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We explore the protection of quantum gates from arbitrary single- and two-qubit noises with properly de-

signed dynamical decoupling pulses. The proposed dynamical decoupling method is a concatenation of a se-

quence of pulses formed by σx, σxσx with another sequence constructed by σz, σzσz. The concatenation of

the two sequences results in desired pulses to fight agianst any single- and two-qubit errors. The success of our

method relies on the ability to adjust system parameters or interaction terms, which can be achieved in different

physical systems, including trapped ions and superconducting qubits. We finally explore the performance of our

method numerically with the above-mentioned errors that are changing at any moment and show the preferred

protection offered by the method. Therefore, our method is a timely step forward in preserving quantum gates

at the level of physical qubits.

Fault-tolerant quantum computation requires to scale up to

enough qubits and implement quantum gates with sufficiently

small errors in physical systems [1–6]. These significant chal-

lenges are expected to be overcome step by step with grow-

ing noisy intermediate small-scale quantum (NISQ) devices

[7, 8]. To realize scalable quantum computation in NISQ de-

vices, the system interactions should be adjustable in order to

execute quantum gates on target qubits. The desired control-

lability in system parameters may induce additional difficul-

ties besides decoherence in manipulating the system evolution

for achieving specific quantum gates, because of unavoidable

fluctuations in the systerm parameters [9, 10].

Dynamical decoupling (DD) plays an effective role in mit-

igating errors or decoherence during system evolution [11–

15]. The technique aims to approximately kick out errors

or decoherence via suitable pulses applied in sequence under

certain conditions. Compared with quantum error-correction

codes, DD is also an active method to battle with errors or

decoherence but with a moderate resouce of DD pulses. This

merit makes DD practically useful in NISQ devices. In com-

monly explored physical systems, most of the errors during

system evolution are due to single- and two-qubit noises when

qubit-qubit couplings are demanded. In the literature, fight-

ing against aribitrary single-qubit noises by DD approach has

been extensively investigated both theoretically and experi-

mentally [11–15]. Meanwhile, it has been directed towards

mitigating arbitrary two-qubit noises with DD technique in

physical systems as well [9, 10, 16–18]. In Refs. [16, 17], it

was shown that system operators can generally be protected

by complicated levels of nested DD pulses, but without dis-

cussing the details of eliminating arbitrary two-qubit errors or

decoherence in physical systems. In 2016, the Viola group

explored the supression of multi-qubit dephasing by compar-

atively short DD sequences [9]. Generally, the DD techniques

cannot be readily implemented in actual experiments since

the DD pulses may remove desired system interactions when

fighting against errors or decoherence. It is thus of practi-

cal importance to make the DD techniques workable in actual
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experments to battle with both single- and two-qubit errors.

Recently, special DD pulses invovling two-qubit interactions

were designed to minimize the negative effect of specific two-

qubit errors by adjusting system parameters in a system of

superconducting transmon qubits in Ref. [10]. One year later,

the Lidar group investigated the mitigation of ZZ coupling in

superconducting qubits [18, 19] and the Kim group studied the

supression of typical crosstalk in implementing the Mølmer-

Sørensen (MS) gate with trapped ions [20].

In this work, we explore the supression of arbitrary

single- and two-qubit errors or decoherence through

DD approach with experimental achievable Hamiltoni-

ans. Generally, arbitrary single- and two-qubit errors

are described by the error operators in the set of E =

{σ
i, j
x,y,z, σ

i
xσ

j
x, σ

i
xσ

j
y, σ

i
yσ

j
x, σ

i
xσ

j
z , σ

i
zσ

j
x, σ

i
yσ

j
y, σ

i
yσ

j
z , σ

i
zσ

j
y, σ

i
zσ

j
z}.

We first study one DD sequence constructed by σ
i, j
x and il-

lustrate that the errors in the subset E1 = {σ
i
y,z, σ

j
y,z, σ

i
xσ

j
y,

σi
yσ

j
x, σi

xσ
j
z , σ

i
zσ

j
x, σi

yσ
j
y, σi

yσ
j
z , σ

i
zσ

j
y, σi

zσ
j
z} can be elim-

inated approximately. Next we investigate another DD

sequence built by σ
i, j
z to supress the errors in the subset

of E2 = {σ
i, j
x , σ

i
xσ

j
x}. The concatenation of the two DD

sequences can thus fight against any errors in the full set as

E = E1+E2, and this result is consistent with the nested Uhrig

dynamical decoupling (NUDD) explored in Ref. [16, 17].

During the process of applying DD pulses, system parameters

should be controllable such that required Hamiltonian terms

will not be affected by the DD pulses. The requirement is

experimentally achievable in commonly studied physical

systems and as a result, a universal set of protected quantum

gates are realizable with current experimental techniques

based on our method. We next explore the performance of

our method by modelling all the above-mentioned errors to be

time-dependent in numerical calculations. The perfomance

is dependent on the number of DD pulses and the more the

number of DD pulses, the better the performance is. But

in practical experiments, the number of DD pusles is finite.

We then show with a moderate number of repeating the

concatenated DD sequences, the explored quantum gates can

be largely saved from the errors. It is reasonable to expect

that the performance can be further improved given more DD

pusles with the development of experimental techniques.
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We study the first DD sequence constructed by σ
i, j
x to fight

against the errors included in the subset E1. The desired se-

quence is of the form,
(

σ
j
x[·]σ

j
x

)(

σi
x[·]σi

x

)(

σi
xσ

j
x[·]σi

xσ
j
x

)

[·],

where [·] represents evolution operator over a period of τ. We

analyze the system evolution with DD pusles step by step in

the following.

• The evolution [·] carries the errors as {σi
y,z, σ

j
y,z, σ

i
xσ

j
y,

σi
yσ

j
x, σi

xσ
j
z , σi

zσ
j
x, σi

yσ
j
y, σi

yσ
j
z , σ

i
zσ

j
y, σi

zσ
j
z}.

•

(

σi
xσ

j
x[·]σi

xσ
j
x

)

converts the errors to {−σi
y,z, −σ

j
y,z,

−σi
xσ

j
y, −σi

yσ
j
x, −σi

xσ
j
z , −σ

i
zσ

j
x, σi

yσ
j
y, σi

yσ
j
z , σ

i
zσ

j
y,

σi
zσ

j
z}.

•

(

σi
x[·]σi

x

)

converts the errors to {−σi
y,z, σ

j
y,z, σ

i
xσ

j
y,

−σi
yσ

j
x, σi

xσ
j
z , −σ

i
zσ

j
x, −σi

yσ
j
y, −σi

yσ
j
z , −σ

i
zσ

j
y, −σi

zσ
j
z}.

•

(

σ
j
x[·]σ

j
x

)

converts the errors to {σi
y,z, −σ

j
y,z, −σ

i
xσ

j
y,

σi
yσ

j
x, −σi

xσ
j
z , σ

i
zσ

j
x, −σi

yσ
j
y, −σi

yσ
j
z , −σ

i
zσ

j
y, −σi

zσ
j
z}.

As a whole,
(

σ
j
x[·]σ

j
x

)(

σi
x[·]σi

x

)(

σi
xσ

j
x[·]σi

xσ
j
x

)

[·] removes the

errors in the subset E1 approximately. To eliminate the er-

rors in the subset E2, we utilize the second DD sequence in

the form of
(

σ
j
z[·]σ

j
z

)(

σi
z[·]σ

i
z

)(

σi
zσ

j
z[·]σ

i
zσ

j
z

)

[·]. Only with the

errors in the subset E2, we find

• The evolution [·] carries the errors as {σ
i, j
x , σi

xσ
j
x}.

•

(

σi
zσ

j
z[·]σi

zσ
j
z

)

converts the errors to {−σ
i, j
x , σi

xσ
j
x}.

•

(

σi
z[·]σ

i
z

)

converts the errors to {−σi
x, σ

j
x, −σi

xσ
j
x}.

•

(

σ
j
z[·]σ

j
z

)

converts the errors to {σi
x, −σ

j
x, −σi

xσ
j
x}.

Therefore, the errors in the subset E2 can be effec-

tively mitigated by the second DD sequence roughly.

Finally, the concatenation of the two DD sequences

gives us
(

σ
j
z[··]σ

j
z

)(

σi
z[··]σ

i
z

)(

σi
zσ

j
z[··]σi

zσ
j
z

)

[··], where [··] =
(

σ
j
x[·]σ

j
x

)(

σi
x[·]σi

x

)(

σi
xσ

j
x[·]σi

xσ
j
x

)

[·]. The nested DD se-

quence can approximately get rid of all the errors in

the set E = E1 + E2. Moreover, we can reduce

the number of DD pulses by simplifying the nested

DD sequence as σ
j
z[··]σ

j
zσ

i
z[··]σ

j
z[··]σ

i
zσ

j
z[··], where [··] =

σ
j
x[·]σ

j
xσ

i
x[·]σ

j
x[·]σi

xσ
j
x[·]. It is clearly shown that to complete

one full DD cycle, there are 16 steps of system evolution and

so, the total evolution time is T = 16τ.

Our scheme is possibly implementable in physical systems,

with tunable system parameters such that desired gate Hamil-

tonians will not be canceled with DD pulses applied. One

possible gate Hamiltonian is of the below form,

H1 = δσ
j
z + Ω(e−iφσ

j
+ + eiφσ

j
−) + J(σ

j
+σ

k
− + σ

j
−σ

k
+), (1)

where δ is the detuning of the qubit frequency from the fre-

quency of external driving, Ω is the Rabi frequency of ex-

ternal driving, φ is the phase of external driving, σ
j,k
± =

1
2
(σ

j,k
x ± iσ

j,k
y ), and J is the qubit-qubit coupling strength. The

desired interaction can be implemented in various physical

systems with rotating-wave approximation applied, including

cold atoms [21], trapped ions [22, 23] and superconducting

transmon qubits [24–26], etc. The parameters δ, Ω, φ and J

are adjustable experimentally.

With gate Hamiltonian (1), single-qubit rotations about x

and y axes can be achieved by choosing δ = 0, J = 0 and

tuning φ = 0 or π for x axis and φ = π
2

or 3π
2

for y axis. While

single-qubit rotations about z axis is realizable by makingΩ =

0 and J = 0. For two-qubit entangling gates, one can select

δ = 0 and Ω = 0 to keep the coupling term only.

In what follows, we consider a physical system of trans-

mon qubits to demonstrate the implementation of quantum

gates protected by our scheme against arbitrary single- and

two-qubit errors. We study one unmodulated qubit (qubit 1)

coupled to another frequency-modulated qubit (qubit 2) with

external drives. The Hamiltonian in the interaction picture can

be written as [24–26],

Htrans = δσ
1,2
z + Ω(e−iφσ

1,2
+ + eiφσ

1,2
− )

+ gJ1(β)(σ1
+σ

2
−e−iϕ + σ1

−σ
2
+eiϕ), (2)

where g is the coupling strength, J1(β) is the Bessel function

of the first kind when n = 1, β is the ratio of amplitude and

frequency of the periodic frequency modulation, and ϕ is the

phase of the periodic frequency modulation. The Htrans is of

the same form as H1, in which J = gJ1(β).

In the system, the performance of the quantum gates pro-

teced by our DD scheme can be demonstrated by the following

numerical results. In the presence of errors or decoherence,

we assume the total Hamiltonian is written as HT = HS + He,

where HS and He are system Hamiltonian and the stochastic

error term. In our calculations, HS is Htrans and He is given by

He = δ
x
1,2σ

1,2
x + δ

y

1,2
σ1,2

y + δ
z
1,2
σ1,2

z + δ
xx
12σ

1
xσ

2
x + δ

yy

12
σ1

yσ
2
y

+ δzz
12
σ1

zσ
2
z + δ

xy

12
σ1

xσ
2
y + δ

yx

12
σ1

yσ
2
x + δ

xz
12
σ1

xσ
2
z + δ

zx
12
σ1

zσ
2
x

+ δ
yz

12
σ1

yσ
2
z + δ

zy

12
σ1

zσ
2
y , (3)

where δ
x,y,z

1,2
and δuv

12
(u, v = x, y, z) describe the time-dependent

strength of stochastic errors in different directions and cou-

plings. To model the time-dependance, we create random

numbers with respect to time (800 sets of values over a pe-

riod of T ) from a uniform distribution [2π × 1, 2π × 10] MHz

when solving the differential equation with ode45 solver.

For single-qubit gates, it is easy to apply the protection by

DD approach as we only need to manipulate one qubit. Ac-

cording to the literature [18, 19], XY4 or Periodic DD (PDD)

sequence is able to remove all errors described by σx,y,z on

the qubit with DD pusles applied. Therefore, it is not nec-

essary to use the DD scheme proposed here since it is more

complicated. We focus on fighting against errors or decoher-

ence when exploring the implementation of two-qubit gates.

To realize an entangling gate U3 = e−iγ(σ1
+σ

2
−+σ

1
−σ

2
+) (where

γ = JT = π/4), we select system parameter as J = 2π × 10

MHz. For a two-qubit gate, XY4 or PDD is not able to remove

all errors any more and our DD scheme takes turn. Some of

the DD pulses change desired interaction from σ1
+σ

2
− + σ

1
−σ

2
+

to σ1
+σ

2
+ + σ

1
−σ

2
− and some of the DD pusles change J to

−J. The changes certainly ruin the implementation of the
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entangling gates. Therefore, we need to tune the coupling

term correspondingly to avoid the unwanted changes. In

the former case, we control the frequency modulation to get

σ1
+σ

2
+ + σ

1
−σ

2
−, which will be changed to desired interaction

with certain DD pusles applied. In the latter case, we adjust ϕ

to obtain a negative value of J, which will then be converted

back to J by some DD pulses. We list out required coupling in

Table I (a) for all the 16 steps of system evolution. In Table I

(a), we use the symbol “*” to indicate at that step, the coupling

is set to beσ1
+σ

2
++σ

1
−σ

2
− and without the symbol, the coupling

is of the form σ1
+σ

2
− + σ

1
−σ

2
+. With the specified couplings,

our DD scheme is workable in the physical system as demon-

strated by the following numerical calculations. We randomly

choose 50 initial states and calculate average fidelity of the

gate when γ = π/4 in the absence or presence of errors (with-

out DD and with DD), respectively. Specially, we simluate

the DD pulses by unitary evolutions over a short time period

and take errors occurred to DD pulses into account in our cal-

culations with σx ∝ e−i( π
2
+ζ)σx and σz ∝ e−i( π

2
+ζ)σz , where ζ is

selected from Gaussian distribution (1) with a mean of π
500

and

a standard deviation of π
500

and from Gaussian distribution (2)

with a mean of π
200

and a standard deviation of π
200

to describe

different stochastic errors happened to the DD pulses. The nu-

merical results are summarized in Table II. Here, we consider

the the case of getting σ1
+σ

2
− + σ

1
−σ

2
+ and σ1

+σ
2
+ + σ

1
−σ

2
− ide-

ally by rotating-wave approximation. If include the approxi-

mation errors, the fideilities will be a bit lower. It is clearly

demonstrated in Table II, the two-qubit gate is ruined by the

errors without DD pulses applied, and it can be largely saved

according to our DD scheme. Moreover, the success of the

DD scheme requires very small errors happened in DD pulses,

see numerical results in the case with superscript (1). Given

the DD pulses with increased value of ζ as shown in the case

with superscript (2), the DD scheme still can offer protection

against the errors, though it does not perform as well as it

does in the case with superscript (1). Here, we only complete

one full DD cycle with 16 steps. Further improvement of the

average fidelity can be achieved by increasing the number of

repeating the DD cycle.

Other possible gate Hamiltonians with qubit-qubit coupling

only are given as

H2 = J′σ
j
zσ

k
z or J′σ

j
xσ

k
x or J′σ

j
zσ

k
x, (4)

where J′ is the coupling strength. Here, we neglect the terms

for realizing single-qubit gates as they can be preserved by

XY4 or PDD. The type of interaction can be found in su-

perconducting charge qubits [27, 28], transmons [29, 30] and

fluxoniums [31, 32], etc. From gate Hamiltonian (4), two-

qubit entangling gates U i
e (i = 1, 2, 3 and e stands for entan-

gling) are achievable dependent on the interaction J′σ
j
zσ

k
z or

J′σ
j
xσ

k
x or J′σ

j
zσ

k
x. Based on the results in the literature, the

system parameters may be fully or partially controllable in dif-

ferent systems. To make our DD scheme compatible in experi-

ments, we require the tunablity of the system parameters from

positive to negative. Similarly, we list out desired system pa-

rameters to keep gate Hamiltonian (4) for two-qubit gates with

DD pulses applied in Table I (b), (c) and (d), where (b) is for

interaction J′σ
j
zσ

k
z , (c) is for interaction J′σ

j
xσ

k
x and (d) is for

Steps U3

1st [·] J

2nd [·] J

3rd [·] J∗

4th [·] J∗

5th [·] J

6th [·] J

7th [·] J∗

8th [·] J∗

9th [·] −J

10th [·] −J

11th [·] −J∗

12th [·] −J∗

13th [·] −J

14th [·] −J

15th [·] −J∗

16th [·] −J∗

(a)

Steps U1
e

1st [·] J′

2nd [·] J′

3rd [·] −J′

4th [·] −J′

5th [·] J′

6th [·] J′

7th [·] −J′

8th [·] −J′

9th [·] J′

10th [·] J′

11th [·] −J′

12th [·] −J′

13th [·] J′

14th [·] J′

15th [·] −J′

16th [·] −J′

(b)

Steps U2
e

1st [·] J′

2nd [·] J′

3rd [·] J′

4th [·] J′

5th [·] J′

6th [·] J′

7th [·] J′

8th [·] J′

9th [·] −J′

10th [·] −J′

11th [·] −J′

12th [·] −J′

13th [·] −J′

14th [·] −J′

15th [·] −J′

16th [·] −J′

(c)

Steps U3
e

1st [·] J′

2nd [·] −J′

3rd [·] −J′

4th [·] J′

5th [·] −J′

6th [·] J′

7th [·] J′

8th [·] −J′

9th [·] J′

10th [·] −J′

11th [·] −J′

12th [·] J′

13th [·] −J′

14th [·] J′

15th [·] J′

16th [·] −J′

(d)

TABLE I. Required system parameters for different quantum gates at

every step of system evolution to make the DD scheme compatible,

where (a) is for gate Hamiltonian (1) for two-qubit gates with our

DD, (b) is for gate Hamiltonian (4) with ZZ coupling, (c) is for the

gate Hamiltonian (4) with XX coupling, and (d) is for gate Hamilto-

nian (4) with ZX coupling

Gate

Average Fidelity

w/o DD (w/ iDD) w/o DD (w/ DD(1)) w/o DD (w/ DD(2))

U3|γ=π/4 0.2496 (0.9967) 0.2290 (0.9949) 0.2282 (0.9807)

U1
e |γ=π/4 0.1808 (0.9923) 0.1602 (0.9886) 0.1519 (0.9776)

TABLE II. The fidelities of two-qubit quantum gates in the absence

(presence) of errors and DD pulses with Hamiltonian Htrans, where

iDD is short for ideal DD, and superscript (1) or (2) indicates the case

with ζ selected from Gaussian distribution (1) or (2), correspond-

ingly.

interaction J′σ
j
zσ

k
x. In the table, U1

e = e−iξσ1
zσ

2
z , U2

e = e−iξσ1
xσ

2
x

and U3
e = e−iξσ1

zσ
2
x , where ξ is dependent of the value of J′ and

evolution time. The coupling term may take one of the forms

or include two of them in some physical systems, because of

crosstalk. As our DD scheme can diligently eliminate aribrary

two-qubit errors, unwanted crosstalk term can also be kicked

out by DD pulses without changing the sign of the coupling

strength of the crosstalk term. It may happen that in some

physical system, two-qubit gates cannot be executable in a

protective way according to our scheme with current experi-

mental techniques when there is a lack of desired tunability

in the coupling strength. We then aniticipate further develop-

ment from the perspective of experiments.

We next consider ZZ coupling as an example to explore

the protection offered by our DD scheme through numerical

calculations. The action of DD pulses sometimes changes the

sign of the ZZ coupling strength. To remain the interaction

for realizing a two-qubit gate, we need to adjust the sign as
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demonstrated in Table I (b). In the example, we investigate the

average fidelity of gate U1
e with ξ = J′T = π/4 and J′ = 2π ×

10 MHz by randomly choosing 50 initial states, without errors

and with errors (without DD and with DD). The numerical

results are obtained by completing one whole DD cycle of 16

steps, and are outlined in Table II too. We find the two-qubit

gate is in ruins with the errors in the absence of DD pulses and

it can be preserved when DD pusles are present. Similarly,

the performance of the DD scheme relies on desirably small

errors happened to the DD pulses, described by the value of ζ

and the preservation offered is expected to be enhanced if we

repeat the whole DD cycle multiple times.

To summarize, we present one DD scheme to battle with ar-

bitrary single- and two-qubit errors. The DD scheme is based

on the concatenation of the two DD sequences. To make the

DD scheme compatible with realizing quantum gates in phys-

ical systems, we require tunable system parameters such that

desired gate Hamiltonians will not be eliminated by the DD

pulses. We investigate the implementation of the DD scheme

based on gate Hamiltonian (1), which can be achieved ex-

perimentally in cold atoms, trapped ions and superconducting

qubits with controllable system parameters. Specifically, we

demonstrate that two-qubit quantum gates are excellently pre-

served against arbitrary single- and two-qubit errors by con-

sidering a physical system of transmon qubits. Moreover, we

also show that the DD scheme is workable with gate Hamilto-

nian (4), that is experimentally attainable in superconducting

charge qubits, flux qubits and fluxoniums. With the current

experimental techniques, however, it may not be possible to

obtain excellently protected quantum gates since some of the

parameters in (4) may not be adjustable as desired by the DD

scheme. We expect to see further development in actual exper-

iments to realize controllable parameters in near future. Our

DD scheme provides an efficient and practical way to mitigate

arbitrary single- and two-qubit errors that are the main source

of noises in executing quantum gates, and so it is a timely

contribution to improving NISQ devices.
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