions (including loss and
detector dark counts). The results show maximal min-
entropy around the amplitudes a7 = 0.4 and Br = 0.66,
which we therefore target in the experiment. This cor-
responds to states |1),) with overlaps | (¢o|t1) | = 0.84
and | (tho|the) | = | (¥1|1h2) | = 0.78. We note these ful-
fil the criterion |(vol|¢1)| > 1/5 deduced from for
the possibility of equiprobable outcomes. These prepara-
tions should thus allow correlations yielding high values
of randomness. We additionally run the see-saw optimi-

sation method to efficiently compute direct bounds on
the Shannon entropy using the exact same realistic set-
tings. Comparing with the min-entropy results, we find a
marked increase in the certifiable randomness, as well as a
vast expansion of the usable parameter region. Although
the optimal randomness in this case is not exactly given
by the targeted amplitudes ar and SBr, we keep them to
directly compare the best possible certifiable randomness
using the min-entropy vs. the Shannon entropy.

The overlaps constrain support outside the span of |¢)g)
and [¢)1) but do not eliminate it. Specifically, the minimal
amplitude introduced in is @ > 0.66 on the targeted
coherent amplitudes. Moreover, the conditional probabil-
ity p(b|2) does not depend on . However, we do see some
dependency on « in the randomness in Fig. [3] which be-
comes more evident for higher values of 5. The fact that
a < 1 for our amplitudes is the main responsible of that
dependency and also implies that the correlations are not
reproducible only by unique and extremal POVMs. This
reduces the secrecy of the outcome, decreasing the cer-
tifiable randomness. Nevertheless, we are able to find a
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set of amplitudes where, although Eve has unbounded di-
mensionality, her guessing probability is lower than 1/2,
i.e. more than one bit of randomness is certified using the
min-entropy and even more with the Shannon entropy.

We run the experiment through the proposed imple-
mentation and evaluate the randomness for a single con-
figuration of targeted amplitudes. We show the obtained
results in Fig. [3| (right-side plots). The experimental data
we collected indicate that the actual amplitudes used in
the lab were oy, = 0.401 4+ 0.007 and Sr = 0.641 £ 0.006.
Our observations agree well with the predictions from
the simulations, and show a randomness extraction rate
of 1.322 £+ 0.002 and 1.319 £ 0.002 bits per round af-
ter 107 runs of the experiment, when analysed assuming
i.i.d. experiment rounds using the asymptotic equiparti-
tion property (AEP) and without i.i.d. rounds using the
entropy accumulation theorem (EAT), respectively. Ad-
ditionally, we compute the raw min-entropy per round
without taking into account finite size effects and, us-
ing the experimental data, we obtain 1.11 4 0.02 bits of
randomness per round. All error bars (also shown in
Fig.|3) are the standard deviation obtained over running
the experiment 11 different times. We observe a 19%
improvement in the certifiable randomness by using the
Shannon entropy (which is computed in the AEP and
EAT approaches) compared to the min-entropy. Also,
the estimated errors using the AEP and EAT approaches
are lower than the min-entropy approach by one order of
magnitude. This is mainly because the Shannon entropy
is more stable than the min-entropy against fluctuations
on the coherent amplitudes. Furthermore, the reason be-
hind the almost-equivalence between the i.i.d. and non
i.i.d. value is due to the high amount of samples gath-
ered in the experiment (around 107) which foresees the
convergence of the EAT to the AEP in the limit of in-

finite number of experimental rounds. In Fig. [ we ad-
ditionally collected random subsets between 10% and 107
data-points form the 11 different gathered experimental
data-sets and computed the randomness using the raw
min-entropy, the i.i.d. (AEP) and non i.i.d. (EAT) ap-
proaches. Observe that the total of 107 experimental
rounds lies close to the asymptotic limit. Nevertheless,
note that the non i.i.d. approach is still able to certify
more randomness than the raw min-entropy down to ap-
proximately 3.8 x 10* samples.

III. DISCUSSION

We have realized a semi-DI randomness generation
protocol implemented in an optical platform, as shown in
Fig. |2l By exploiting the entropy accumulation theorem
generalised to prepare-and-measure scenarios, we bound
the certifiable randomness in terms of the single-round
Shannon entropy without assuming that experimental
rounds are independent and identically distributed (i.i.d.)
and including finite-size effects. We show that this allows
certifying significantly more randomness than a stan-
dard approach bounding the single-round min-entropy
under an i.i.d. assumption and neglecting finite-size ef-
fects. Thus, we certify more randomness under much
less restrictive assumptions.

IV. METHODS

As sketched in the main text, the input states used
in the experiment are created by using an EOM capable
of inducing intensity modulation, and a sequence of two
AOMs to carve the output of a 1550.32 nm continuous-
wave laser into time-bin-encoded series of pulsed weak
coherent states. Concretely, the AOMs attenuate the
output of the laser by 77 dB when sending a pulse, so
the intensities of the output states are at a single-photon
level, and it completely shuts off the laser output when no
pulse is being sent. In doing so, we achieve a dark count
rate of only pge = (4.5+£2.8) x 106 per pulse. The EOM,
on the other hand, generates the correct amplitudes for
the input states during a 10 ns time window, which is
chosen as the duration of the time-bin. The early and
late pulses are separated by 800 ns and the full proto-
col runs at a 0.526 MHz rate. To ensure high efficiency
of the photodetection, we optimize the polarization state
of the photons with a fiber polarization controller before
the superconducting detector and splice all the fiber con-
nection points in the measurement stage to minimize the
photon loss.

The values for  and (8 are calibrated using a single-
photon detector with a specified efficiency of n = 94%.
Based on the amplitude we desire to achieve, we are able
to calculate the click rate related to this coherent state.
Further, we have introduced a feedback control loop to
stabilize the output power of the EOM to stabilize the



coherent state amplitudes throughout the experiment.
From the measured counting rates, we deduce the co-
herent state amplitude we sent to be oy, = 0.401 £ 0.007
and fp = 0.641 £+ 0.006. Here, the 1o standard devi-
ations are caused by the residual intensity fluctuations
across the data collection time of the entire experiment.

In order to reduce finite size effects, we take around
108 rounds of measurements. After gathering every 107
round of data, we perform a calibration measurement be-
fore taking the data again. The fluctuation of the count
rate, measured by the standard deviation across all ex-
periment runs, is only 1.52% relative to the average value,
certifying the consistency between the states prepared at

different times.
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Appendix A: Min-entropy semidefinite program: Primal and Dual

In this section we formally introduce the semidefinite program we use to bound the certifiable randomness using
the min-entropy.

1. Primal SDP

We start presenting the primal form of the problem. Our goal is to maximise the guessing probability of the
eavesdropper which we can write as

Dg = Zq(/\)mbax {Tr [pgﬂ'?]} . (A1)
A

The maximisation is done through all possible measurement strategies A, distributions g(A) and POVM elements 7rl;\.
These are constrained to be valid distributions and POVMSs, which implies

g(\) >0 D e =1 g(\) € R (A2)

A
T >0 Zwé‘ =1 T = (W?)T . (A3)
b

There is the additional constraint that the observed probabilities must be reproduced on the real experiment. This is
reflected in

pblz) = q(N) Tr [pamy] (A4)

A

Since states p, are not fully specified, but instead only their overlaps are bounded, we will insert the states in (C14)),
80 pz = [thz) (Yz.

This optimisation problem can be rendered as a linear semi-definite program following a couple of steps.
First, we will consider only the most relevant steategies, which in our case are those which yield the maximal
value mbaX{Tr [pwﬂ'lﬂ}. This can be done by simply labeling A = b the maximal strategy for outcome b, i.e.

max {p(blx = 2,A\)} = p(Alz = 2, \). This leaves us with only np relevant strategies, being ng the number of different

outcomes from the measurement. Secondly, we will absorb the distribution ¢(\) in the POVM element 7T£‘ and define
a new quantity M* = q(A\)my. The definition of this new operator changes the above constraints to the following:

M=o, M= (M) wba ZMZ;\:%TL"
b

> Mﬁ] VA, (A5)
b

where D is the dimensionality of the eavesdropper. The useful space accessible by the eavesdropper is that spanned
by the states involved in the experiment. Since we are considering a three-state discrimination setting, the dimension
can be at maximum the number of states, i.e. D = 3. The reproducibility constraint is also changed to simply

p(bla) = > Tr [p, M) (A6)
A

Finally, we can re-write the guessing probability in the following way

pg = ZTr [pzMi‘] . (AT)
A

An upper bound p; > p, can be found by maximising it through all possible 2 x 2 matrices M} that fulfil the
constraints above.
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Appendix B: Shannon entropy see-saw SDP

In this section we present method we used to bound the Shannon entropy and the see-saw semidefinite program to
numerically compute it.

Consider the prepare-and-measure scenario where Alice draws a classical value x with probability p, which she
feeds into a device that prepares a quantum state ¥,. While she sends one part of ¥, (namely p,) to Bob, the rest
(namely o0,,) is leaked to the adversary (Eve). Let us label Bob and Eve’s Hilbert spaces with Hp and H g respectively,
such that the global state is ¥, € Hp @ Hg, ps := Trg [V.] and o, := Trp [¥,]. Then, Bob performs a measurement
on p, in his laboratory, while Eve’s goal is to guess Bob’s measurement outcome by measuring her part of the state
o, on her separated laboratory, and also be able to share randomness (through the hidden variable A) with Bob’s
measurement device. Let us call {II;} the POVM that represents the targeted measurement in Bob’s device.

Our first goal is to find an expression to lower-bound the Von Neumann entropy in Bob’s measurement outcome
relative to Eve. After Bob measures, the whole quantum state shared between Bob and Eve is updated to the
classical-quantum state

=3 10) (b © 5,(b) - (B1)
b

This means that Bob is left with the classical value b of his measurement outcome, while Eve’s state becomes
G.(b) = Trp [, ® 1) ¥,]. We can express the Von Neumann entropy of Bob’s outcome conditioned on Eve’s
knowledge for a particular state preparation x* in terms of the relative entropy

H(B|E,X =a*) = -D (\ifz*||11®&z*) , (B2)

for 6, =, 64(b). As shown in Ref. [58], applying the Gauss-Radau quadrature to an integral representation of the
logarithm yields a variational upper bound for the quantum relative entropy,

m—1
D(pllo) < > t‘géfgf (1+Tr [p (Zi+Z§+(1—ti)ZJZi>} 4 T {azizﬂ) : (B3)
i=1 ‘

for Z; being arbitrary complex matrices and {w;, t; } the weights and nodes from the Gauss-Radau quadrature [61], 62],

respectively. In our case, this turns into the following variational lower bound on the Von Neumann entropy for a

particular preparation x*:
H(B|E,X =a%) > cmZ

Wj

inf
tilog2{zy, Fb K}

Tr [q/x (Hb ® (Zf + 2% - t,-)Fib)) + 80, (1 ® Kf)} (B4)

where the sum over ¢ runs from ¢ =1 to ¢ = m — 1, and we defined ¢,,, = 21-111 Tlog3 together with the matrices
ZP =Trp [(|b) (b| ® 1) Z;] (B5)
F=Trp [(|b> R Zi] (B6)
Kb =Trp [(|b> (b @ 1) ZiZ” . (B7)

In our scenario we confider that the eavesdropper has only access to side classical information. Let us label with A
the collection of physical parameters known by Eve which determine the behaviour of Bob’s device. This infers that
the measurement performed in Bob’s device consists of a convex mixture of measurements, determined by the hidden
variable A distributed according to ¢(\) and publicly announced to Eve, i.e. II, = >, ¢(A)m ® |A) (A]. In this case,
after Bob performs his measurement, Eve’s part of the state updates to 5,(b) = >, q(A) Tr [po7] [A) (A|. Let us use
these to directly translate the bound on the Von Neumann entropy from into

H (BIE,X =2%) > ¢ + Z Zq()\) Tr [mppar] (220 + 207 + (1 — t)n®) + a(N)tin) (B8)

inf
t; 10g2 %b n\b o

where we introduced the following scalar variables
=Tr[(|b) (b| ® [A) (A]) Zi] (B9)
2 i=Tr [(b) (bl © 1) (A) 2] 2| =T | () (ol @ 13) (A 22 | (B10)
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defined from projecting the arbitrary matrices Z; onto |b) (b] and |\) (A|] in Bob and Eve’s laboratories, respectively.
Observe that these definitions imply that all scalars 2)** and n}’ are constrained to fulfil

<(sz)* ;i;) >0. (B11)

(2

One can see that by constructing the completely positive channel Ay ) [M] := Tr [(|b) (b] @ |A) (A\|) M], which consists
of a projection onto classical outputs b and A. Applying this channel though each element of the strictly positive-
semidefinite matrix P; := |r;) (7;| built from the inner product of vectors |r;) := (1, Z;) yields the matrix in (BII)),
which by definition must be positive-semidefinite.

In order to find a lower bound on the Shannon entropy, we need to minimise the right-hand side of . To do
so, we will employ a see-saw method which consists in minimising alternating between optimisation variables,
allowing us to define two different SDPs in each run. The method works as follows:

Step 1: Initialise random M;' = g(\)7;

Step 2: Compute the new value of S* running the following SDP, optimising over {z{\b, n{\b}
m—1
e wi A b R eY l A oL Ab
S* = Igglrﬁlbz}? Cm + ; f11og 2 ;Tr (M7 per ] (220" + (1 — t3)m°) + D Tr [; Mbll tin; (B12)

. 12
subject to I'px; = 22 b >0

Step 3: Fix {zi)‘b, ni)‘b} from the solution of the SDP.

Step 4: Compute the new value of S* running the following SDP, optimising over {MbA}

m—1

Ko Wi A Ab R eY) 1 A g Ab
S* = ml{tjl\zrbil}{ze Cm F ; log? Z)ZATr [Mpper] (2207 + (1 —t3)m°) + D Tr ;Mb,l tin; (B13)
subject to  M;» >0, ZMb)‘ = %Tr ZMQ‘] 1, ZTr [p2 M| = p(blz)
b b A

Step 5: Fix {Ml;\} from the solution of the SDP and go to Step 2.

The whole see-saw optimisation runs over a limited number of rounds n and we store the average difference between
solutions in consecutive rounds, i.e. Ay := Z:}in(l-%k) {S,’f — S:+1| /m, for k =0,1,2,.... The process is repeated as
long as this difference is lower than a critical point (chosen to be Ay > 107%) or unless a critical k is reached, at
which point the algorithm is re-started with an alternative random point.

Appendix C: Unconstrained dimensionality and semi-device independence

In this section, we show how bounding the overlaps between the prepared states can limit this the use of any
additional dimension by the eavesdropper.

Consider the state discrimination scenario with three preparations. Two of the prepared states |’(/~Jo> and |1/~11> have
support only on a two-dimensional Hilbert space, but the third state |¢3) may have support also on a third dimension.
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Then,
l4bo) :cos§|0> +sin§|1>+0|2> (C1)
(1) = cosg 10) —sing 1) +02) (C2)

ihg) = \/E(cosgm) +e“"sin§|1>) +v1—al2) (C3)

Suppose now that we only trust a bound on the overlap of the prepared states. Let us define | (¢g|th1) | > |doal,
| (tolw2) | > |do2| and | (¥1|1h2) | > |d12|. This means that

‘<1l~)0|1;2> ‘2 =a (COS g cos g + €'’ sin % sin Z) (cos g cos g + e sin g sin §> (C4)

=aq (cos2 % cos? g + sin? % sin® g + (€' +e7"¥) cos g cos g sin % sin g) (C5)

:g (14 cos ¢ cos B + sin psin ¢psin §) (C6)

‘<7’Z~}1|1/~}2>‘2 =...= g (1 4+ cos ¢ cosh — sin psin ¢ sin 0) (C7)

‘@0@2)‘2 + ‘<¢1|152>‘2 =a (1 + cos pcosf) > |doz|* + |di2|? (C8)
2 2

a z% (C9)

If a = 1, the three states will have support on the same bi-dimensional Hilbert space. Whilst the measurement device
is treated as a black box, the preparation device is partially characterized through the bounds we place on the overlaps
of the prepared states. Then, the eavesdropper has the freedom in choosing the states |1,) in terms of the angles ¢,
f and ¢ that satisfy those bounds. Her probability of guessing the measurement outcome when state |1ﬁ2> is prepared
is

Py = > aNmax { (| 7 [2) } (C10)

= > amax {a Wl 7 o) + (1= a) 2| [2) + ValT = a) (el ) |2) + (2 7 [v2) } -
A

The support of the POVM onto the qubit space spanned by the test states |¢)g) and |t;) is constrained by the
reproducibility of the observed statistics p(b|z). However, the support onto the sub-space spanned by |2) does not
have any constraints applied. This implies that p, is maximum whenever the measurement described by the POVM
{Wg‘} has minimal support on the constrained subspace. Thus, the upper bound on p, is given whenever a is minimal,
which we know is lower bounded indirectly by whenever the overlaps of the prepared states are also bounded.
On the SDP this is reflected by considering the discrimination of the qutrit states WQ Assume that Eve is even
allowed to change the angles ¢ and 6, so that the bounds on the overlaps are still satisfied. Eve can pick them to be the
ones she wants in order to make the support onto the third dimension as large as she can. Let’s see what is the best

she can do. We first relate both angles in a single expression by first writing a = (d%2 - d%Q) / («/1 — d2, sin 6 cos cp)
and equating with the right-hand side in (C4]). One gets

de — d%Q 1+ d()l cos
3y +diy \/T—d3 sinf
If one plots cos 6 vs. cos g, one will see that: if dgs > di2, cosf is maximal if cos p = 1; if dgo < d12, cos ¢ is maximal

if cosp = —1; and if dgo = dj2, cosf is maximal if cos = 0. The maximal value of cosf is the same in the three
cases, being

(C11)

cosp =

_ 2d02d12 — d01 (d(2)2 —+ d%Q)
max d%, — 2dp1doadin + d35

(cos®) (C12)
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a=1.0

FIG. 5. Tetrahedron formed by the available overlap configurations in the preparation of three non-orthogonal quantum states.
The parameter a indicates the minimal support of the prepared states onto a two-dimensional subspace if only their overlaps
are bounded.

which means

d? d?, — 2do1doad
0> 02 T 1127d201 0212 (013)
01

Equation ((C13)) defines the surface of a tetrahedron with curved faces. The amplitude a decreases towards the center
of the tetrahedron non-symmetrically, as we show in Fig.

On the SDP, the prepared states shall only be expressed in terms of the bounds of the overlaps d,,, which can be
done by replacing the angles ¢, 6 and ¢ with dg1, dg2 and di5 accordingly. This yields

~ 1+d 1—-d
G0} =\ =52 10) + 4/ 52 [1) +0[2)
~ 14d 1—d
) =0y Ly o) (1)
5 1 do2 + di2 1 do2 — diz |dog + di2|*  |do2 — di2f?
=———|0)+ —=—F——==11) +4/1 - — 2) .
[V2) \@\/1+d01| ) ﬂ\/lfdm' ) \/ 2(1+do1)  2(1—do1) &

A particular choice of bounds on the overlaps and their phases limits the accessibility to a the third dimension by Eve.
Concretely, one can tune the states to be symmetric in the sense that doy = d}, = de?”. Thus, fulfilling the relation
d? = (1 —d3;)/(2(1 — doy cos 27y)) makes the third component of [¢)2) null. This means that we can be sure that any
potential eavesdropper will gain no information of the outcome by reaching into an additional third dimension.

Appendix D: Implementations: specific details

In this section of the appendix we detail the specific parameters to be adjusted to obtain the desired statistics in
the measurement outcomes on the proposed implementation.

The proposed implementation for the USD setup consists in preparing the equi-probable two-mode coherent states
[tho) = |a) ® |0) and |p1) = |0) ® |a). These can be unambiguously discriminated by means of using only photo
detectors in each mode. If only the photo detector in the first mode clicks, that would mean that state |a0) had been
prepared, and thus, we associate the outcome b = 0. Otherwise, if only the second photo-detector clicks, means that
|0c) was prepared and we associate b = 1 as a measurement outcome. Note that if these two states are prepared,
there is a possibility that none of the detectors click. If that happens, the measurement is uncertain of which state
was prepared and we associate this events with the inconclusive measurement outcome b = 2. Assume now that we
include the preparation of a third two-mode coherent state |12) = |Bo/51) into play. Whenever this state is prepared,
either only one detector can click, the other, none or even both at the same time. Let us go through all possible
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measurement events and their probabilities to happen whenever a generic state |i,) is prepared.

n=0 m=0
= (x| <|0> O+ In) <n|> ® <|0> O+ > [m) <m> )

n=1 m=1

(D1)

=@l [ [0)0[©]0) (O] +[0)(0[@ >  |m){m[+ > [n)(n|@[0)0[+ > [n)nl@ > [m)(m| | |¢z)

Detector does’t click

Click on late bin Click on early bin

[(00[¢ba) 12+ > [ (0mfthe) [P+ [ (nOha) [P+ DY [ (nmlfiba) [* .

n=1m=1

Click on both early and late bins

The event consisting in a simultaneous click at both time-bins does not come into play when unambiguously dis-
criminating the two-mode coherent states |@0) and |0a). In fact, that event would correspond in a unambiguous
identification of the third state |8p1). Since our aim is to only consider measurement strategies able to unambigu-
ously discriminate solely states |@0) and |0c), whenever that event occurs we will consider that b = 0 with probability
go, b = 1 with the same probability g; and the rest of the times by with probability b = 2. No data will be discarded so
that the certified randomness is not affected. The considered events and their corresponding probabilities depending
on which state was prepared after the post-processing are summarized in table [}

Meas. Event

Prepared state b=0 b=1 b=2
[%0) = la) @ |0) 1— ol 0 e-laf?
1h1) = [0) @ |ex) 0 1—e Il o lal?

[tp2) = |Bo) ® |B1)

1— e—lﬂo\z e—lﬁllz

+90 (1 _ e—|ﬂo|2) (1 _ e—lﬂ1|2>

2 2
o180l (1 _ 18l

tar (1 _ e—|l30|2) (1 _ e—|51|2)

B2 8.2
e [Bol e [B1]

+g2 (1 _ e—wo\"‘) (1 _ e—um"‘)

TABLE I. Summary of the considered measurement events and their corresponding re-normalized probabilities for the USD
setup.

For simplicity and without loss of generality, we will consider non-imaginary coherent amplitudes only. The overlaps
of the prepared states are characterized by the amplitudes of the coherent states as follows

(a=Bg)? _ Bt 82
T2 e 2z 2

_B5 _(e=Bp)?
2 dio=¢€e 2e 2

2
d()1 =e @ dog =€ (D?)

Over a set of runs, we observed that the best and simplest choice is to pick go = g1 = 1/2 and so g2 = 0.
Appendix E: Finite size effects and entropy accumulation

In this section we explain how we treat finite size effects from the data extracted in the experiment. Also, we
explain how we can abandon the general assumption of independent and identically distributed rounds (i.i.d) though
the entropy accumulation theorem (EAT) as is explained in [63].

1. Finite-size effects under the i.i.d. assumption: Asymptotic Equipartition Property

In the real life implementation of the protocol, the observed statistics are built from finite sets of collected data.
Thus, the entropy is computed based on a finite number of samples. In order to incorporate such finite-size effects
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into our analysis, we make use of the asymptotic equipartition property (AEP) generalised to the quantum theory
[47). This allows us to quantify the amount of certifiable randomness over a fixed number of experiment rounds
assuming these are independent and identically distributed (i.i.d.). From the experiment we collect pairs of data-
points for each question (or state preparation x) and answer (measurement outcome b). We label by n; , the number
of pairs with question z and answer b. Then, from the set of questions we label n, the number of questions =z,
and form the set of answers we label n; the number of answers b. The total number of extracted data-points is
N=>n=>,ns=>,, M, From these, we can obtain the observed frequencies as freq.(blz) = np./ >, b,z
Then, we can compute the smgle round Shannon entropy using the see-saw optimisation method introduced in App. l
The quantum AEP then states that the smooth-min-entropy (HZ;, (BN |EN )) per-round can be bounded using the
following expression

L we, (BYIEY) = H(B|E) - 8e, ") (E1)
N min _ \/N )
where the Von Neumann entropy H (B|FE) in our case is reduced to the Shannon entropy per-round, and
AEP AEP 2 : AEP “H.
6(e,n™"") = 4logn™™ 4 [log = with 7 < V/2-Huin(BIB) | \/2Humax(BIE) 4 1 (E2)
€

To compute the max-entropy Hpax(B|E) we use the results from Ref. [46]. Specifically, for any separable bi-partite
state shared between Bob and Eve pprp = pp ® pg, the max-entropy can be obtained as

Hinax (BIE) = 2l0g T [/p5] - (E3)

Indeed, our assumptions on the state preparations (i.e. bounded overlaps and pure states) fit within this case. We
thus have all essential ingredients to compute a bound on the smooth-min-entropy per-round using (E1)) in the i.i.d.
case.

2. Entropy accumulation theorem: dropping the i.i.d. assumption

The i.i.d. assumption is not very attractive in (semi-)device independent protocols. Indeed, this assumes that the
eavesdropper cannot learn from past rounds to have a better guess in future rounds (sort of as if the eavesdropper
looses its memory in each round). To get rid of this strong assumption, we refer to the entropy accumulation theorem
(EAT) generalised to prepare-and-measure scenarios [48] and its application in [49]. Here we adapt it to our semi-
device independent prepare-and-measure scenario. The EAT places a bound on the smooth-min-entropy, that is
the maximum min-entropy of a distribution e-close to the target distribution, per round in a prepare-and-measure
experiment with N rounds. The EAT implies that the operationally total relevant uncertainty about the total set
of outcomes over N rounds Bi¥ corresponds to the sum of the entropies of the individual rounds to first order in N
under the i.i.d. assumption, plus a contribution from not assuming the i.i.d. case. This contribution is provided given
that one quantifies the uncertainty of each individual round with the Von Neumann entropy of a suitable chosen state.
Formally, the generalised EAT reads

le (BN|EN)ECIIIVli€%f(fr€q-(CN)) 0471111(2)‘/ lg(€)+alog(1/Pr[Q])<a1> K'(a) (E4)

N Tmin 2—a 2 N a—1 2 —«

Several new elements appear in , let us properly introduce them one by one. First, f is a so-called trade-off function
and it is defined as an analytical function on the observed frequencies (freq.(cy)) computed on the events whenever
randomness is certified (¢pn) such that it lower-bounds the minimum entropy over all possible post-measurement
states. Namely,

fl) < min H(BE), (E5)

for ¥;(q) being the set of states that can be generated after the measurement at the i*" experiment round given
the observed frequencies q. The lower bound in is computed on the minimum f over the total number of
observed events cy belonging to a particular chosen event €2, e.g. the winning condition in non-local games. In
our case () represents all events where we certify randomness, i.e. whenever z = 2, Vb, occurring with probability
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Pr(Q) = pp—2 = 1/2. Also, from the trade-off function we need to compute the maximum Max(f), minimum Min(f)
and its variance Var(f). These are then used to compute the following quantities

gle) =—log(l — /1—¢2), (E6)

V =log(2n% 4+ 1) + /2 + Var(f) , (E7)
2 — Oé)3 a—1 M :
K’ _ ( 92 — (2log np+Max(f) Mln(f))l 3 (2210gn3+Max(f)7M1n(f) 2) E
() =G —2apm@) > " te)s (E8)

with ng corresponding to the number of measurement outcomes. Finally, the bound in is originally derived
using some appropiate properties of the Reny entropies H, for a € (1,2). We thus set a = 1+ (’)(1/\/N) which is
entirely motivated by Ref [48], so that one gets a correction term O(1/v/N) in the bound on the certifiable entropy
per-round.

The next step is to find a good candidate for f. Recall that using the see-saw optimisation in App. [B]we are already
obtaining a lower-bound on the Shannon entropy and thus, we find suitable to use this result as f, fulfilling . Next,
since statistical correlations are fixed by observation, this lower-bound already takes into account the minimisation
Veny € Qin . Translated to our experiment, in summary, we use the output of the see-saw optimisation S* as

§* = min f (freq.(cn)) , (E9)

which again, by definition, fulfils (E5)).
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