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This article introduces a novel approach to perform the simulation of a single qubit quantum
algorithm using laser beams. Leveraging the polarization states of photonic qubits, and inspired
by variational quantum eigensolvers, we develop a variational quantum algorithm implementing a
clustering procedure following the approach proposed by some of us in SciRep 13, 13284 (2023).
A key aspect of our research involves the utilization of non-orthogonal states within the photonic
domain, harnessing the potential of polarization schemes to reproduce unitary circuits. By mapping
these non-orthogonal states into polarization states, we achieve an efficient and versatile quantum
information processing unit which serves as a clustering device for a diverse set of datasets.

Introduction.- In recent years, the field of quantum
computing has witnessed a surge in novel proposals for
quantum algorithms, many of which are strategically tai-
lored to thrive in the Noisy Intermediate-Scale Quan-
tum (NISQ) era, a period characterized by the pres-
ence of error-prone quantum hardware [1, 2]. While
quantum technology continues to evolve, the quest for
more robust and reliable quantum algorithms remains
paramount. Amidst this dynamic landscape, the ability
to simulate quantum algorithms using classical comput-
ers for practical applications has not lost its relevance. As
quantum algorithms diversify across different quantum
computing architectures, a parallel trend is emerging: the
development of increasingly efficient classical simulation
methods. A good example of these methods are Ten-
sor Networks [3], which have proven recently capable of
simulating the complex dynamics of many-qubit systems
[4, 5]. In addition, classical platforms are continually be-
ing innovated to replicate qubit behaviors, adding to the
repertoire of simulation tools [6, 7].

In this paper, we introduce an alternative approach
to simulate variational quantum algorithms [8] by lever-
aging the capabilities of a photonic device as a ded-
icated processing unit. By using light, we can repli-
cate single-qubit rotations, therefore being able to im-
plement tasks such as Variational Quantum Eigensolvers
(VQE) [9] and Variational Quantum Clustering (VQC)
[10]. Photonic quantum devices offer some inherent char-
acteristics which make them compatible for such purpose:
(i) they present a processing unit which can be entirely
mapped to the logical gates of a single-qubit circuit, (ii)
they provide accurate control over noise, and (iii) they
can be eventually scaled-up introducing actual quantum
regimes for the input state. Using such architecture, we
implement a photonic version of the quantum clustering
algorithm in Ref.[10] for a single qubit. This particu-
lar algorithm has a simple structure that allows it to be
implemented on NISQ devices, so that it can be run on
a single qubit-like device as in this case. Therefore, our
photonic classical device mimicks the behavior of a quan-

tum circuit for a single qubit. Our results are a first test
of the capabilities of such a classical platform to simulate
quantum algorithms.

Method.- The algorithm at the core of this experi-
ment is an unsupervised quantum clustering algorithm,
designed for the classification of data points within a
given dataset where no prior information about the sys-
tem is available [11]. In such a scenario there is no
training stage, and the implementation follows that of
Ref.[10], where a variational quantum circuit is optimized
self-consistently so as to minimize the distance between
points and cluster centroids. As explained in that refer-
ence, the procedure iteratively optimizes a set of varia-
tional parameters based on a reference cost function to
determine the optimal configuration for the dataset. No-
tably, this approach relies solely on the intrinsic features
of the dataset without any prior labeling.
To achieve this, the first step is to design a cost func-

tion. This cost function is built in such a way that its
minimization provides the configuration of the optimal
classification. The reference Hamiltonian, specifically
constructed for this purpose, is given by:

H =
1

2

N∑
i,j=1

(d(x⃗i, x⃗j) + λd(x⃗i, c⃗i))

k∑
a=1

(1− fai )
(
1− faj

)
.

(1)
In this equation, N is the number of datapoints, k is the
number of clusters, subscripts i, j represent each data
point within the dataset, and a denotes the label associ-
ated with each available cluster. The cost function takes
into account the distance between data points d(x⃗i, x⃗j),
given by the l2-norm, the distance between a data point
and the centroid of its corresponding cluster d(x⃗i, c⃗i),
as well as the fidelity fai ≡ | ⟨ψi|ψa⟩ |2 between a vari-
ational quantum state |ψi⟩ for datapoint x⃗i and a refer-
ence state |ψa⟩ for cluster a. This fidelity is influenced by
the position of each data point in the Poincaré polariza-
tion sphere, which is determined by a set of variational

ar
X

iv
:2

40
5.

04
14

2v
1 

 [
qu

an
t-

ph
] 

 7
 M

ay
 2

02
4



2

parameters. In addition, λ serves as a regularization pa-
rameter, allowing for different penalizations of distances
between dataset points and considering the relative im-
portance of distances between data points and their re-
spective cluster centroids. Indeed, the variational nature
of the algorithm entirely falls within the function fai .

Our photonic implementation simulates the optimiza-
tion of the above cost function for a single qubit, us-
ing a variational quantum circuit . Our method con-
sists of 2 distinct working units: a classical one, and a
quantum-inspired one, which we simulate in our case with
a diode laser. The classical computer will take care of
upgrading the variational parameters driving the quan-
tum circuit by means of a classical optimizer aiming at
minimizing the cost function, as in a regular optimiza-
tion problem. The quantum-inspired circuit will be then
modulated based on the upgrade of the variational pa-
rameters, which will enter the circuit as rotations in the
polarization of the light.

Experimental setup.- To implement our quantum-
inspired circuit, we have set a series of waveplates that
modulate the polarization of an 808nm diode laser. These
waveplates will adjust the laser beam’s polarization based
on variational parameters. Starting from a specific ini-
tial polarization state, the combination of waveplates will
gradually transform it. The ultimate goal is to mea-
sure the polarization of a specific quantum state using
a polarimeter, effectively allowing us to position polar-
ized states throughout the Poincaré sphere, akin to the
Bloch sphere of a single qubit. In essence, the system will
serve as a versatile tool for transforming the positions of
dataset points. It begins with an initial configuration
and is manipulated to achieve an optimal configuration
in which all points are situated on the surface of the
Poincaré sphere. This minimizes a particular cost func-
tion, like the one in Eq.(1). The underlying concept of
using an 808nm diode laser stems from its simplicity and
its capacity to map a single-qubit quantum circuit to the
laser’s operational principles. By replicating quantum
logical gates through a combination of waveplates and
facilitating the measurement process with a polarimeter,
we can recreate the dynamics of the qubit. In our case,
we use this setting to implement the photonic simulation
of variational quantum clustering.

The optical setup used to initialize the states is shown
in Fig.1. In the state preparation sequence, after half
wave plate H0 and polarizer P are applied in the incom-
ing beam, the initial state of the system can be repre-
sented as

|ϕin⟩ = |h⟩ ≡
(

1
0

)
, (2)

which corresponds to horizontal polarization. This con-
figuration, H0 + P , is fixed in order to allow maximum
intensity and a stable polarization.

The two first plates, Qin and Hin, are used to trans-
form the states from the data feature space to the
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FIG. 1. [Color figure] (a) Scheme of optical setup. SMF:
single mode optical fiber. FC: fiber collimator. P: linear po-
larizator. Hx: half wave plate. Qx: quarter wave plate. Pol.:
polarimeter. (b) Example of cluster classification for a config-
uration of 2 clusters of 200 points defined by d

σ
= 8, where d is

the distance between centers and σ the width of the Gaussian
blobs.

Poincaré sphere. They are mounted on separate rotary
stages (RSW60C-T3A from Zaber). These motors have
a maximum accuracy of 0.08◦ and a maximum speed of
450◦/s. The state |ϕo⟩, defined by the angles (ψ, χ), is
determined by the angles (α, β) corresponding to the fast
axis orientation of Qin and Hin, respectively. This bijec-
tion was done by means of a look-up-table.
After initialization, the state |ϕo⟩ is modified by sub-

sequent sets of m half and quarter wave plates {Ĥk, Q̂k}.
These wave plates work in the same way as the initial
ones, that is, for ideal waveplates their Jones matrices
are given by

Ĥk = e−
iπ
2

(
cos2(βk)− sin2(βk) 2 cos(βk) sin(βk)
2 cos(βk) sin(βk) sin2(βk)− cos2(βk)

)
(3)

for the half wave plates, and

Q̂k = e−
iπ
4

(
cos2(αk) + i sin2(αk) (1− i) cos(αk) sin(αk)
(1− i) cos(αk) sin(αk) sin2(αk) + i cos2(αk)

)
(4)

for the quarter wave plates. While experimentally, the
waveplates can depart from this idealized model, this al-
lows us to simulate the behaviour of our experimental
system. Here, βk and αk are the angle of rotation of the
waveplates. They act as the variational parameters to be
optimized in the variational circuit optimizing the cost
function from Eq.(1). Therefore, the final state |ϕf ⟩ of
the system is given by

|ϕf ⟩ = ĤmQ̂m . . . Ĥ2Q̂2Ĥ1Q̂1|ψo⟩, (5)
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or, in terms of the initial horizontal polarization state
|ψin⟩,

|ϕf ⟩ = ĤmQ̂m . . . Ĥ2Q̂2Ĥ1Q̂1ĤinQ̂in|ψin⟩. (6)

These output states |ϕo⟩ are directly measured by the
polarimeter. In the case of upgrading this experiment
to more qubits, the polarimeter should be replaced by a
complete tomography of the output state. In our case,
this is simplified as the polarimeter provides the value
of the Stokes parameters s0, s1, s2, s3 corresponding to a
point in the Poincaré polarization sphere. The readout
of this point in the sphere allows for the self-consistent
optimization of the variational parameters in the circuit,
allowing in turn to minimize the clustering cost function
and therefore implement an unsupervised classification
of the points in the dataset.

The results for the case of two clusters with ∼ 100
points are shown in Fig. 1(b). One can observe that the
algorithm successfully automatically classifies the points
in the two different clusters. The ratio of success of the
algorithm for this particular case is of 100%. In this case,
the classification task is conducted on top of a random
exploration of the initialization step, in order to favour
the exploration of the parameters space.

Numerical analysis.- To better understand the phase
space of the variational parameters and provide a better
intuition for more complex quantum optimization pro-
cesses, we performed a numerical analysis for a 4 Gaus-
sian blobs dataset, classified with 2 single variational lay-
ers, generating 3 different optimization paths in hyperpa-
rameter space (as shown in Fig.(2a,2b, 2c). We present in
the figure the landscape of the cost function, which as ex-
pected is a complex shape with many local minima. The
initialization of the algorithm would start at a random
point in the landscape and then, subsequently, the op-
timization algorithm would provide the rotations of the
Poincare sphere which would optimize the cost function,
providing a path in the landscape.

Notice that while there is a single absolute minima,
most of the local minima also provide a good classifica-
tion. The three examples shown fall into the local min-
ima with success ratios of 92.5%, 95% and 100%. The
final classification can be shown in Fig.3 with the corre-
sponding evolution of the cost function. One can observe
that, after just 10 iterations, the cost function typically
arrives to a stable solution, while it may need up to 30
iterations to reach the minimum. Only one of the opti-
mization paths ends up displaying perfect classification,
corresponding to the one with the smallest cost. This
result is a consequence of how sensible variational algo-
rithms are to initialization [12, 13], which has become
one of the main features to look at in the search for non-
classical simulability of variational algorithms [14].

As mentioned earlier, one could use more complex min-
imization algorithms, but in our case a combination of
Monte Carlo and steepest descent has provided good re-
sults. In this work, we focus on the capabilities of the
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FIG. 2. [Color online] Numerical example for the clusteriza-
tion of a 4 clusters distribution. Top: Colormap of the cost
function value with respect of the hiperparameters α and β
corresponding to the rotation angle of a half and a quarter
wave-plate, respectively. Bottom: insets’ detail of the trajec-
tories taken to get to the local minima of the cost function.
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FIG. 3. Numerical cost function evolution for 4 Gaussian
blobs: 3 different trajectories corresponding to the insets of
the figure 2

.

method to reproduce efficiently a single qubit algorithm,
showing the main features of this clustering scheme and
opening the way for further tuning strategies.

Experimental results.- The methods described before
were implemented in our clustering experiment, using
more clusters, in order to test the experimental limita-
tions of the system. The main results are summarized
in the plots in Fig.4. Similarly as in Fig. 1(b) the fig-
ure shows the capability of the photonic clustering im-
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FIG. 4. [Color online] Experimental clustering results: (a)
3 gaussian blobs, (b) 4 gaussian blobs and (5) 5 gaussian
globes. Colors correspond to the different clusters identified
by the experiment.

plemented to automatically identify configurations with
different quantity of clusters. Additionally, in figure 5 we
provide the experimental evolution of the cost function
for the for different configurations tested. These results
can be compared with the numerical results that we pro-
vided earlier. It can be observed that the experimental
errors do not significantly affect the expected behaviour
of the optimization process.

The results presented above constitute a first proof of
principle of the validity of using classical photonic sys-
tems to simulate quantum clustering. The experiment
can be further expanded in many different directions. For
instance, it should be possible to classify more complex
datasets. In addition, one may also explore the possibility
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FIG. 5. [Color online] Experimental cost function evolution
corresponding to the distributions of the figures 1 and 4. The
cost values where normalized between 0 and 1.

of simulating a multi-qubit quantum circuit, by generat-
ing and manipulating quantum states consisting of more
than one photon.

Conclusions and outlook.- In this paper we have in-
troduced a novel quantum-inspired clustering method,
based on the photonic simulation of single-qubit dynam-
ics. We have shown how it is possible to optimize the
polarization degree of freedom of a laser beam, in the
same way that one can optimize the quantum state of
a single qubit, so as to minimize a clustering cost func-
tion. We have implemented the experiment and shown
the validity of our ideas, performing automatic clustering
of random data, with no prior information, scattered in
up to five zones, with perfect accuracy.
Our experiment is based on encoding the information

on the polarization of light, akin to using a single qubit
in a quantum algorithm. The rotation matrix intro-
duced by the wave platesin our experiment, can be cast
in the quantum circuit in terms of general Pauli rota-
tions around the main axis of a qubit. This can be useful
in order to build a bridge between this specific imple-
mentation and the virtual environments commonly used
in academia and industry with access to quantum hard-
ware (Pennylane, Qiskit, etc...) [15, 16]. There exist sev-
eral restrictions in the amount and type of logical gates
allowed in actual quantum hardware, so a mapping be-
tween the functioning of this optical circuit and universal
sets of gates is advisable.
Our work can be further expanded in many directions,

as discussed previously. We believe that a promising path
is the simulation of multi-qubit systems. In addition, the
flexibility of the variational circuit allows for a wide va-
riety of applications. With this in mind, one could for
instance build up diverse cost functions for different pur-
poses using the same experimental arrangement, so that
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we could indeed use a laser beam to implement different
types of quantum-inspired machine learning strategies.
Indeed, when writing up this paper, we noticed the pro-
posal of a very similar similar set-up for the realization
of VQE algorithms using photonic devices [17]. Last but
not least, our scheme allows the introduction of other
features, such as data reuploading [18, 19]. Data reu-
ploading was already proposed in similar contexts, such
as in Ref.[20], where this was used to outperform ker-
nel methods using very few quantum resources, as low as
one single qubit. Even without reuploading, introducing
several layers of gates in the circuit helps in practice in
the convergence of the variational optimization, allow-
ing for small changes of the different parameters at each

iteration. All these topics will be the subject of future
investigations.
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[13] D. J. Egger, J. Mareček, and S. Woerner, Quantum 5,
479 (2021).

[14] M. Cerezo, M. Larocca, D. Garćıa-Mart́ın, N. L. Diaz,
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