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Abstract. Twin-Field Quantum Key Distribution (QKD) is a QKD protocol

that uses single-photon interference to perform QKD over long distances. QKD

protocols that encode information using high-dimensional quantum states can

benefit from increased key rates and higher noise resilience. We define the essence

of Twin-Field QKD and explore its generalization to higher dimensions. Further,

we show that, ultimately, the Twin-Field protocol cannot be generalized to higher

dimensions in accordance with our definition.

1. Introduction

In recent years, Quantum Key Distribution (QKD) [1] has witnessed remarkable

progress, with the Twin-Field QKD (TF-QKD) protocol standing out as a pivotal

advancement in the field [2]. Notably, TF-QKD protocols have achieved significant

breakthroughs in communication range, breaking the linear scaling bounds of channel

transmittance observed in previous protocols, such as BB84 and measurement-device-

independent (MDI) QKD [3]. TF-QKD introduces a square-root scaling of channel

transmittance, surpassing the PLOB bound [4] and enabling the establishment of

long-distance QKD records [5, 6, 7, 8, 9]. This high-performing scaling originates

in the single-photon interference that is at the heart of TF-QKD, only requiring a

single photon detection for a successful measurement event. Since its introduction,
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the TF protocol has been the object of intensive research effort in both experimental

[10, 11, 12, 13] and theoretical work [14, 15, 16, 17, 18, 19]. Many variants of the

original protocol have been proposed, including the notable Send-No-Send protocol

[20] that recently achieved a transmission range of more than 1000 km [9]. Addi-

tional degrees of freedom, i.e. polarization, have been introduced for protocols that

use redundant space to improve the error rate performance [21]. Nevertheless, all

proposed variations of TF-QKD are still based on qubits and binary encoding.

Using high-dimensional quantum states for QKD has significant advantages [22]. By

using an enlarged set of states compared to binary-based QKD, more than 1 bit of in-

formation can be carried by each photon. Further, the resilience to noise is increased

compared to binary-based QKD, i.e. the error threshold above which no secret-key

extraction can be performed grows with the dimension of the protocol [23]. These

advantages have also been confirmed experimentally [24, 25, 26, 27, 28].

In this paper, we explore the possibility of generalizing the TF-QKD protocol to

higher dimensions to benefit from the aforementioned advantages of high-dimensional

QKD. In Sec. 2 and Sec. 3, we set the formalism and analyze a 2 and 4-dimensional

example. We then reduce the TF-QKD protocol to its core by defining required

assumptions on the quantum state and setup in Sec. 4. Further, we show that

these assumptions lead to a contradiction and systematic error when going to any

dimension higher than 2 in Sec. 5. This is followed by a discussion in Sec. 6, and

a conjecture in the supplements Sec. 8, in which we argue that even when allowing

for systematic error, high-dimensional TF-QKD is still not feasible.

2. Twin-Field QKD in 2 dimensions

Before analyzing the case for higher dimensions, let us first recall a 2-dimensional

Twin-Field implementation. We limit ourselves to describing only the parts relevant

to this work. In general, the aim of QKD is to establish some shared secret

information between two remote parties, usually called Alice and Bob, by sending

quantum states. Twin-Field is a measurement-device-independent variant of QKD

[3], i.e. the measurement is performed by a third party, Charlie. To detect a potential

eavesdropper, the states are prepared in mutually unbiased bases. In the case of

two bases, one can use one basis to share secret information, i.e. the code basis,
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and another one to test for eavesdropper interference, i.e. the test basis. In the TF

protocol, Alice and Bob both send a coherent pulse to Charlie and encode information

in the relative phase between them. Conceptually, this can be simplified to Alice

and Bob sharing a single-photon state, each party controlling a spatial mode [29]. In

both cases, first-order coherence is modulated to convey information. Both parties

can apply a phase to their part of the state. In the original protocol [2], the overall

state can be written as

|ψa,b⟩ =
eiγa |1⟩a1 |0⟩b1 + eiγb |0⟩a1 |1⟩b1√

2
=
eiγa |a0⟩+ eiγb |b0⟩√

2
, (1)

where the subscripts relate to the spatial modes of the photon (it is a superposition

of being either at Bob’s or at Alice’s), and γi denotes the applied phase of each party.

We restrict ourselves to only one basis, the second basis can be treated analogously.

Both parties encode a single bit by choosing between two possible phases to apply.

In preparation for generalization, we denote this by both parties choosing their state

coefficients from a respective set Si of coefficient vectors:

SA = {a0, a1} (2)

= {(eiγ0), (eiγ1)} (3)

= {(1), (−1)} (4)

SB = {b0,b1} (5)

= {(1), (−1)} (6)

For the original protocol [2], the phases are either 0 or π. This state is measured at

the middle station (Charlie) in the X basis:

X =
1√
2

(
1 1

1 −1

)
. (7)

Note that all tuple combinations of the two sets SA and SB are created. We will

denote possible states by their respective indices,

|ψi,j⟩2 =
ai |a0⟩+ bj |b0⟩√

2
. (8)

The four possible states are then:
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Figure 1: Possible abstract setups for a Twin-Field QKD protocol, for 2 dimensions

(left) and 4 dimensions (right). SPS: Single photon source, MPBS: Multi-port

beamsplitter.

|ψ0,0⟩2 =
1√
2

(
1

1

)
|ψ0,1⟩2 =

1√
2

(
1

−1

)
|ψ1,0⟩2 =

1√
2

(
−1

1

)
|ψ1,1⟩2 =

1√
2

(
−1

−1

)
.

(9)

Note that |ψ0,0⟩2 and |ψ1,1⟩2 are equal up to a global phase, as are |ψ0,1⟩2 and |ψ1,0⟩2.
At the same time, |ψ0,0⟩2 and |ψ1,1⟩2 are each orthogonal to both, |ψ0,1⟩2 and |ψ1,0⟩2.
They form two classes of states that are equal up to a global phase inside the class

but orthogonal to all states outside their own class. The measurement result that

Charlie shares with Alice and Bob reveals which class the state is a member of, while

knowledge of the index of their own respective contribution allows each party to

interfere which exact state in the class has been measured. This is the basis of the

Twin-Field approach that allows Alice and Bob to share a secret bit. An abstract

setup of the 2-dimensional Twin-Field protocol can be seen in Figure 1.

3. Motivational Example of Twin-Field in 4 Dimensions

Before going to a general analysis of TF-QKD in higher dimensions, it offers

some insights to consider a concrete example first. One of the possible direct

generalizations of the X-basis to 4 dimensions is the following:
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X4 =
1√
4


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 . (10)

We extend the state to 4 dimensions as

|ψi,j⟩4 =(a0,i |1⟩a0 |0⟩a1 |0⟩b0 |0⟩b1 + a1,i |0⟩a0 |1⟩a1 |0⟩b0 |0⟩b1 (11)

+ b0,j |0⟩a0 |0⟩a1 |1⟩b0 |0⟩b1 + b1,j |0⟩a0 |0⟩a1 |0⟩b0 |1⟩b1)/2 (12)

=(a0,i |a0⟩+ a1,i |a1⟩+ b0,j |b0⟩+ b1,j |b1⟩)/2, (13)

and choose the sets of possible coefficient vectors as

SA = {a0, a1, a2, a3} (14)

= {(a0,0, a1,0), (a0,1, a1,1), (a0,2, a1,2), (a0,3, a1,3)} (15)

= {(1, 1), (1,−1), (−1, 1), (−1,−1)} (16)

SB = {b0,b1,b2,b3} (17)

= {(b0,0, b1,0), (b0,1, b1,1), (b0,2, b1,2), (b0,3, b1,3)} (18)

= {(1, 1), (1,−1), (−1, 1), (−1,−1)}. (19)

(20)

This results in 16 possible states that can be seen in Table 1.

Exactly 8 of these 16 states result in a single, conclusive measurement result, marked

in green. These 8 states can be put into 4 classes similar to the case for 2 dimensions,

where 2 each are equal up to a global phase but orthogonal to all other states outside

their respective class. The remaining states result in a completely uniform outcome,

forcing Alice and Bob to guess which values their partner chose. These ”bad” states

originate from the independence in which Alice and Bob choose their coefficients

which forbids them to coordinate to only create ”good” states.

Consider the following example from Bob’s point of view. For 2 dimensions, Bob

chooses b1. Before the measurement, the possible quantum states are |ψ0,1⟩2 and
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i
j

0 1 2 3

0 (1,1,1,1) (1,1,1,-1) (1,1,-1,-1) (1,1,-1,-1)

1 (1,-1,1,1) (1,-1,1,-1) (1,-1,-1,1) (1,-1,-1,-1)

2 (-1,1,1,1) (-1,1,1,-1) (-,1,-1,1) (-1,1,-1,-1)

3 (-1,-1,1,1) (-1,-1,1,-1) (-1,-1,-1,1) (-1,-1,-1,-1)

Table 1: All possible states in our 4-dimensional example. Green states result in

a deterministic measurement result when measuring using Eq. (10), whereas black

states result in a uniform outcome, i.e. all measurement results are equally likely.

The normalization factor 1/
√
4 is omitted.

|ψ1,1⟩2. Charlie announces the measurement result m as 0, corresponding to (1, 0).

Given the measurement result, Bob can infer that the full state was |ψ1,1⟩2, and
gains 1 bit of information on A. For 4 dimensions, we assume Bob chose b3, i.e.

the possible states are |ψ0,3⟩4, |ψ1,3⟩4, |ψ2,3⟩4 and |ψ3,3⟩4, with uniform probabilities.

The measurement result is again 0, corresponding to (1, 0, 0, 0). Using Bayes’ theo-

rem, the conditional probabilities are [0, 1/6, 1/6, 2/3] for |ψ0,3⟩4, |ψ1,3⟩4, |ψ2,3⟩4, and
|ψ3,3⟩4, respectively. The resulting information gain (before considering leakage) is

the difference in the entropy of the symbols prior to and after measurement, i.e.

H(A) − H(Apost) = 2 − 1.25 = 0.75. This is less than for dimension 2. Further,

there is no systematic error rate for dimension 2. For dimension 4, assuming that

Bob always chooses the most likely state as his guess, the systematic error rate,

i.e. any error rate caused by ambiguous measurement results, is already above 33%.

Other states follow this error rate. The values of this example can be seen in Table 2.

One could hope that by choosing different states and measurements one could

overcome this issue. Unfortunately, we will now show that the occurrence of

ambiguity is a fundamental issue that does not allow a Twin-Field style QKD to

share more than one 1 bit of secret information per photon in the code basis.
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Dimension Bob Prior-measurement Measurement Post-measurement

2 b1 |ψ0,1⟩2,|ψ1,1⟩2 0 =̂ (1,0) |ψ1,1⟩2
4 b3 |ψ0,3⟩4,|ψ1,3⟩4,|ψ2,3⟩4,|ψ3,3⟩4 0=̂(1, 0, 0, 0) |ψ1,3⟩4,|ψ2,3⟩4,|ψ3,3⟩4

Table 2: Example of information gain for 2 and 4 dimensions. Prior measurement

describes all possible states the created quantum state could be, with knowledge

of Bob’s choice. Post-measurement describes the possible states with knowledge of

Bob’s choice and the measurement result shared by Charlie.

4. Assumptions

To prove this, we first need to formalize the setting. Alice and Bob randomly choose

a value that represents the secret information they want to share. To adhere to

security proofs [30, 31], we assume that they choose uniformly. We denote Alice’s

and Bob’s choice by a respective random variable,

A ∼ Uniform(1, NA) (21)

B ∼ Uniform(1, NB). (22)

The value of the proto-key, i.e. the d-ary string that is shared by Alice and Bob for

later secret key extraction, is then given by an injective function of A and B. We

denote it by Z, Z = Z(A,B). A possible example for Z is Z = A⊗B, with ⊗ being

addition in a finite field.

The improved range-scaling of TF originates in its single-photon interaction, i.e. only

a single detection is required each round. The quantum state that is measured at

the middle station (Charlie) is created by two remote parties (Alice & Bob), where

each party chooses the coefficients of a fixed subset of basis states. This could for

example be the different cores of a multicore fiber on which the information is sent.

Our first assumption is therefore the use of a single photon state, where information

is encoded in its coefficients.

Assumption 1: First-Order/Single photon: Given a dH-dimensional Hilbert

space H and the Fock space HF we define all allowed quantum states |Ψi,j⟩ to be

single photon states, such that
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|Ψi,j⟩ = |ψi,j⟩ |n = 1⟩ . (23)

Here, |Ψi,j⟩ is on the combined Hilbert space H ⊗ HF , with n labeling the photon

number. We omit the Fock space for the rest of our considerations as it reduces to

a single state in its subspace. |ψi,j⟩ is bipartite and can be written as

|ψi,j⟩ =
nA∑
l=1

al,i |al⟩+
nB∑
l=1

bl,j |bl⟩ , (24)

with nA + nB = dH and |al⟩ and |bl⟩ forming a basis of H.

Requiring the state to be a single photon state is essential to TF-QKD as it results in

improved range scaling compared to other (measurement-device-independent) QKD

variants, i.e. only a single detection is required. The subspaces spanned by |ai⟩ and
|bi⟩ correspond to the parts of the system in control of Alice and Bob, respectively.

We denote the coefficients using vectors over their subspace, i.e.

ai =

nA∑
l=1

al,i |al⟩ and bi =

nB∑
l=1

bl,i |bl⟩ , (25)

such that ∣∣ψi,j]

〉
= ai + bj. (26)

Let SA and SB denote the set of coefficient vectors,

SA := {a0, ..., aNA−1} and SB := {b0, ...,bNB−1}. (27)

The set of all possible states is denoted by Sall = {|ψi,j⟩}, i ∈ {0, ..., NA − 1} and

j ∈ {0, ..., NB − 1}. We directly connect the chosen values of A and B with creating

the chosen state, e.g. if A = 1 and B = 3 then the resulting quantum state that

arrives at Charlie is given by |ψ1,3⟩ = a1 + b3. There can be fewer choices than the

dimension of the Hilbert state, i.e. NA+NB ≤ dH, allowing for the case of embedded

states into a higher dimensional Hilbert space.

Assumption 2: Independence: The coefficients ai and bj that form the state

|ψi,j⟩ are randomly and independently chosen by Alice and Bob from their respective
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state sets, SA and SB, i.e. A ⊥⊥ B.

The ”independently” part is important and states that Alice and Bob are not allowed

to communicate their choice. Any attempt to share information about their choice

is reducing the information that is gained by the shared measurement, e.g. Bob’s

information gain I of a measurement can be written as

I = H(Z) = H(A)− I(A;B). (28)

The most information I shared between both parties by knowing Z, i.e. that can be

sent by such a state in TF-QKD, is then bound by

I ≤ log2(min(NA, NB)). (29)

Protocols usually have NA = NB := N as a result. We define a QKD protocol to

be high-dimensional if the average send information is more than one bit per mea-

sured quantum system in the code basis for no errors caused by the quantum channel.

To formulate this notion precisely, let us first consider an upper bound on the

extractable secret key information l per sifted symbol of the code basis [31, 26]:

l = log2(N)− HHD(q + s)− HHD(e), (30)

where HHD(x) = −x log2(x/(N − 1))− (1−x) log2(1−x). All error rates are defined

following the underlying security proof [31] of Eq. (30). Therefore, the phase error

rate e is the rate of mismatch between ZAlice and ZBob in the test basis. The total

Quantum Bit Error Rate (QBER) q + s is the respective mismatch rate in the code

basis, where s denotes the systematic error rate, i.e. all errors that are caused by

the protocol itself, and q is the error contribution by the physical implementation of

the protocol, e.g. depolarization, detector inefficiency, potential eavesdropper inter-

ference, and so on. We consider a QKD system to be high-dimensional if it extracts

more information per symbol than a binary system while assuming no error contri-

bution by the physical implementation, i.e. e = q = 0.

Definition: A possible QKD system is considered high-dimensional iff the ex-

tractable secret key per symbol is higher than 1 for a noise-free implementation,
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i.e. l > 1 for q = 0, e = 0.

A direct consequence of the independent choice is that all possible combinations of

the two sets SA and SB are created, i.e. Sall = SA ⊗ SB.

Now that the form of the quantum state is established, we need to define when we

consider a Twin-Field implementation as failed. In the main part of this manuscript,

we consider a Twin-Field implementation as failed if, from a measurement result,

Alice and Bob cannot always deterministically calculate Z, i.e. there is an unavoid-

able error by design, s > 0. Systematic errors can occur if Alice or Bob are forced

to guess between multiple possible states, e.g. see Table 2.

Let m be a label for Charlie’s measurement result. Given their own choice A(B)

and the measurement result m, both parties need to be able to determine the same

value for Z to avoid any errors.

Assumption 3: Error-Free: The remaining uncertainty of Z is 0 after a successful

measurement and knowing either Bob’s or Alice’s choice, i.e. H(Z|A ∨ B,m) = 0,

where m denotes the measurement result of Charlie.

A detection is considered successful if the measurement (depending on the setting) is

neither ”no result” nor ”inconclusive result”. The latter refers to the ”I don’t know”

result of an unambiguous state discrimination setup [32]. Note that this assump-

tion is not directly equal to saying that all states |ψi,j⟩ need to be distinguishable

but rather that only all states that share at least one index need to be distinguishable.

Assumption 3 corresponds to s = 0 in (30). The case of s > 0 is handled in Sec. 8.

5. Main Theorem and Proofs

Now that we have defined all assumptions that we associate with TF-QKD, we will

show that they lead to a contradiction.

Definition/Notation: Two states |ψi,j⟩ and |ψk,l⟩ are called parallel if they are

equal up to a global phase, |ψi,j⟩ = exp{iφlm} |ψl,m⟩.
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Definition/Notation: Let A be a collection of sets [S1, ...,Sm], where each set

contains a number of states Sl = {|ψl0⟩ , ...
∣∣ψlni

〉
}, m,ni ∈ Z. Given a combination

of states that is created by taking exactly one state from each set Sl, the sets in

A are considered to be linearly independent if all possible combinations are linearly

independent.

Lemma 1: There are at most pmax = min(NA, NB) parallel states created by differ-

ent coefficient combinations. Further, states cannot be parallel if they share an index.

Proof: Consider that there are only NA and NB different values for the coefficients

ai and bj. For two states |ψi,j⟩ and |ψk,l⟩ to be equal up to a global phase but not to

be the same state (i.e. i = k∧j = l), both their coefficient parts need to be different,

i ̸= k ∧ j ̸= l. Let us assume that this would not be true, and the states |ψij⟩ and
|ψkj⟩ are equal up to a global phase:

|ψij⟩ =eiφ |ψkj⟩ (31)

=⇒ ai = eiφak (32)

bj = eiφbj (33)

=⇒ eiφ = 1 (34)

=⇒ ai = ak (35)

E |ψij⟩ ≠ |ψkj⟩ (36)

The analog can be shown for the first index. There are only pmax = min(NA, NB)

ways to combine the coefficients such that there are no states with the same coef-

ficients and therefore there are at most pmax different states that are equal up to a

global phase. □

Lemma 2: Assumption 3 implies every state in SAll that is not either parallel or

linearly independent to all other states in SAll introduces errors into the protocol.

Proof:

Let |ψi,j⟩ be a state that is neither parallel nor linearly independent to all other

states in SAll. WOLG, we assume Alice’s point of view. According to the results
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of unambiguous quantum state discrimination [32], there is a measurement result

m that could be the result of |ψi,j⟩ or a state |ψi,l⟩, which is part of SAll according

to Assumption 2. Alice needs to interfere Bob’s choice to calculate the value of

Z. Given the ambiguous measurement result, she knows that the state was either

|ψi,l⟩ or |ψi,j⟩, i.e. Bob’s choice was therefore either l or j. Z is injective, such that

Z(i, j) ̸= Z(i, l). Alice therefore needs to guess between the two values and can

introduce an error with a nonzero probability. From Bob’s point of view, simply

choose a state |ψl,j⟩ and proceed in analog. □

It follows directly from Lemma 2 that if s = 0, the set of all possible states Sall

necessarily is dividable into subsets that are linearly independent, where each subset

may only contain states that are parallel.

We can now combine these two lemmas to show that high-dimensional Twin-Field

as defined by our assumptions is not possible.

Theorem 1: If NA > 2 or NB > 2, it is no longer possible to satisfy Assumptions

1, 2 & 3.

WLOG, let Alice have 3 states to choose from and Bob 2, such that SA = {a0, a1, a2}
and SB = {b0,b1}. If both NA > 2 and Nb > 2, any subset containing at least 3 and

2 coefficient vectors can be chosen. Following Assumption 2, all combinations exist,

i.e. the following 6 states are part of the state set Sall:

|ψi,m⟩ =

(
ai

bm

)
, |ψi,l⟩ =

(
ai

bl

)
, |ψj,m⟩ =

(
ak

bl

)
, (37)

|ψk,m⟩ =

(
ak

bm

)
, |ψk,l⟩ =

(
aj

bl

)
, |ψj,l⟩ =

(
aj

bm

)
(38)

According to Lemma 2, these states need to be dividable into linearly independent

subsets that contain only parallel states. According to Lemma 1, any subset of these

states can have at most 2 parallel states.

If we were to split this set of states into linearly independent subsets that contain

parallel states, we have to consider 4 possible cases. We denote the subsets visually by
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black rectangles, such that all states inside a rectangle are parallel and all rectangles

only contain states that are linearly independent with all other states outside their

rectangle, i.e. rectangles contain states that only differ in a global phase.

(i) Case: All states are linearly independent:

|ψi,m⟩ ⊥ |ψk,m⟩ ⊥ |ψj,m⟩ ⊥ |ψi,l⟩ ⊥ |ψk,l⟩ ⊥ |ψj,l⟩ (39)

This is not possible as these states are not linearly independent which can easily

be shown by counterexample:

|ψi,m⟩ − |ψi,l⟩ − |ψj,m⟩ − |ψj,l⟩ =

(
ai

bm

)
−

(
ai

bl

)
−

(
aj

bm

)
+

(
aj

bl

)
= 0 (40)

(ii) Case: 2 arbitrary states are parallel:

|ψi,m⟩ ⊥ |ψk,m⟩ ⊥ |ψi,l⟩ ⊥ |ψk,l⟩ ⊥ |ψj,l⟩ ∥ |ψj,m⟩ (41)

The same counterexample as for Case (i) holds.

(iii) Case: 2 sets contain 2 parallel states:

|ψi,m⟩ ∥ |ψk,l⟩ ⊥ |ψk,m⟩ ⊥ |ψi,l⟩ ⊥ |ψj,l⟩ ∥ |ψj,m⟩ (42)

The same counterexample as for Case (i) holds.

(iv) Case: There are 3 or less linearly independent subsets. This is impossible, as

no set can contain more than 2 parallel states according to Lemma 2.

As the 4 cases cover all possible scenarios, it is not possible to divide Sall as required

by Lemma 1, thereby violating Assumption 3. It is therefore not possible to perform

an error-free high-dimensional Twin-Field protocol. □

6. Discussion

Theorem 1 shows that immediately when going from a binary TF, where each party

chooses between two options, to just adding a single state option (NA > 2 orNB > 2),
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we introduce an unavoidable error, i.e. binary TF QKD is the only form of TF QKD

with no systematic error, s = 0. We showed that the core ideas that allow Twin-Field

to obtain its improved scaling with respect to transmission range results in a system-

atic error, without any assumptions on the physical implementation. Remarkably,

this is not prohibitive for the test basis, i.e. the basis used to ”catch” eavesdroppers.

As the values of the test basis are revealed, one can simply identify all states and

discard the results of all states that are not linearly independent with respect to some

set of states we choose as the correct one, thereby avoiding errors. Nevertheless, this

cannot be done for the actual code basis. Notably, this implies that a reduction

of the number of states in the test basis [33] does not solve the problem, as it is

the code basis alone that prohibits HD-TF. The proof presented so far only shows

that HD-TF is not possible if we require s = 0. One could argue that it might still

be possible by allowing for a small error below the respective QKD threshold. We

argue against this by bounding the minimum error rate in the supplements, see Sec.8.

One remarkable variant of Twin-Field QKD, the so-called Send-No-Send (SNS)

variant [20], is not covered by these considerations, as it allows for states that use

more than a single photon. While its test basis is the same as in the original protocol,

a different code basis is used that does not use phases to convey information but

rather the photon number itself. QKD with a middle station/Charlie requires Charlie

to perform a measurement that works in both bases, i.e. Charlie cannot change his

measurement dependent on the chosen basis. In the case of the SNS protocol, this is

not a problem, as one can do a photon-number resolving measurement (1 photon or

no photon for binary) and the test basis measurement at the same time. This is still

possible when going to higher dimensions but requires the detection of more than one

photon at once, thereby losing the characteristic range-scaling of Twin-Field QKD.

An MDI protocol that we consider similar to a high-dimensional SNS protocol has

been proposed in a recent work [34], where the symbols are encoded in the number

of photons arriving at Charlie.

7. Conclusion

In this work, we considered a generalization of the well-known Twin-Field QKD

protocol to higher dimensions that would keep its excellent range-scaling. We

showed that the independence with which Alice and Bob choose their respective
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state modulation unavoidably leads to a systematic error. Using a conjecture, we

argue that high-dimensional Twin-Field QKD is still not feasible even when allowing

for some systematic error inside the protocol.
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8. Supplements

In this section, we argue that allowing for some error does not allow us to perform

high-dimensional Twin-Field either. We were not yet able to prove this rigorously

for all dimensions, it is therefore formulated as a conjecture.

Conjecture 1: For all values N > 2, the minimum systematic error rate s between

Alice’s and Bob’s version of Z is higher than the maximum toleratable error rate

required for a high-dimensional system, smax(N).

Here, N refers to the number of coefficient vectors each party can choose from, see

Eq. (29). The maximum error rate smax can be lower-bounded using an asymptotical

calculation [26]. In general, the extractable secret key l per symbol can be calculated

using

l = log2(N)− HHD(q + s)− HHD(e+ se), (43)
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N 2 3 4 5 6

smax 0 10.5% 19.5% 25.5% 30.5%

Table 3: Maximum systematic error values for different dimensions.

where q + s is the Quantum Bit Error Rate, s is the systematic error, e + s is the

phase error, and se is the systematic phase error. HHD(x) = −x log2(x/(N − 1)) −
(1− x) log2(1− x). As mentioned in Sec. 6, the values of the test basis are revealed,

and therefore there is no systematic error for the phase error calculation even for

high dimensions, i.e. se = 0. The maximum sustainable error rate smax is then given

by that value s for which

log2(N) = HHD(s). (44)

Example values of smax can be seen in Table 3. As an example, consider again the

measurement and states proposed in Sec. 3 for a 4-dimensional system. By always

assigning the most likely state to each measurement result, the minimum error rate

is 33%, i.e. s = 0.33. Using Eq. (43), this corresponds to a secret key extraction

of l = 0.56 bits per symbol, assuming no additional errors caused by the actual

physical implementation. This is less than the l = 1 bit a binary TF-QKD system

would deliver. It is also less robust to additional physical error, as just an additional

q = e = 4% error caused by the implementation results in l = 0, i.e. no more

secret key extraction is possible. This is compared to the well-known q = e = 11%

in a binary QKD system, i.e. the binary system is more resilient to noise. This is

also what motivated our definition of a high-dimensional QKD system. The main

advantages of a high-dimensional QKD system are its higher key rate per signal and

its resilience to noise. A QKD protocol that uses qudits but cannot have either of

these characteristics should not be considered a (successful) high-dimensional QKD

protocol.

To justify the conjecture, we first consider the case of a 3-dimensional setup. Alice

and Bob both have three coefficient vectors to choose from. There are three different

successful measurement outcomes, each being associated with 3 possible states.

States that share the same measurement outcome, i.e. are parallel, should not share

any coefficient indices. If a measurement result allows for multiple possible states
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with a shared index, the most likely one should always be selected to minimize the

error rate. The other states will never be chosen, resulting already in an 11.1% error

rate for each pair of states that shares the same index and has the same measurement

result assigned. The only possible configuration, up to a permutation of indices, is

therefore the following, where each box denotes states associated with the same

measurement outcome:

|ψ0,0⟩ , |ψ1,2⟩ , |ψ2,1⟩ |ψ2,0⟩ , |ψ1,1⟩ , |ψ0,2⟩ |ψ1,0⟩ , |ψ0,1⟩ , |ψ2,2⟩ (45)

We want to establish a lower bound on the error rate of deciding that the measured

state was |ψ0,0⟩. Due to the symmetry of the problem, the error rate is the same

for all states. Consider a subset of states that share the same second index, these

states cannot be assigned to the same measurement outcome but rather need to be

distinguished:

|ψ0,0⟩ |ψ1,0⟩ |ψ2,0⟩ (46)

To distinguish these three states with minimized error chance we need to minimize

the cumulative overlap A,

A = | ⟨ψ0,0|ψ1,0⟩ |2 + | ⟨ψ0,0|ψ2,0⟩ |2 + | ⟨ψ2,0|ψ1,0⟩ |2. (47)

We assume that the photon is equally likely to be either at Bob or Alice, such that

|ai|2 = |bi|2 = 1/2. In a slight abuse of notation of the inner product, we get

A = | ⟨a0|a1⟩+ 1/2|2 + | ⟨a0|a2⟩+ 1/2|2 + | ⟨a2|a1⟩+ 1/2|2. (48)

This is minimized by arranging the three states a0, a1, and a2 co-planar with 120◦

between all states inside the real plane. The three states |ψ0,0⟩, |ψ1,0⟩, and |ψ2,0⟩ are
symmetric in the sense that each state is the results of applying a unitary operator

V onto its cyclic predecessor,

|ψ1,0⟩ = V |ψ0,0⟩ (49)

|ψ2,0⟩ = V |ψ1,0⟩ (50)

|ψ0,0⟩ = V |ψ2,0⟩ , (51)



On High-Dimensional Twin-Field Quantum Key Distribution 18

where V is the unitary that corresponds to a rotation of 120◦ around the normal

of the plane in Alice’s subspace and identity in Bob’s subspace. We now calculate

the minimum-error measurement [35] that could distinguish just these 3 states. This

locally optimal measurement can only be better as or equal to any measurement

that considers the whole state set. The minimum-error measurement is still an open

problem to find for generic states but solutions have been found for some special

cases, including symmetric pure states [36]. As |ψ0,0⟩, |ψ1,0⟩, and |ψ2,0⟩ are such

symmetric pure states, the optimal minimum-error measurement can be calculated.

The operators are found as [37]

πj = B−1/2 |ψj⟩⟨ψj|B−1/2 =: |µj⟩⟨µj| , (52)

where

B =
3∑

j=1

|ψj⟩⟨ψj| . (53)

The minimum error probability PE is then given by

PE = 1− 1

3

3∑
j=1

| ⟨µj|ψj⟩ |2, (54)

which can be evaluated to PE = 0.209. Clearly, the best measurement on any subset

of states can only perform better or equal to the best measurement on all states.

We can therefore lower bound the error rate of the best global measurement by the

mean of complementary subsets. The two remaining sets are {|ψ0,0, |ψ0,1⟩ , |ψ0,2⟩⟩}
and {|ψ0,0⟩ , |ψ1,1⟩ , |ψ2,2⟩}. For the first set, the same value holds as it is the same

set under symmetry between Alice and Bob. For the latter, the best possible error

rate is 0, as one could choose them to be orthogonal. This allows us to calculate a

lower bound on the best possible error rate using minimum error measurements as

s(N = 3) ≥ (2PE + 1 · 0)/3 = 0.139. (55)

This is already above smax(N = 3) = 10.5%. We expect the true error rate to be

significantly worse (the bound requires the three states |ψ0,0⟩, |ψ1,1⟩, and |ψ2,2⟩ to be

the states |µj⟩ and the minimum-error measurement to be identical for both subsets
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of states, both leading to a contradiction). For 4 dimensions, the error can be bound

by performing the analogous calculation,

s(N = 4) ≥ 2 · 0.5 + 2 · 0 = 0.25. (56)

which again is above the threshold smax(N = 4) = 19.5%.
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