
Research on signalized intersection mixed traffic flow 

platoon control method considering Backward-looking 

effect 

Binghao Fenga, Hui Guob*, Minghui Mac*, Yuepeng Wud, Shidong Liange, Yansong Wangf 

a M.Eng, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China (E-
mail: m310122414@sues.edu.cn)  
b Professor, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 
(E-mail: guohui@sues.edu.cn) 
c Associate Professor, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 
201620, China (E-mail: maminghui@sues.edu.cn) 
d Ph.D. Shanghai Intelligent and Connected Vehicle R&D Center Co. Ltd, Shanghai 201499, China (E-mail: wu.yuepeng@icv-ip.com) 
e Associate Professor, Business School, University of Shanghai for Science and Technology, Shanghai 200093, China (E-mail: 
sdliang@usst.edu.cn)  
f Professor, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 
(E-mail: wysgcd@sues.edu.cn) 

ABSTRACT 

Connected and Autonomous Vehicles (CAVs) technology facilitates the advancement of intelligent 
transportation. However, intelligent control techniques for mixed traffic flow at signalized 
intersections involving both CAVs and Human-Driven Vehicles (HDVs) require further investigation 
into the impact of backward-looking effect. This paper proposes the concept of “1+𝑛+1” mixed platoon 
considering the backward-looking effect, consisting of one leading CAV, 𝑛 following HDVs, and one 
trailing CAV. The leading and trailing CAVs collectively guide the movement of intermediate HDVs 
at intersections, forming an optimal control framework for platoon-based CAVs at signalized 
intersections. Initially, a linearized dynamic model for the “1+𝑛+1” mixed platoon is established and 
compared with a benchmark model focusing solely on controlling the lead vehicle. Subsequently, 
constraints are formulated for the optimal control framework, aiming to enhance overall intersection 
traffic efficiency and fuel economy by directly controlling the leading and trailing CAVs in the platoon. 
Finally, extensive numerical simulations compare vehicle throughput and fuel consumption at 
signalized intersections under different mixed platoon control methods, validating that considering 
both front and backward-looking effects in the mixed platoon control method outperforms traditional 
methods focusing solely on the lead CAV. 
Keywords: Connected and Autonomous Vehicles, Backward-looking Effect, Mixed Traffic Flow, 
Optimal Control, Numerical Simulation Analysis 
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1. Introduction 

With rapid economic development, the global motor vehicle population continues to increase. 
While the gradual popularization of automobiles has facilitated people's travel and improved their 
quality of life, it has also brought about environmental pollution, traffic congestion, safety issues, 
among others. Particularly, urban road traffic problems are becoming increasingly severe, with traffic 
efficiency optimization at signalized intersections being a crucial aspect in addressing urban road 
congestion issues. Existing studies have shown that frequent deceleration and stopping of vehicles 
approaching signalized intersections are the main causes of traffic congestion [1]. Thus, optimizing 
vehicle trajectories near signalized intersections is of great importance. 

In recent years, emerging technologies and theories such as autonomous driving, vehicular 
networking, and big data have provided new insights and possibilities for addressing issues at urban 
road traffic signalized intersections. Among these, the operation mode of vehicle platoons is regarded 
by experts and scholars as a significant direction for the future development of autonomous driving. 
Existing research has demonstrated that the operation mode of vehicle platoons can effectively 
alleviate traffic pressure and achieve overall optimization of the traffic system [2]. However, the 
application scope of fully autonomous vehicle platoon control schemes is currently limited. In real life, 
it may take decades to convert all manually driven vehicles in the current traffic system into connected 
autonomous vehicles [3]. It can be foreseen that in the future road network, a complex situation of 
mixed driving of connected autonomous vehicles and manually driven vehicles will persist for a long 
time, thus highlighting the importance of research on mixed traffic flow. 

Due to the significant potential of mixed traffic flow platoon control in addressing future traffic 
issues at signalized intersections, an increasing number of experts and scholars are attempting to 
improve traffic efficiency by controlling mixed traffic flow near signalized intersections. 

Although many experts and scholars have conducted extensive research on mixed traffic flow, 
signalized intersections, or their combination, a systematic and comprehensive theoretical system has 
not yet been formed. Some research still exhibits certain omissions, and almost all of the following 
models for manually driven vehicles in mixed traffic flow only apply relatively simple and traditional 
following models that consider only the preceding vehicle [4], [5], [6],while rarely employing 
following models that consider the backward-looking effect of vehicles, which is more in line with 
human driving habits. Therefore, the control frameworks or algorithms obtained often are optimal only 
under specific conditions. 

This paper primarily investigates the scenario of coexistence between HDVs and CAVs at 
signalized intersections, aiming to improve the performance of the entire mixed traffic flow through 
the intersection by directly controlling CAVs. Building upon the consideration of the backward-
looking effect of vehicles, this paper disassembles the traffic flow into a "1+n+1" mixed platoon 
microstructure. This structure comprises one leading CAV, 𝑛 following HDVs, and one trailing CAV. 
The leading and trailing CAVs collectively guide the movement of intermediate HDVs, proposing an 
optimal control framework based on platoon for CAVs at signalized intersections. Specifically, the 
main innovations and contributions of this study are summarized as follows: 

（1） Under the premise of considering the backward-looking effect of vehicles, a concept of 

"1+n+1" mixed platoon is proposed and analyzed for trajectory optimization of 

autonomous vehicles at signalized intersections in a mixed traffic flow environment; 



（2） An optimal control framework for the "1+n+1" mixed platoon considering the backward-

looking effect of vehicles is established. The control objective of this framework is to 

enhance the traffic efficiency at signalized intersections while minimizing fuel 

consumption during vehicle travel to the intersection, thereby improving the overall 

performance at signalized intersections under mixed traffic flow conditions; 

（3） Extensive simulation experiments validate that compared to traditional control methods 

focusing solely on the preceding vehicles [34], the proposed optimal control framework 

considering the backward-looking effect can effectively enhance traffic efficiency near 

signalized intersections while reducing fuel consumption. Additionally, the impact of 

different forward and backward-looking influence factors (denoted as p) on the 

effectiveness of the proposed optimal control framework is compared. The results indicate 

the universality of the proposed optimal control framework, which can serve as a reference 

for subsequent research. 

The remaining organization of this paper is as follows: Section 2 provides a brief overview of the 
research status and existing problems in this field. Section 3 demonstrates the specific research 
scenario and establishes the "1+n+1" mixed platoon model. Section 4 presents the corresponding 
optimal control framework for the previously proposed mixed platoon model. In Section 5, simulation 
experiments are conducted to compare and validate the models and control frameworks proposed in 
this paper. Finally, Section 6 concludes the paper. 

2. Literature review 

2.1 Issues and solutions at signalized intersections 

Research on signalized intersections dates back to the 1990s when experts and scholars began 
evaluating the traffic safety and efficiency near these intersections [7], [8], [9]. It was soon identified 
that the frequent driving and stopping behavior of individual vehicles approaching intersections are 
the primary causes of traffic congestion and casualties [10]. To address these issues, various attempts 
have been made. Cunto et al. proposed a systematic procedure for calibrating and validating 
microsimulation models for safety performance evaluation, providing an objective and effective 
method for assessing the safety performance of signalized intersections [11]. Michler et al. studied a 
driver assistance system for improving traffic efficiency at signalized intersections using predictive 
traffic state estimation [12]. With the emergence of vehicular networking technology, the approaches 
to addressing safety and traffic efficiency issues at signalized intersections have diversified. Intelligent 
signal timing adjustment has been considered to influence the safety and efficiency of signalized 
intersections [13], [14]. With the continuous development of vehicular networking technology, 
connected autonomous vehicles can optimize their approach trajectory to intersections in real-time 
based on accurate information about surrounding traffic participants and traffic signal phases, thereby 
achieving higher traffic efficiency and lower fuel consumption. Thus, scholars have proposed 
controlling intersection efficiency directly through controlling connected autonomous vehicles and 
have provided various control methods, including model predictive control or optimal control [15], 



[16], [17], [18], [19], [20]. Additionally, research on cooperative control of connected autonomous 
vehicles has been prioritized in recent years [21], [22]. 

2.2 Mixed traffic flow control 

Research on mixed traffic flow consisting of connected autonomous vehicles and manually driven 
vehicles has gradually emerged in recent years. Yao et al. described the following behavior between 
HDVs and CAVs using different following models, proposing an analysis method for the stability of 
mixed traffic flow and deriving basic diagrams of mixed traffic flow under different CAV penetration 
rates, analyzing the influencing factors of basic diagrams [23]. Ghiasi et al. proposed an analytical 
capability model based on a Markov chain to represent the heterogeneous and stochastic headway 
distance spatial distribution of mixed traffic flow on highways, which allows the examination of the 
impact of different CAV technology schemes on mixed traffic capacity and serves as a useful and 
simple decision-making tool for CAV lane management [24]. Dhatbale et al. applied deep learning 
technology to mixed traffic flow and used it to extract vehicle motion trajectories [25]. 

Regarding signalized intersections under mixed traffic flow, scholars have also conducted various 
discussions. Priemer et al. conducted research on traffic state estimation and traffic signal optimization 
at signalized intersections under mixed traffic flow in 2009 [26]. Many subsequent scholars have 
conducted similar studies [27], [28], [29]. However, the above-mentioned studies do not fully cover 
the research content of signalized intersections under mixed traffic flow. For example, the vehicle 
control and trajectory optimization problems of connected autonomous vehicles have not been fully 
discussed. Some scholars have conducted related research. Du et al. used a hierarchical control 
framework to coordinate a group of connected autonomous vehicles passing through multiple 
signalized intersections [30]. Jiang et al. proposed an ecological driving system for connected 
autonomous vehicles at signalized intersections, which optimizes traffic efficiency by optimizing the 
velocity curve of connected autonomous vehicles [31]. It is evident that these studies focus only on 
improving the performance of connected autonomous vehicles in mixed traffic flow, neglecting the 
overall optimization of mixed traffic flow. Subsequently, scholars recognized this issue and conducted 
related research, attempting to improve intersection traffic performance by constructing mixed 
platoons and achieved some results, but without providing a clear definition of mixed platoons or 
exploring their essence [32], [33]. Only recently, Chen et al. provided a clear definition of mixed 
platoons under certain specific conditions and proposed an optimal control framework for signalized 
intersections applicable in this scenario [34]. 

2.3 Vehicle platoon model considering backward-looking effect 

In the application of following models for human-Driven vehicles, the aforementioned research 
only applied following models considering the influence of preceding vehicles, such as the classical 
optimal velocity model (OVM) and intelligent driver model (IDM). Consequently, the corresponding 
optimal control frameworks were limited to this consideration. However, in real-life driving, especially 
in complex traffic environments such as passing through signalized intersections, people often pay 
attention to vehicles behind them, not just those in front of them. The first to discover and provide a 
clear answer to this issue was Nakayama et al., who proposed a specific following model considering 



the backward-looking Effect (BLOV), which focuses on both preceding and following vehicles [35]. 
Subsequently, many studies have improved, refined, and enhanced based on the BLOV model. For 
example, Sun et al. proposed the backward-looking velocity difference model (BLVD), which assigns 
explicit weights to front and backward-looking effects (implicit in the BLOV model) and considers 
velocity differences [36]. Chen et al. introduced the influence of driver sensory memory on vehicle 
driving based on the consideration of the backward-looking effect, further expanding micro-vehicle 
models [37]. Ma et al. first proposed an extended following model considering the change of headway 
distance with memory based on the BLVD model. Subsequently, combined with connected 
autonomous vehicles and considering both backward-looking effect and multi-vehicle motion 
information, an improved all-connected autonomous vehicle following model was proposed [38], [39]. 

3. Problem statement 

3.1 Scenario setup 

This study investigates a typical signalized intersection scenario under mixed traffic environment, 
where HDVs and CAVs coexist; as shown in Figure 1. Traffic signal lights are deployed at the center 
to guide vehicles through the intersection. It's noteworthy that autonomous vehicles follow instructions 
from the Central Cloud Coordinator, which collects information from all relevant vehicles around the 
intersection and computes the optimal velocity trajectory for each autonomous vehicle. Section 4 
discusses the design of the Central Cloud Coordinator control strategy. 

 



Fig. 1. Illustration of a signalized intersection with mixed traffic flow. Red vehicles represent Connected Autonomous Vehicles (CAVs), 

capable of sending and receiving vehicle information, and fully autonomous. Blue vehicles represent Human-Driven Vehicles (HDVs), 

which can only transmit self-vehicle information to other vehicles and are controlled by a car-following model. 

 

Inspired by previous studies on signalized intersections, this paper divides the intersection into 
three zones, as depicted in Figure 1. The central red square area is referred to as the Merge Zone (MZ), 
where lateral collisions between relevant vehicles may occur. The yellow road area near the center is 
the Control Zone (CZ), where CAVs are directly controlled by the Central Cloud Coordinator. The 
outermost green road area is the Observation Zone (OZ), where the motion behavior of any vehicle is 
generally unrestricted. The specific ranges of each zone will be discussed in Section 4. 

 

3.2 Basic assumptions 

Similar to existing research, the following assumptions are made for the ease of control design at 
signalized intersections, as well as system modeling and dynamic analysis: 
(1) All vehicles are connected vehicles, meaning both CAVs and HDVs can transmit their velocity and 
position to the Central Cloud Coordinator through wireless communication, such as V2I 
communication, under ideal communication conditions without communication delays or packet loss.  
(2) All autonomous vehicles, upon entering the CZ, follow the velocity trajectory assigned by the 
Central Cloud Coordinator for fully autonomous driving. As for HDVs, they are controlled by human 
drivers, and we assume a generic car-following model to describe their driving behavior (see Section 
3.3 for details).  
(3) Lane changing is not allowed in the CZ. Accidental lane-changing behavior may reduce traffic 
efficiency, especially near intersections. Therefore, lane-changing is only permitted in the OZ, whereas 
in the CZ, we only need to focus on the longitudinal behavior of each vehicle.  
(4) Only the state of a single mixed platoon passing through the signalized intersection is considered, 
hence the need to address longitudinal collisions between platoons when multiple mixed platoons are 
operating within the CZ is not required. 
 

3.3 Model establishment 

3.3.1 Benchmark model 

The benchmark model referred to in this paper is the "1+𝑛" mixed platoon model proposed by 
Chen et al. [34], as shown in Figure 2. It consists of a leading CAV and 𝑛 following HDVs. In the 
entire mixed traffic flow, each CAV can be designed as the leader of the mixed platoon to guide the 
motion of the 𝑛 following HDVs, thereby improving the performance of the entire mixed platoon when 
passing through the intersection. 



 

Fig. 2. Illustration of the "1+𝑛" mixed platoon. The solid red arrows represent the information flow of the leading CAV (red), which 

collects information from all subsequent vehicles in the mixed platoon and traffic lights, and has external control input; the black arrows 

represent the information flow of HDVs (blue), which are controlled by human drivers and only receive information from adjacent 

leading vehicles. 

 

However, in this benchmark model, only the influence of adjacent leading vehicles is considered 
for human-driven vehicles (HDVs). In real-life driving scenarios, especially in complex traffic 
environments such as signalized intersections, drivers tend to pay attention not only to the vehicles in 
front but also to those behind. Therefore, by considering the backward-looking effect of vehicles, we 
have established a new mixed platoon model. 

3.3.2 Dynamical modeling of the "1+n+1" mixed platoon system 

This paper proposes the concept of the "1+𝑛+1" mixed platoon, as shown in Figure 3. This model 
consists of a leading CAV, 𝑛 following HDVs, and a trailing CAV. Similarly, in the entire mixed traffic 
flow, each CAV can be designed as the leader or the trailing vehicle of the mixed platoon. Compared 
to the benchmark model, since the HDVs in this model consider the influence of vehicles in both the 
front and rear directions, the leading and trailing CAVs can jointly guide the motion of the 𝑛 HDVs in 
the middle, thereby improving the performance of the entire mixed platoon when passing through the 
intersection. 

 

Fig. 3. Illustration of the "1+𝑛+1" mixed platoon. The solid red arrows represent the information flow of the leading CAV (red), which 

collects information from all subsequent vehicles in the mixed platoon and traffic lights, and has external control input; the red dashed 



arrows represent the information flow of the trailing CAV (red), which collects information from all vehicles in front of the mixed platoon, 

and has external control input; the black arrows represent the information flow of HDVs (blue), which are controlled by human drivers, 

consider the backward-looking effect but also only receive information from adjacent vehicles. 

 

In existing research, many efforts have been made to describe the car-following dynamics of 
HDVs and several important models have been developed, such as OVM and IDM. However, these 
models only consider the interaction of information between the current vehicle and its adjacent 
leading vehicle, ignoring the influence of the trailing vehicle on the current vehicle. Therefore, to better 
conform to the driving habits of people in reality, car-following models for HDVs considering the 
backward-looking effect have been studied, such as the BLOV and BLVD models. Most of these 
models can be interpreted as the following general form: 

𝑣̇௜  (𝑡) =  𝐹 ቀ𝑑௜(𝑡), 𝑑ప
̇ (𝑡), 𝑣௜(𝑡)ቁ                 𝑖 ∈ (1, 𝑛)                                 (1) 

Consider the 𝑛 HDVs in the mixed platoon shown in Figure 2. We represent the position and 
velocity of vehicle 𝑖  at the current time 𝑡  as 𝑥௜(𝑡)  and 𝑣௜(𝑡)  respectively. Then, 𝑑௜(𝑡)  =

 𝑥 ௜ିଵ(𝑡)  −  𝑥௜(𝑡) or 𝑑௜(𝑡)  =  𝑥 ௜(𝑡)  − 𝑥௜ାଵ(𝑡) represents the headway distance of vehicle 𝑖 with 
its adjacent vehicles, and 𝑑ప

̇ (𝑡)  =  𝑣௜ିଵ(𝑡)  −  𝑣௜  (𝑡)  or 𝑑ప
̇ (𝑡)  =  𝑣௜(𝑡)  −  𝑣௜ାଵ (𝑡) represents the 

relative velocity of vehicle 𝑖 with its adjacent vehicles. This implies that the acceleration of vehicle 
𝑖 is determined by the headway distance, relative velocity, and its own velocity. 

In this paper, we require the mixed platoon to pass through the intersection at a predetermined 
equilibrium velocity 𝑣∗ . In the equilibrium traffic state, we have 𝑑ప

̇ (𝑡) = 0 , 𝑖 ∈ (1, 𝑛) , thus each 
vehicle in the mixed platoon has a corresponding equilibrium headway distance 𝑑∗. In this state, (1) 
transforms into (2): 

𝐹(𝑑∗ , 0, 𝑣∗) =  0            𝑖 ∈ (1, 𝑛)                                              (2) 
To assess (𝑑∗, 𝑣∗)  in the equilibrium state, we strike a balance between model fidelity and 

computational tractability while considering the vehicle's backward-looking effect. Eventually, we opt 
to apply the classic BLOV model as the specific car-following model in the optimal control formulation 
in Section IV. In the BLOV model, the general expression (1) for the car-following dynamics of HDVs 
can be represented in the following form: 

𝑣̇௜ = 𝑎{[𝑉ி(𝑥 ௜ିଵ  −  𝑥௜) + 𝑉஻(𝑥 ௜  −  𝑥௜ାଵ)] − 𝑣௜}                                  (3) 
Here, 𝑉ி(𝑥)  serves as the forward-looking OV function, representing the expected velocity-

headway distance function between the current vehicle and the preceding one, while 𝑉஻(𝑥) is the 
backward-looking OV function, representing the expected velocity-headway distance function 
between the current vehicle and the following one. 

We choose two OV functions as 

𝑉ி(𝑥) = 𝑝
௩೘ೌೣ

ಷ

ଶ
[tanh(𝑥 − ℎ௖) + tanh(ℎ௖)]                                      (4) 

𝑉஻(𝑥) = −(1 − 𝑝)
௩೘ೌೣ

ಳ

ଶ
[tanh(𝑥 − ℎ௖) + tanh(ℎ௖)]                                 (5) 

In Equation (4) and (5), ℎ௖ denotes the safety distance for the smooth operation of the vehicle 
platoon, 𝑣௠௔௫

ி  and 𝑣௠௔௫
஻  respectively represent the maximum velocity in the forward and backward 

directions, and 𝑝  is the proportional coefficient for the weighting of forward and backward 
considerations, Abbreviations: forward and backward-looking influence factors. 

For the leading CAV, indexed as vehicle 0, its acceleration signal is utilized as the control input 



𝑢(𝑡) for the lead vehicle. Thus, the longitudinal dynamics of the lead vehicle can be expressed in the 
following second-order form: 

൜
𝑥̇଴(𝑡) = 𝑣଴(𝑡)

𝑣̇଴(𝑡) = 𝑢଴(𝑡)
                                                              (6) 

Similarly, for the trailing CAV, indexed as vehicle n+1, its acceleration signal is utilized as the 
control input 𝑢௡ାଵ(𝑡) for the trailing vehicle. Thus, the longitudinal dynamics of the trailing vehicle 
can be expressed in the following second-order form: 

൜
𝑥̇௡ାଵ(𝑡) = 𝑣௡ାଵ(𝑡)

𝑣̇௡ାଵ(𝑡) = 𝑢௡ାଵ(𝑡)
                                                         (7) 

It is noteworthy that the acceleration signals of the leading and trailing CAVs are the only external 
control inputs to the entire mixed platoon system as shown in Fig. 3. By aggregating the states of these 
two CAVs and the intermediate HDVs, we obtain the complete "1+𝑛+1" mixed platoon system. 

4 Optimal control framework 

After the basic dynamics analysis of the fundamental characteristics of the proposed "1+𝑛+1" 
mixed platoon, in this section, we proceed to establish the optimal control framework for the mixed 
platoon at signalized intersections. 

4.1 Cost function 

In the optimal control framework for the "1+𝑛+1" mixed platoon at the signal intersection, the 
main control objectives are as follows: Firstly, to ensure that the leading CAV arrives at the intersection 
stop line when the traffic signal turns green. Secondly, to control the trailing CAV to approach the 
preceding vehicle as closely as possible, ensuring safety and compact spacing between vehicles in the 
mixed platoon to enhance traffic efficiency when passing through the intersection. Additionally, to 
stabilize the HDVs in the middle at the desired equilibrium velocity 𝑣∗. Furthermore, we also aim at 
minimizing the fuel consumption of the entire mixed platoon as it approaches the intersection. 
Therefore, the cost function is defined as:  

𝐽 =  𝜑(𝑋(𝑡௙))  +  ∫ 𝐿(𝑋(𝑡), 𝑢(𝑡))𝑑𝑡
௧೑

௧బ
                                      (8) 

where 𝑡଴ denotes the time when the leading CAV is about to enter CZ, i.e., the moment it reaches the 
boundary between CZ and OZ, and 𝑡௙ represents the time when the leading CAV is about to enter 
MZ, i.e., the moment it reaches the stop line. The specific selection of 𝑡௙ will be discussed in detail 
in Section 4.4. 

As the terminal cost function in (8), the variable definition 𝜑(𝑋(𝑡௙)) represents the deviation 
between the final state of the system and the desired state. It is defined as: 

𝜑 ቀ𝑋൫𝑡௙൯ቁ =  𝜔ଵ൫𝑥଴൫𝑡௙൯ − 𝑥௦௧௔௥൯
ଶ

+  𝜔ଶ ∑ ൫𝑣௜൫𝑡௙൯ − 𝑣∗൯
ଶ௡ାଵ

௜ୀ଴ + 𝜔ଷ ቀ𝑥଴൫𝑡௙൯ − 𝑥௡ାଵ൫𝑡௙൯ቁ
ଶ

  (9)                                    

In Equation (9), 𝜔ଵ、𝜔ଶ、𝜔ଷ are penalty weight coefficients for the position deviation of the 
leading CAV, the velocity deviation of all vehicles in the mixed platoon, and the position gap deviation 

between the leading and trailing CAV of the mixed platoon, respectively. 𝑥଴൫𝑡௙൯ represents the actual 



position of the leading CAV at 𝑡=𝑡௙, and 𝑥௡ାଵ൫𝑡௙൯ represents the actual position of the trailing CAV 

at 𝑡=𝑡௙. 𝑥௦௧௔௥ denotes the final target position of the leading CAV, i.e., the location of the intersection 
stop line. The specific selection of the ideal equilibrium velocity 𝑣∗ for CAV and the target position 
𝑥௦௧௔௥ will be discussed separately in Sections 4.2 and 4.3. 

In Equation (8), 𝐿(𝑋(𝑡), 𝑢(𝑡)) represents the transient fuel consumption of the mixed platoon at 
time 𝑡, defined as: 

𝐿൫𝑋(𝑡), 𝑢(𝑡)൯ =  𝐺଴(𝑡) + ∑ 𝐺௜(𝑡)௡
௜ୀଵ + 𝐺௡ାଵ(𝑡)                                   (10) 

Here,𝐺଴(𝑡)和𝐺௜(𝑡),(𝑖 = 1, ⋯ , 𝑛),𝐺௡ାଵ(𝑡)represent the transient fuel consumption of the leading 
CAV, the following HDVs, and the trailing CAV, respectively. We employ Akcelik's fuel consumption 
model as a specific model to calculate transient fuel consumption [40]. 

𝐺௜(𝑡)  =  𝛼 +  𝛽ଵ𝑃்(𝑡)  + (𝛽ଶ𝑚𝑎௜(𝑡)^2𝑣௜(𝑡))௔೔(௧)வ଴                              (11) 

Here, 𝑚 represents the vehicle mass, (𝛽ଶ𝑚𝑎௜(𝑡)^2𝑣௜(𝑡))௔೔(௧)வ଴ denotes the additional inertial 

(engine/internal) resistance power when the vehicle accelerates. Here, 𝛼  stands for the idle fuel 
consumption rate, and 𝑃் represents the total power driving the vehicle, which includes engine drag 
power, rotational inertia, air friction, and other energy losses; it can be calculated as follows: 

𝑃்(𝑡)  =  𝑚𝑎𝑥 {0,  𝑑ଵ𝑣௜(𝑡)  + 𝑑ଶ𝑣௜(𝑡)ଶ  +  𝑑ଷ𝑣௜(𝑡)ଷ  +  𝑚𝑎௜(𝑡)𝑣௜(𝑡)}                 (12) 
As suggested by Akcelik, we consider typical settings for the parameter values in Akcelik's fuel 

consumption model (11) and (12). For specific data, please refer to Table 1. 

4.2 Terminal velocity 

In this section, we will discuss how to design the desired equilibrium velocity 𝑣∗, which also 
represents the terminal velocity in the terminal cost function (9). Existing research has mainly focused 
on the individual control of autonomous vehicles, and to improve intersection efficiency, the terminal 
velocity of autonomous vehicles is typically set to the maximum velocity limit; see Asadi and Vahidi 
[17] and Jiang et al. [20]. However, considering the presence of other HDVs at intersections, such 
settings in the aforementioned works may not be the optimal choice for the entire mixed intersection. 
Chen et al. [34] provide us with a new approach to design the desired equilibrium velocity. 

 
Fig.4. The relationship between the equilibrium velocity of the mixed platoon (i.e., terminal velocity) and the number of HDVs passing 



through, as BLOV model is adopted as the car-following model with parameters shown in Table 1. As the equilibrium velocity increases, 

the equilibrium headway distance between vehicles increases, and the number of vehicle passages within a certain green light time first 

rises and then falls. Therefore, for a constant flow rate, there exists a maximum equilibrium velocity value that maximizes the number 

of HDVs passing through, as shown by the peak in the right graph. 

 

When designing the terminal velocity, our objective is to maximize the number of vehicles passing 
through the intersection in a certain green light phase duration 𝑇௚௥௘  . Taking a "1+𝑛+1" mixed 
platoon as an example, from the equilibrium (2) of the HDV-following model, it is evident that the 
equilibrium headway distance 𝑑∗ depends on the equilibrium velocity 𝑣∗. For a constant green light 
phase duration, our optimization goal is to maximize the number 𝑛 of HDVs passing through during 
𝑇௚௥௘௘௡. Hence, we can obtain the following result. 

The optimal velocity 𝑣∗ can be obtained by solving the following optimization problem: 

argmax୴∗                  𝑛 =
௩∗

೒்ೝ೐೐೙

ௗ∗
                                                (13) 

subject to :     𝐹(𝑑∗ , 0, 𝑣∗) =  0    

Recalling that we derived an explicit expression 𝐹(∙) for the HDV-following model using the 
BLOV model (3). Inspired by Nakayama and Sugiyama [35] and Ma et al. [38], we set the relevant 
parameters as follows, based on typical parameter settings for the BLOV model, as shown in Table 1. 
When the traffic light turns green, the leading CAV is expected to reach the stop line. Therefore, if the 
mixed platoon is in equilibrium at this time, the CAVs at both ends and the HDVs in the middle will 
travel at the same velocity, i.e., 𝐹(∙) = 𝑣̇௜ = 0, which applies simultaneously to any vehicle in the 
mixed platoon in equilibrium. Thus, we obtain the relationship between velocity and headway distance 
at equilibrium based on the BLOV model as follows. 

𝑑௜ = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ ቀ
௩೔

ଶ௣ିଵ∗଴.ହ௩೘ೌೣ
− tanh (ℎ𝑐)ቁ + ℎ𝑐                                   (14) 

From Figure 4, it can be observed that at equilibrium, the equilibrium headway distance of vehicles 
is typically a monotonically increasing function relative to the equilibrium velocity. There also exists 
a maximum number of vehicles corresponding to the optimal equilibrium velocity 𝑣∗ and equilibrium 
headway distance 𝑑∗. The optimal terminal velocity 𝑣∗ can be obtained by solving (13). 

4.3 Constraints 

To implement the designed CAV controller in practice, several constraints need to be considered, 
including process constraints and terminal constraints. 

In terms of process constraints, the first concern is the safety constraint for the entire mixed platoon, 
ensuring that each vehicle in the mixed platoon maintains a minimum safe distance 𝑑௦௔௙௘ from the 
preceding vehicle. Here, 𝐿௩௘௛represents the length of the vehicle. 

𝑥 ௜ିଵ(𝑡) −  𝑥௜(𝑡) − 𝐿௩௘௛ ≥ 𝑑௦௔௙௘ , for t଴ ≤ t ≤ t୤, i = 1,2, ⋯ , n + 1                    (15) 
Next is the effectiveness constraint for the trailing CAV in the mixed platoon. To ensure that the 

trailing CAV effectively closes in on the preceding vehicle within the entire control zone, its distance 
from the front vehicle must be maintained within a certain range, specifically between the minimum 
safe distance 𝑑௦௔௙௘ and the safe gap for smooth vehicle operation ℎ௖. 

𝑑௦௔௙௘ + 𝐿௩௘௛ ≤ 𝑥 ௜ିଵ(𝑡) −  𝑥௜(𝑡) ≤ ℎ௖ , for t଴ ≤ t ≤ t୤, i = n + 1                      (16) 
Finally, there are practical constraints on the velocity and acceleration values of each vehicle in 



the mixed platoon. 𝑣௠௔௫ represents the maximum velocity, while 𝑎௠௜௡ and 𝑎௠௔௫ represent the 
minimum and maximum accelerations, respectively. Therefore, they must satisfy the following: 

0 ≤ 𝑣௜(𝑡) ≤ 𝑣௠௔௫ , for t଴ ≤ t ≤ t୤, i = 0,1,2, ⋯ , n + 1                               (17) 
𝑎௠௜௡ ≤ 𝑎௜(𝑡) ≤ 𝑎௠௔௫, for t଴ ≤ t ≤ t୤, i = 0,1,2, ⋯ , n + 1                            (18) 
For terminal constraints, our main focus is on the terminal positions of the leading and trailing 

CAVs. Recall that the deviation of the terminal position 𝑥଴൫𝑡௙൯ of the leading CAV from the target 

position 𝑥௦௧௔௥ has already been accounted for in the terminal cost function (9). As for the trailing CAV, 

there is no fixed terminal position 𝑥௡ାଵ൫𝑡௙൯  relative to a predefined target position. The control 

objective for the trailing CAV has been clearly expressed in the terminal cost function (9), and 
constraints on its terminal position are already included in the process constraints (16). Therefore, here, 
we only need to add an inequality constraint, requiring that the leading CAV neither overshoots the 
stop line nor maintains a large distance from it, as follows: 

0 ≤ 𝑥଴൫𝑡௙൯ ≤ 𝑥଴
௠௔௫(𝑡௙)                                                       (19) 

where 𝑥଴
௠௔௫ represents the maximum tolerance distance of the leading CAV from the stop line. 

In the control of mixed traffic flow at signalized intersections, if the terminal time 𝑡௙  and the 

corresponding terminal position 𝑥଴൫𝑡௙൯  are fixed in advance, similar to single CAV control 

algorithms, the feasible region of control inputs for the leading CAV in this case would be greatly 
restricted, potentially compromising the optimal performance of the entire mixed platoon system. 

4.4 Optimal control formulation 

Bringing together the design of the above cost function and the constraint conditions, the overall 
optimal control problem can be formulated as: 

𝑎𝑟𝑔𝑚𝑖𝑛௨బ(௧),௨೙శభ(௧) 𝐽 =  𝜑 ቀ𝑋൫𝑡௙൯ቁ + ∫ 𝐿൫𝑋(𝑡), 𝑢(𝑡)൯𝑑𝑡
௧೑

௧బ
                          (20) 

subject to : (3),(4),(5),(15),(16),(17),(18),(19). 
Before solving problem (20), it is necessary to first compute the optimal terminal velocity 𝑣∗ by 

solving problem (13). Additionally, the terminal time 𝑡௙ needs to be determined beforehand, which 
is the subject of our discussion next. 

Regarding the determination of the terminal time 𝑡௙, we first refer to the approach proposed by 
Asadi and Vahidi [17]. This paper suggested a practical method for selecting the target green phase 
window after obtaining the traffic phase diagram in advance using V2I technology, as follows: 

     ൣ𝑣௟௢௪, 𝑣௛௜௚௛൧ = ൤
஽ೖ

௥ೕି௧
,

஽ೖ

௚ೕି௧
൨ ∩ [𝑣௠௜௡, 𝑣௠௔௫]                                         (21) 

In Equation (21), 𝐷௞ represents the distance from CAV 𝑘 to the stop line; 𝑡 denotes the current 
time; 𝑟௝ is the start time of the next red light phase; 𝑔௝ is the start time of the next green light phase; 
𝑣௠௜௡ and 𝑣௠௔௫ are the velocity limits for CAVs. Considering the green light time from (13), we have 

𝑇௚௥௘௘௡ = 𝑟௝−𝑔௝, where 𝑇௚௥௘௘௡ > 0. The non-empty intersection [𝑣௟௢ ，𝑣௛௜௚௛] in (21) represents 

the feasible velocity window that allows CAVs to pass through the intersection without idling. Then, 



to maximize the number of vehicles passing through within a certain green phase, CAVs obtain the 

target velocity 𝑣௧௔௥௚௘௧  = 𝑣௛௜௚௛, and subsequently, the corresponding terminal time 𝑡௙  =
஽ೖ

௩೟ೌೝ೒೐೟
 can 

be calculated. 
However, in our study, there exists an optimal terminal velocity as designed in Section 4.2. If the 

target velocity is set to the maximum velocity 𝑣௠௔௫, then optimizing the velocity trajectory becomes 
meaningless. Therefore, we also refer to Chen et al. [34] and optimize (21), yielding the following: 

ൣ𝑣௟௢௪, 𝑣௛௜௚௛൧ = ൤
஽ೖ

௥ೕି௧
,

஽ೖ

௚ೕି௧
൨ ∩ ቂ𝑣௠௜௡,

௩೘ೌೣା௩∗

ଶ
ቃ                                     (22) 

Where 𝑣∗ represents the optimal velocity calculated from (13). Similar to (21), for the non-empty 

intersection ൣ𝑣௟௢௪, 𝑣௛௜௚௛൧ , the target velocity 𝑣௧௔௥௚௘௧  = 𝑣௛௜௚௛  is chosen. The corresponding 

terminal time is then calculated as 𝑡௙  =
஽ೖ

௩೟ೌೝ೒೐೟
. With this approach, the terminal time in the cost 

function (8) of the optimal control formulation is determined. 
In summary, the optimal control formulation (20) is now fully defined. To solve problem (20) 

numerically, as it is a high-order nonlinear optimal control problem, we can use the pseudo-spectral 
method to transform it into a nonlinear programming (NLP) problem [41]. Alternatively, several 
practical software toolkits can be utilized to solve this problem directly; for example, the PYSWARM 
(Python Optimization) toolkit. 

5 Simulation results and discussion 

In this section, we conducted large-scale traffic simulation experiments, which involved 
implementing and evaluating the optimal control framework proposed in Section 4 considering the 
backward-looking effect, using particle swarm optimization algorithm. We compared this framework 
with scenarios where no control was applied to the vehicle platoon at the signalized intersection and 
with the optimal control framework of the "1+𝑛" mixed platoon proposed by previous researchers, 
which only considered adjacent leading vehicles. 

5.1 Simulation environment and parameters 

In the experiments conducted in this paper, we utilized Python version 3.10.9 to establish the 
simulation environment, which involved creating a virtual signalized intersection scenario. During 
each simulation run, a mixed platoon was generated at the beginning of each loop. We assumed that 
the leading and trailing vehicles in each mixed platoon were CAVs, while the remaining vehicles were 
randomly generated as CAVs or HDVs based on the CAV penetration rate. The initial velocity and 
headway distance of each vehicle in the mixed platoon were randomly generated while ensuring safety. 
Subsequently, we determined the simulation timestep by balancing the total simulation duration and 
fidelity. Specific simulation parameters are provided in Table 1. The simulations were executed on an 
Intel Core i7-12700K processor. 
Table1 

Parameters in the simulation 



Type Parameters(unit) Values 

Vehicle 𝑣௠௜௡(𝑚/𝑠) 0 

 𝑣௠௔௫, 𝑣௠௔௫
ி , 𝑣௠௔௫

஻ (𝑚/𝑠) 15 

 𝑎௠௔௫(𝑚/𝑠ଶ) 3 

 𝑎௠௜௡(𝑚/𝑠ଶ) -6 

 ℎ௖(𝑚) 20 

 𝑝 

𝑎(𝑠ିଵ) 

𝜔ଵ 

𝜔ଶ 

𝜔ଷ 

𝐿௩௘ℎ(𝑚) 

𝛼(𝑚𝐿/𝑠) 

𝛽ଵ(𝑚𝐿/𝑠) 

𝛽ଶ(𝑚𝐿/(𝑘𝐽 ⋅ 𝑚/𝑠ଶ)) 

𝑑ଵ(𝑘𝑁) 

𝑑ଶ(𝑘𝑁/(𝑚/𝑠)) 

𝑑ଷ(𝑘𝑁/(𝑚/𝑠)^2) 

𝑚(𝑘𝑔) 

0.9 

0.85 

10ହ 

10ସ 

10ଶ 

5 

0.666 

0.072 

0.0344 

0.0269 

0.0171 

0.000672 

1680 

Infrastructure Control zone length (m) 300 

 Observation zone length (m) 500 

Simulation ∆𝑡(𝑠) 0.5 

5.2 Validity analysis 

This paper primarily validates the effectiveness of the proposed optimal control framework by 
comparing and analyzing the average time taken by vehicles to pass through the control zone, the 
corresponding average headway distance, and the actual maximum number of vehicles passing through 
the intersection within the same green phase. Three scenarios were examined: (a) a mixed platoon with 
no control, (b) a mixed platoon with only the leading CAV controlled, and (c) a mixed platoon with 
both the leading and trailing CAVs controlled simultaneously. 



 
Fig.5. For the scenario with MPR = 50%, trajectory plots were generated for three cases within the same traffic light cycle: no control, 

"1+n" mixed platoon control, and "1+n+1" mixed platoon control. Each set of plots includes an overall view of the entire simulation 

process as well as detailed zoomed-in views of the control zone. Solid lines represent the trajectories of CAVs, while dashed lines 

represent the trajectories of HDVs. 

Table2 

Traffic efficiency comparison of the three control methods 

 No control “1+n” control “1+n+1” control 

Average travel time(s) 29.07 27.12 24.78 

Average headway distance(m) 21.51 18.75 17.56 

Idling time (s) 22.60 0 0 

 
Here, the paper simulated the scenario with a CAV Market Penetration Rate (MPR) of 50%, which 



corresponds to distributing nearly equal numbers of CAVs and HDVs randomly in each mixed platoon 
for the three aforementioned scenarios. In Figure 5, three sets of vehicle trajectories are depicted, 
representing a mixed platoon with no control input (a), a mixed platoon with only the lead CAV 
controlled (b), and a mixed platoon with both the lead and tail CAVs controlled (c). It is evident from 
Figure 5 that the initial states of the mixed platoons in all three scenarios are identical.  

In Figure 5 (a), due to the absence of any control input for the first vehicle in the mixed platoon, 
it moves freely towards the stop line at the signalized intersection when the traffic signal is red, causing 
subsequent vehicles to queue up due to the red light, resulting in idling and fuel wastage.  

In Figure 5 (b), under "1+n" mixed platoon control, the platoon no longer queues up, and the lead 
CAV guides the following HDVs through the intersection at appropriate velocity, thereby improving 
the traffic efficiency and fuel economy of the mixed platoon to some extent when passing through the 
signalized intersection. However, combining this with the observations from Table 2, it can be noted 
that due to the lack of tail vehicle control and the absence of consideration for the backward-looking 
effect, the improvement in traffic efficiency when the mixed platoon passes through the signalized 
intersection under "1+n" mixed platoon control is not particularly significant, and the headway 
distance between adjacent vehicles remains slightly large. 

In Figure 5 (c), due to the "1+n+1" mixed platoon control method considering the backward-
looking effect of vehicles, coupled with the findings from Table 2, it can be observed that the headway 
distance between adjacent vehicles significantly decreases. The average time for vehicles to pass 
through the control zone also decreases noticeably. Consequently, the number of vehicles passing 
through the intersection within the same green light phase significantly increases, demonstrating the 
substantial effectiveness of the proposed "1+n+1" mixed platoon control method in enhancing traffic 
efficiency at signalized intersections. 

 
Fig.6. A comparative diagram illustrating the maximum number of vehicles passing through under different green light phase durations 

for the three control methods. The horizontal axis represents the duration of the green light phase, while the vertical axis represents the 

maximum number of vehicles passing through. 

 

To further demonstrate the significant improvement in traffic efficiency at signalized intersections 
brought about by the proposed "1+n+1" mixed platoon control method, we present a schematic 



diagram illustrating the maximum number of vehicles passing through under different green light 
phase durations for the three control methods, as shown in Figure 6. It is easy to observe that regardless 
of the duration of the green light phase, controlling the mixed platoon consistently enhances traffic 
efficiency at signalized intersections. However, as previously analyzed, under the "1+n" mixed platoon 
control, due to the lack of consideration for vehicle backward-looking effects within the platoon, the 
vehicles in the platoon do not follow closely enough, resulting in a less significant improvement in 
traffic efficiency compared to the uncontrolled state. 

In contrast, under the proposed "1+n+1" mixed platoon control method, we can see a relatively 
significant improvement in traffic efficiency at signalized intersections compared to both the 
uncontrolled state and the "1+n" mixed platoon control, across various durations of the green light 
phase. Upon careful analysis, we notice that as the duration of the green light phase increases, the 
ability of the "1+n+1" mixed platoon control method to improve traffic efficiency slightly decreases. 
This is because with an increasing number of vehicles passing through per unit time under constant 
control area length, more time is required for the control applied to the tail CAV to propagate through 
the entire platoon to achieve a stable state. In such cases, we can adjust the length of the control area 
appropriately to achieve our control objectives. The specific impact of the control area length on the 
proposed "1+n+1" mixed platoon control method will be further discussed in Section 5.3. 

 



Fig.7. The comparative schematic diagram illustrates the velocity, acceleration, and cumulative fuel consumption of Vehicle 6 under two 

control methods within the control area. 

Table3 

Fuel consumption comparison of the two control methods 

Vehicle number “1+n” control(L) “1+n+1” control(L) 

1 0.154 0.109 

2 0.104 0.079 

3 0.101 0.065 

4 0.087 0.072 

5 0.087 0.072 

6 0.088 0.072 

7 0.047 0.058 

8 0.044 0.044 

9 0.046 0.033 

10 None 0.033 

11 None 0.034 

12 None 0.127 

Average fuel consumption 0.084 0.066 

 

To demonstrate that the "1+n+1" mixed platoon control method proposed in this paper can also 
improve fuel economy for vehicles, we present the performance of a single vehicle (identified as 
Vehicle 6) in Figure 7. We compare the variations in velocity, acceleration, and fuel consumption of 
the same vehicle under two control methods. In Figure 7(a), under "1+n" mixed platoon control, 
Vehicle 6 does not decelerate to zero, avoiding prolonged engine idling. However, the vehicle's 
acceleration and deceleration are too large, which can also lead to decreased fuel economy. In contrast, 
under "1+n+1" mixed platoon control, although the acceleration and deceleration cycles of Vehicle 6 
increase, the variation in velocity significantly reduces, resulting in smoother vehicle trajectories and 
improved fuel economy. Consequently, the entire platoon is also more likely to stabilize. Overall, the 
accumulated fuel consumption for Vehicle 6 within the control area under "1+n" mixed platoon control 
is approximately 0.09 liters, whereas under "1+n+1" mixed platoon control, it is only 0.07 liters. 
Additionally, as shown in Table 3, both the individual vehicle fuel consumption and the average 
platoon fuel consumption are lower under "1+n+1" mixed platoon control compared to "1+n" mixed 
platoon control, indicating better fuel economy. 



5.3 Sensitivity analysis 

 
Fig.8. Under "1+n+1" mixed platoon control, the average time for each vehicle to pass through the control area in platoons composed of 

different numbers of vehicles under different forward and backward-looking influence factors 𝑝 is illustrated in Figure 8. The horizontal 

axis represents the number of vehicles in the platoon, while the vertical axis represents the average time for each vehicle in the platoon, 

excluding the lead and tail vehicles, to pass through the control area. 

 

As shown in Figure 8, we present the average time for mixed platoons composed of different 
numbers of vehicles to pass through the control area under different forward and backward-looking 
influence factors 𝑝. The forward and backward-looking influence factor 𝑝 is a crucial parameter in 
the car-following models that consider backward-looking effects. When 𝑝=1, the car-following model 
considering backward-looking effects transforms into a conventional model that only considers 
vehicles in front. Therefore, selecting an appropriate 𝑝  is a crucial issue that many experts and 
scholars must address when establishing models considering backward-looking effects. 

In this paper, the primary consideration for selecting 𝑝  is how to maximize the efficiency of 
mixed vehicle platoons when approaching signalized intersections. Therefore, we present Figure 8, 
from which we can observe that when 𝑝=0.85, the average time for the platoon to pass through the 
control area is relatively long. This is because when we focus too much on the rear vehicles, it tends 
to reduce the attention to the front vehicles, resulting in a decrease in the overall follow-up density of 
the platoon, where the platoon's follow-up density refers to the relative velocity and headway distance 
of each vehicle in the platoon.  

However, when 𝑝=0.95, we find a significant decrease in the time for the platoon to pass through 
the control area compared to when 𝑝=0.85. This is because at this time, the vehicles in the platoon 
pay too much attention to the front vehicle. When there are fewer vehicles, the relative velocity of the 
vehicles in the platoon are naturally higher. However, we find that when the number of vehicles in the 
platoon reaches a certain level, the overall average travel time of the platoon will increase. This is 
because at this time, due to insufficient attention to the rear vehicles in the platoon, the control effect 



added to the last vehicle in the platoon has a small effect on all vehicles in the front platoon, and it also 
takes more time for this control effect to be transmitted to the vehicles closer to the front of the platoon. 
This leads to an increase in the headway distance between vehicles, and the overall follow-up density 
of the platoon is not too high. It is foreseeable that when the number of vehicles in the platoon is large 
enough, the effect of controlling the rear vehicles to influence the front platoon will completely fail.  

When 𝑝=0.9, we find that regardless of the number of vehicles in the platoon, the average time 
for the platoon to pass through the control area is lower than the previous two cases. This is because 
at this time, the vehicles in the platoon have reached a relatively balanced point in terms of attention 
to both the front and rear directions. In this case, each vehicle in the platoon maintains a relatively high 
travel velocity and a relatively small headway distance, resulting in a relatively optimal overall follow-
up density of the platoon. It is also noticeable that when 𝑝=0.9, as the number of vehicles in the platoon 
increases, the average travel time of the platoon will decrease, which further illustrates that the 
backward-looking effect of the vehicles in the platoon will not decrease or even fail as the number of 
vehicles increases. At this point, the platoon has reached a relatively perfect operating state. This also 
demonstrates the universality of the proposed control framework and can provide some reference for 
subsequent research. 

Furthermore, this study also presents the variations in the average velocity of mixed platoons 
composed of different number of vehicles under different forward and backward-looking influence 
factors 𝑝, as shown in Figure 9. It is observed that when 𝑝=0.9, regardless of the number of vehicles 
in the platoon, the magnitude of change in the average travel velocity of the platoon has a significant 
advantage over the other two groups. At the same time, as the number of vehicles in the platoon 
increases, the stability of the platoon also gradually improves, once again demonstrating the 
universality of the optimal control framework proposed in this paper, and adopting 𝑝 =0.9 is a 
relatively optimal choice. 

 
(a) p=0.85                            (b) p=0.9                             (c) p=0.95 

Fig.9. Graph showing the average velocity variation of platoons composed of different number of vehicles under different forward and 

backward-looking influence factors 𝑝 in the "1+n+1" mixed platoon control scenario. 



 

Fig.10. Graph showing the impact of different lengths of control zones (CZ) on the headway distance of vehicles in the platoon under 

the "1+n+1" mixed platoon control scenario. The yellow, green, and red curves represent the variation of the headway distance of the 

3rd, 6th, and 9th vehicles in the platoon over time, respectively. 

We also conducted targeted analysis on the length of the control zone (CZ), as shown in Figure 
10, where curves depicting the variation of the headway distance of the 3rd, 6th, and 9th vehicles in 
the platoon, respectively, are provided for CZ = 250 m, CZ = 300 m, and CZ = 350 m. Given our earlier 
assumption that communication delay and packet loss are not considered throughout the control 
process, the length of the control zone does not affect the effectiveness of the central coordinated 
controller in transmitting information to vehicles. Here, we focus solely on whether vehicles in the 
platoon can stably travel near the stop line and the time required to achieve stability. 

By observing the aforementioned figures, we can easily observe that when CZ = 250 m, the 
amplitude of the variation in the headway distance of the 3rd and 6th vehicles near the front and middle 
of the platoon respectively increases with time without convergence. This is because when the length 
of the control zone is short, the platoon often fails to form a stable state before the leading CAV passes 
through the control zone, while the trailing CAVs cannot directly influence the vehicles near the front. 
As a result, the entire platoon passing through the control zone fails to form a stable state, and the 
spacing between vehicles is relatively large, leading to relatively poor traffic efficiency. 

However, when CZ = 300 m and CZ = 350 m, we observe that vehicles in different parts of the 
platoon can converge to a relatively stable headway distance at a faster rate. By comparison, when CZ 
= 350 m, vehicles in the platoon can begin adjusting their headway distance and achieve stability at an 
earlier stage, although the difference in the time it takes to form a stable platoon is negligible. One of 
the final control objectives of this study is for the platoon to achieve stability before reaching the stop 
line at the signalized intersection. Therefore, whether it happens a bit earlier or later has little impact 
on the control objective. However, in practice, excessively long control zones are impractical as drivers 



do not consider whether they can pass through the intersection when the traffic light is still far away. 
In conclusion, too short control zones cannot achieve the control objectives of the "1+n+1" mixed 

traffic control method proposed in this paper, while excessively long control zones make it difficult to 
apply the theory to practice. Therefore, selecting an appropriate control zone length is essential. 

6 Conclusions 

The CAV control method proposed in this paper for mixed traffic flow through signalized 
intersections, considering the vehicle's backward-looking effect, namely the "1+n+1" mixed platoon 
control method, can effectively improve the maneuverability at signalized intersections. It offers 
greater advantages compared to traditional mixed traffic flow control methods that only consider the 
leading vehicle, such as higher traffic efficiency and lower fuel consumption. Through rigorous 
theoretical analysis and extensive simulation verification, this paper demonstrates that the proposed 
mixed platoon control method is controllable, stable, and has a certain universality. The optimal control 
framework of this paper is established based on considering the velocity deviation and fuel 
consumption of the entire mixed traffic flow, optimizing vehicle velocity when passing the stop line at 
signalized intersections to maximize traffic flow within a single green phase. 

However, there are still some limitations in the current research. For example, it is difficult to 
shorten the length of the control zone as much as possible. Based on considering the vehicle's 
backward-looking effect, the time for the platoon to form stable travel is often long. Future 
improvements can be made by enhancing the vehicle-following models considering the backward-
looking effect, allowing the platoon to reach a stable state more quickly, thus shortening the control 
zone. Additionally, the CAVs controlled in this paper are only the leading and trailing CAVs in the 
mixed traffic flow, while the vehicles guided in the middle of the mixed flow consist of both HDVs 
and CAVs. However, we have treated all guided vehicles as manually driven HDVs. In the future, 
employing cooperative control algorithms to simultaneously control multiple CAVs to further improve 
the overall performance of mixed traffic flow through intersections will be an interesting research topic. 
Lastly, this paper only focuses on the longitudinal control of vehicles and does not address lane-
changing behavior. Resolving lane-changing issues for CAVs and HDVs is also an important research 
direction in the future. 
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