
Quantum Circuit Optimisation and MBQC Scheduling with
a Pauli Tracking Library
Jannis Ruh1 and Simon Devitt1,2

1Centre for Quantum Software and Information, School of Computer Science, Faculty of Engineering & Information Technology, University
of Technology Sydney, NSW 2007, Australia

2InstituteQ, Aalto University, 02150 Espoo, Finland.

We present a software library for the com-
mutation of Pauli operators through quantum
Clifford circuits, which is called Pauli tracking.
Tracking Pauli operators allows one to reduce
the number of Pauli gates that must be ex-
ecuted on quantum hardware. This is relevant
for measurement-based quantum computing
and for error-corrected circuits that are imple-
mented through Clifford circuits. Furthermore,
we investigate the problem of qubit scheduling
in measurement-based quantum computing and
how Pauli tracking can be used to capture the
constraints on the order of measurements.

1 Introduction
Realising fault-tolerant quantum gates and qubits is
costly in terms of space, time and energy. It is crucial
to reduce the number of gates as much as possible.
This optimisation can be tackled on multiple levels,
e.g., optimising the quantum algorithm on the logical
circuit level, similar to how classical compilers optim-
ise classical algorithms, or trying to develop more ef-
ficient error correcting codes.

Another problem that appears in the context of
measurement-based quantum computation (MBQC)
[1, 2], but partially also in quantum error correc-
tion (QEC), are dynamic corrections that are induced
into the computation because of the nondeterminism
of the measurements. For an efficient computation,
these corrections have to be actively accounted for,
and cannot be ignored through post-selection. They
are also an essential piece of information for qubit
scheduling, i.e., re-using qubits after they have been
measured, as it defines an order on the measurements,
which we shall explain in more detail.

In this paper, we shall focus on the classical tracking
of Pauli operators through a quantum circuit, called
Pauli tracking [3, 4, 5, 6], which deals with the second
problem introduced above and (partially) with the
first problem. Pauli tracking, we shall explain it be-
low, is an optimisation done on the software level that

Jannis Ruh: jannis.ruh1@uts.edu.au
Simon Devitt: simon.devitt@uts.edu.au

directly reduces the number of Pauli gates that must
be executed on the quantum hardware. Furthermore,
it can capture the information of dynamic Pauli cor-
rection induced by measurements. Pauli tracking is
applicable whenever the quantum circuit comprised
of Clifford gates (and arbitrary measurements), as for
example, in MBQC, but also in the context of QEC,
e.g., the surface code [7, 8]. The QEC codes them-
selves are often Clifford circuits on the level of the
(uncorrected) physical qubit; but also on the logical
fault-tolerant level, the non-Clifford gates are usually
realised via injection of certain “magic” states or spe-
cific measurements with the help of additional ancilla
qubits that are entangled using only Clifford gates
(cf. Fig. 1) [9, 10, 8]. Therefore, Pauli tracking can
be applied on both levels in QEC, i.e., on the physical
level and the logical level, which gives it together with
MBQC a wide range of applications.

Let us now sketch out what we mean with Pauli
tracking and how it works; it is based on the math-
ematical foundations discussed in [11, 12, 13]. The
Clifford group is the normaliser of the Pauli group,
meaning that conjugating the Pauli group with Clif-
ford operators preserves the Pauli group. This implies
that Pauli operators can be classically efficiently, i.e.,
without exponential costs, commuted with Clifford op-
erators. A central implication of that characteristic is
the Gottesman-Knill theorem [14], which states that
circuits consisting only of Clifford gates can be ef-
ficiently simulated with a classical computer via a
stabiliser simulator, e.g., [15]. For universal quantum
computation, however, the Clifford group is not suf-
ficient, i.e., we need additional non-Clifford gates. In
this case, stabiliser simulators are not efficient any-
more, however, for certain realisations of quantum
computers, we can still make use of the fact that the
Pauli group is preserved under conjugation of Clif-
ford operators. For example, in MBQC or in the con-
text of QEC, where the circuits only consist of Clif-
ford gates and measurements, it is possible to tra-
verse the Pauli operators through the circuit by com-
muting them with the Clifford gates until a measure-
ment is reached and then account for the Pauli operat-
ors through post-processing or adaption of the of the
measurement (cf. Fig. 1 (c)). This effectively reduces

1

ar
X

iv
:2

40
5.

03
97

0v
1

 [
qu

an
t-

ph
]

 7
 M

ay
 2

02
4

https://orcid.org/0009-0004-9820-7348
https://orcid.org/0000-0002-5901-1391
mailto:jannis.ruh1@uts.edu.au
mailto:simon.devitt@uts.edu.au

the number of Pauli gates that have to be executed
on the quantum hardware to the number of qubits or
less.

In Sec. 2, we present a library that can be used
to perform the Pauli tracking [16]. It is a low-level
library, natively written in Rust, with a Python wrap-
per and a partial C interface. The library is designed
to be dynamically used when compiling, or executing
quantum circuits and supports various generic data
structures for different use cases. See Sec. 5 for how
to access the library.

Now when teleporting non-Clifford gates in the con-
text of QEC, or in general any gate as in MBQC,
the non-determinism of the according measurements
usually introduces Pauli corrections (or in general
Clifford corrections) conditioned on the measurement
outcomes, as for example, depicted in Fig. 1. These
corrections effectively define a strict partial time or-
der for the execution of the circuit, because of their
non-determinism in general. The tracking of the Pauli
corrections through the circuit directly captures this
order (except of the order induced by possible Clifford
corrections, however, they can also be deferred with
an additional teleportation; cf. Fig. 1 (c)) and reduces
it to the measurements. Analysing this information,
in connection with entanglement structure of the cir-
cuit or graph state, gives knowledge about how the
computation can be optimised in space and in time,
i.e., what is the minimal number of required qubits
(fully space optimised), what is the minimal number
of steps of parallel measurements (fully time optim-
ised), or in general, given a fixed number of qubits,
how many steps of parallel measurements are required.
Furthermore, capturing this time order and the cor-
rections is necessary for certain MBQC compilation
strategies and frameworks, e.g., Refs. [17, 18], where a
logical circuit is transformed into a logical graph state
(using teleportation techniques and stabilizer simula-
tions) and the captured time order defines how the
graph state is consumed.

In Sec. 3, we shall focus on this problem. More spe-
cifically, we define the scheduling problem for MBQC,
which may also be applied in the context of QEC
circuits locally at the parts where non-Clifford gates
are teleported, and tackle it detached from the un-
derlying quantum circuit on the logical level (i.e., we
do not consider the quantum hardware). The prob-
lem will be defined in a way that is applicable to
MBQC protocols like the Raussendorf cluster [1], but
also other protocols that involve more complex graph
states, e.g., Refs. [17, 18], or in general, whenever the
entanglement structure of the circuit can be described
with a graph and teleportation techniques are used for
non-Clifford gates. However, note that the algorithm
for the space-time optimisation that we provide is only
scalable to a certain degree due to the hardness of
the problem (the problem is related to finding the
pathwidth of a graph [19]). This can be resolved if

the input can be split into smaller problems (e.g., one
might be able to serially split the circuit [18]), but if
the goal is to optimise larger inputs, more optimised
algorithms may be required. However, as a preview,
note that finding a time-optimal solution is independ-
ent of the underlining graph, and therefore not restric-
ted to pure MBQC, and can be directly calculated
from the Pauli tracking in polynomial time.

(a)

X|ψ⟩ T s

|0⟩ Zs T |ψ⟩

(b)

Z|ψ⟩ s

T |+⟩ SsXs T |ψ⟩

(c)

X

Z

T |+⟩ Sm s

|ψ⟩ m

|0⟩ Zs⊕m T |ψ⟩

1

Figure 1: Example of T gate teleportation; these are typical
protocols in MBQC but also especially in QEC where the
ancilla states, T |+⟩, are prepared in a distillation process
[20]. The input state |ψ⟩ is teleported to the output state
T |ψ⟩. (a) The T teleportation is achieved with a “magic”
measurement TXT †. This introduces a Pauli correction Z
on the output qubit depending on the measurement result.
The correction can be tracked as a Pauli frame through
a subsequent Clifford+measurement circuit, unblocking the
execution until a measurement is reached for which the Pauli
frame defines a non-trivial correction. (b) Implementation
of the T teleportation through injection of a “magic” state
T |+⟩. This protocol introduces a potential S (phase gate)
correction on the output qubit. Since this correction cannot
be tracked through the subsequent circuit, it is blocking,
i.e., the execution on the output qubit has to wait until
the measurement result s is known. (c) Implementing the T
teleportation with a magic state injection, however, without
blocking the execution. This circuit is constructed by taking
circuit (a) and then implement the T gate there with circuit
(b). This way the blocking S correction is removed from
the output qubit. The Zm correction on the output qubit
can be obtained through Pauli tracking: commute the X
correction in circuit (b) through the S correction, turning
it into a ZX ∝ Y correction; the X part does not matter
for the following X measurement and can be completely
removed ; the Z part, however, flips the measurement result
s, which can be accounted for by moving the Z correction
onto the output qubit as a Z correction (since s induces a Z
correction). All of these three operations, commute, remove,
and move, are supported in our Pauli tracking library.

2 The Pauli Tracking Library

In Section 1, we already sketched out the basic idea.
Here, we shall focus on a mathematical description
which directly represents how the library is implemen-
ted. Afterwards, we discuss some features of the lib-
rary.

2

2.1 Mathematical Formulation
The Pauli operators, X, Y, Z ∈ U

(
C2)

, where U de-
notes the unitary group, are defined as

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
,

and we define the Pauli group as follows:

Definition 1 (Pauli group) Let n ∈ N. The Pauli
group Pn ≤ U

(
C2n)

is defined by its generators via

Pn := ⟨i, X1, Z1, . . . Xn, Zn⟩ .

For later reference, we also define the (Heisenberg-
Weyl) group PH

n := ⟨X1, Z1, . . . Xn, Zn⟩.
The projective groups are Pn = Pn/⟨i⟩ and PH

n =
PH

n /⟨−1⟩, respectively.

One can also define the Pauli group differently, e.g.,
by including phases or arbitrary complex pre-factors,
but note that the respective projective groups, which
are the groups we are interested in, are all isomorphic,
e.g., it is Pn

∼= PH
n .

The Clifford group is now defined as the normaliser
of the Pauli group:

Definition 2 (Clifford group) Let n ∈ N. The (unit-
ary) Clifford group is defined by

Cn :=
{

U ∈ U
(
C2n

) ∣∣∣ UPnU−1 = Pn

}
.

The projective group is given by Cn = Cn/U(1).
Alternatively, the Clifford group can be defined
through its generators, e.g. [21],

Cn = ⟨u, Hi, Si, CZij | u ∈ U(1); i, j ∈ N≤n; i ̸= j⟩ ,

where H is the Hadamard operator H = 1√
2

(1 1
1 −1

)
,

S the phase operator S = diag(1, i) and CZ the
controlled-Z operator CZ = diag(1, 1, 1, −1).

Again, we could have chosen slightly different defin-
itions, but the resulting groups would be either the
same or at least the projective groups would be iso-
morphic1.

Now let us assume we have two Pauli operators
p1, p2 ∈ Pn and a Clifford operator c ∈ Cn that form
the circuit p1cp2. Under Pauli tracking, we understand
the process of transforming this circuit into pc for
some p ∈ Pn, that is we traverse all Pauli operators
to the end of the circuit and collapse them into one
Pauli operator. It is clear that this is achieved by set-
ting p = p1cp2c−1, i.e., conjugating the second Pauli

1For example, one could replace the unitary group U with the
linear group GL, which would result in a Clifford group Cn ≤
C×U

(
C2n)

, i.e., more specifically, the same group as before,
but with arbitrary pre-factors C× = C\{0}, cf. [11, 12]. Using
C×Pn as normalised group, leads to the same Clifford group,
however, using PH

n as normalised group would lead to different
group, since it is not invariant under Clifford conjugations.

operator with the Clifford operator. However, we can
reduce the problem to a simpler form. Firstly, since
we are dealing with quantum circuits, scalar factors
do not matter, and we can reduce the Pauli group to
its projective group, i.e., set p1, p2, p ∈ Pn. Secondly,
we also only have to consider the projective Clifford
group, i.e., set c ∈ Cn, since scalar factors are can-
celled when conjugating. Moreover, since conjugating
Pauli operators with Pauli operators only introduces
a phase (more specifically, the centraliser of Pn in Cn

is Pn [12]), we can reduce the Clifford group to the
quotient group Cn/Pn. This leads us to the following
definition of the Pauli tracking problem:

Definition 3 (Pauli tracking) Let m, n ∈ N. Given
a sequence (gi)1≤i≤m ⊆ Pn ∪ Cn/Pn, calculate
(pi)1≤i≤m ⊆ Pn, which is recursively defined by

pi =
{

gipi−1 , if gi ∈ Pn

gipi−1g−1
i , if gi ∈ Cn/Pn

(1)

for i ∈ {1, . . . , m}, where p0 = 1.
We refer to (pi)0≤i≤m ⊆ Pn as the Pauli frame se-
quence that is tracked through the circuit sequence
(gi)1≤i≤m.

This is the computational task we want solve with our
library, which is essentially achieved by implementing
the following two isomorphisms.

Proposition 4 Let n ∈ N. Pn is isomorphic to the
abelian group H(Zn

2) = (Zn
2 × Zn

2 , +) ∼= Z2n
2 with the

standard addition via

τ : (Zn
2 × Zn

2) → Pn, (z, x) 7→
n⊗

j=1
Z

zj

j X
xj

j . (2)

Proposition 5 ([11, 12]) Let n ∈ N. The projective
Clifford group, up to Pauli operators, is isomorphic to
the symplectic group, i.e.,

κ : Cn/Pn → Sp2n(Z2), cPn 7→ Sc = τ−1 ◦ innc ◦ τ ,

where Sp2n(Z2) is the symplectic group of the Z2n
2 vec-

tor space with respect to the standard symplectic form
(0 1
1 0), and innc is the inner automorphism induced by

c, i.e., conjugation with c ∈ Cn.

The first isomorphism τ in Prop. 4 describes how Pauli
operators are represented in our library, i.e., they are
simply represented by a pair of boolean values or bits
and multiplication is done via the XOR operation.
The second isomorphism κ in Prop. 5 then says that
the according operation of a conjugation with a Clif-
ford element cPn in the binary Pauli representation is
given by the symplectic operator κ

(
cPn

)
. Reference

[22] explicitly lists the symplectic operators for some
Clifford elements that are implemented in the library.

Note that the process of Pauli tracking is very sim-
ilar to stabiliser simulations. The group H(Zn

2) is the
Heisenberg group and PH

n is its isomorphic Weyl rep-
resentation [11, 12, 13, 23, 24, 25]. In stabiliser simula-
tions, these isomorphisms are adjusted to non-trivial

3

stabiliser subgroups of Pn and the updating of the
stabilisers works similar to the Pauli tracking, with
the differences that signs have to be accounted for.

The matrix representation of the Clifford conjuga-
tions gives us an upper bound for the computation
cost of the Pauli tracking per gate, that is, the cost
of one conjugation is bounded by O

(
n2)

. However, in
reality, the cost per gate is usually much lower, since
the standard Clifford gates used in quantum circuits
are usually local to a lower number of qubits m ∈ N,
m ≤ n, and they can often be implemented in a more
efficient way than simple matrix multiplication. For
example, a Hadamard gate is often just one memory
swap, or a controlled-Z gate can be implement with
two XOR operations. If we bound m by a constant, for
example, m = 2, and the circuit consists of l ∈ N gates,
and we track k ∈ N Pauli frames simultaneously, the
Pauli tracking can be performed in O(lk) time with
O(nk) memory. In the case of MBQC, under the as-
sumption that each teleportation induces a Pauli cor-
rection, that is, a Pauli frame (cf. Fig. 1), it is roughly
l ∝ k ∝ n, i.e, both costs, time and space, are of the
order O

(
n2)

.

2.2 Library Features

In Sec. 2.1, we focused on how the Pauli tracking logic
is implemented. In this section we shall give a brief
overview of how the library can be used. However,
we shall not give examples or explicitly discuss the
API; for that, please refer to the documentation of
the software packages (cf. Sec. 5).

There are essentially two modes in which the library
can be used: The first one is for Pauli tracking when
all gates are known, for example dynamically during
execution of a quantum circuit. In this mode, there is
one Pauli frame (cf. Def. 3), that is, one Pauli operator
for each qubit, and this frame is updated accordingly
to the circuit instructions. The required memory for
this is linear in the number of qubits.

The second mode is to perform the Pauli track-
ing when defining the quantum circuits, or compil-
ing them, that contain gate teleportations, e.g, as in
MBQC. In this mode, for each potentially induced
Pauli correction (it is usually non-deterministic since
it depends on a measurement result), one Pauli frame
can be captured, and then tracked through the cir-
cuit. These frames can then be used to determine
the strict partial time order of the measurements
that we discussed in the introduction. During ex-
ecuting, the Pauli corrections before the measure-
ments can then be obtained from the frames. In this
mode the required memory is linear in the number
of qubits and frames, i.e., induced corrections. For
pure MBQC circuits, this means that the memory
scales approximately quadratically with the number
of vertices in the graph state. The frames are stored

in major-qubit-minor-frame order. This way, the con-
jugations can be performed through vectorised opera-
tions and simple memory swaps.

The way the Pauli tracking is performed from the
user side, is to initialise a tracking object, and then
update it by calling the according methods that corres-
pond to the circuit instructions (cf. library document-
ation examples). This works, for example, similar to
how quantum circuits are constructed in some of the
quantum computing libraries, e.g., Circ [26] or Qiskit
[27], where one initialises a circuit object and then
adds gates to it.

When using the Rust native library, the user can
choose among different data structures for the rep-
resentation of the Pauli frames. This is achieved by
designing the library generically (through static dis-
patch, i.e., monomorphization) in its core data struc-
tures. This way, the user can choose the most appro-
priate data structure for the specific use case. For
example, while SIMD bit-vectors (single instruction,
multiple data) may allow faster executions of the Clif-
ford conjugations, normal bit-vectors can be more
efficient if the user often has to access the Pauli
frames. The library directly supports some standard
data structures, but the user can also support their
own data structure by providing the required methods.
For example, to support a data structure as top-level
tracking object, the data structure only has to provide
methods that implement the H, S, and CZ gates since
every other Clifford gate can be constructed through
default methods according to Def. 2.

When using the Python wrapper, this generic flex-
ibility is not completely given, but provided to a re-
stricted set of data structures.

Finally, we would like to briefly discuss where this
library stands in relation to other software tools that
do provide similar functionality, for example, Stim
[15]. Stim is a stabiliser simulator which internally
tracks Pauli operators to simulate error models. A
subproject of Stim also provides a graphical applic-
ation to visualise how Pauli errors propagate through
a Clifford circuit. Our library does not try to directly
compete with these existing projects, w.r.t. their Pauli
tracking functionality. Instead we want to provide flex-
ible, low level functionality, which focuses solely on
the Pauli tracking, that can be integrated easily into
multiple other projects. The goal is to provide an API
that allows for simple integration with minimal over-
head.

3 MBQC scheduling
In MBQC [1, 2], the quantum gates are realised
through gate teleportation protocols, i.e., entangle-
ment of the qubits with additional qubits and then
performing specific measurements which effectively
realise the gate. The entangled resource state is usu-
ally describe by a graph where the vertices represent

4

the qubits and the edges the entanglement. The graph
usually contains a large number of vertices, i.e., qubits,
and one critical aspect of MBQC is to reuse qubits
after they have been measured. More specifically, it
is important to schedule initialisation, entanglement
and measurement of the qubits in way that reduces
the quantum memory requirement (space cost) and
the execution time (time cost). This, of course, de-
pends heavily on the underlying hardware and its ar-
chitecture, but even without considering that, it is a
hard problem.

The scheduling is also restricted by certain con-
straints. One of the constraints is induced by the non-
determinism of the measurements. Since the meas-
urement outcome is not known prior to execution,
they introduce Pauli corrections depending on the
measurement outcome. If these corrections commute
or anticommute with the subsequent measurement,
they can be accounted for by post-processing, how-
ever, this is not the case in general. Therefore, the
corrections define a time order for the measurements.
For certain MBQC protocols, like the Raussendorf
two-dimensional cluster [1], a correct time order of the
measurements is directly included in the protocol and
graph state, however, for other protocols, that for ex-
ample involve certain graph transformations, finding a
time order that is not too restrictive may be decoupled
from the graph state. This is where the Pauli tracking
may be able to help. For example, consider the pro-
tocol proposed in [17, 18]: In this protocol, a quantum
circuit is first transformed into a larger Clifford circuit
that includes gate teleportations, and then a graph
state is computed from the Clifford circuit. The graph
state is independent of the Pauli corrections, however,
they are captured via Pauli tracking during the trans-
formation to the Clifford circuit. From the captured
Pauli frames, one can then calculate the measurement
time order for the graph, simply by checking for each
frame on which qubits it induces potential corrections.

The other constraint on the scheduling is that a
qubit can only be measured when all its neighbours
have been initialised and entangled with the qubit.
This is because the entanglement does not commute
with the measurement.

In the following, we formulate a framework that de-
scribes the scheduling problem. We shall then describe
an attempt to solve this problem up to a certain scale
and present some numerical results that give indica-
tions about how much can be gained with this optim-
isation [28].

3.1 Framework
We start by defining a valid measurement schedule
that accounts for the constraints described above. The
graphs are undirected and simple, i.e., no self-loops
or multiple edges between the same two vertices are
allowed.

Definition 6 (Measurement schedule) Let (V, E, ≺)
be a triple where G = (V, E) is a graph (with vertices
V and edges E) and ≺ is a strict partial order on V . A
measurement schedule is a sequence S = (Mi, Ii)1≤i≤n,
where Mi, Ii ⊆ V and n ∈ N, such that for all 1 ≤ i ≤
n (negative indexed sets are empty)

(a) Mi ∪ N(Mi) ⊆ Ii,

(b) PRE(Mi) ⊆
⋃

1≤j<i Mj ,

(c)
⋃̇

1≤i≤nMi = V ,

(d) Ii−1\Mi−1 ⊆ Ii ⊆ V \
⋃

1≤j<i Mj ,

where N(Mi) = {N(x) | x ∈ Mi} is the set of all
neighbours of the vertices in Mi and PRE(Mi) =
{x ∈ V | ∃y ∈ Mi : x ≺ y} is the set of all vertices that
are smaller than a vertex in Mi.

The first two conditions (a) and (b) describe the con-
straints under which a vertex can be measured, that
is, the vertices itself and all its neighbours have to
be initialised (and entangled), and all smaller vertices
that induce possible corrections on the to be meas-
ured vertices have to be measured before. The last two
conditions (c) and (d) are just for soundness, i.e., all
vertices have to be measured and each vertices is only
initialised once and kept initialised (and entangled)
until it is measured.

We can now define the space and time cost of a
schedule, i.e., how much quantum memory is required
and how many steps of parallel measurements are ex-
ecuted:

Definition 7 (Schedule cost) Let (V, E, ≺) be a
graph with a strict partial order and S = (Mi, Ii)1≤i≤n

a corresponding measurement schedule, n ∈ N. The
space cost, sc, and time cost, tc, of the schedule are
defined by

sc(S) = max
1≤i≤n

|Ii| ,

tc(S) = n .

The optimisation problem, one is now faced with, is
to find a schedule S with small space and time cost.
For the special case that there is effectively no time
order, i.e., there are no ≺ relations, it has been shown
that finding a space-optimal schedule is equivalent to
finding a path decomposition of the graph that real-
ises the pathwidth [19], implying that the pathwidth
is a lower bound for the space cost sc(S). Just approx-
imating the pathwidth is already NP-hard [19].

Given a graph and a time order, there are many
possible schedules, e.g., given a sequence (Mi)i there
are many possible (Ii)i, such that S = (Mi, Ii)i is a
valid measurement schedule. However, we are only in-
terested in minimal (Ii)i w.r.t. a measurement pattern
(Mi)i:

Definition 8 (Measurement pattern) Let (V, ≺) be a
tuple of a set of vertices V with a strict partial order ≺.

5

A measurement pattern is a sequence P = (Mi)1≤i≤n,
where Mi ⊆ V and n ∈ N, such that for all 1 ≤ i ≤ n

(a) PRE(Mi) ⊆
⋃

1≤j<i Mj ,

(b)
⋃̇

1≤i≤nMi = V .

In contrast to a measurement schedule, a measurement
pattern depends only on the time order but not on
the spatial structure of the graph. However, we can
construct a unique minimal schedule with respect to
the pattern:

Proposition 9 Let (V, E, ≺) be a graph with a
strict partial order and P = (Mi)1≤i≤n a measure-
ment pattern of (V, ≺), n ∈ N. Then the schedule
S = (Mi, Ii)1≤i≤n with

Ii = Mi ∪ N(Mi) ∪ (Ii−1\Mi−1) (3)

for all 1 ≤ i ≤ n (negative indexed sets are empty) is
space optimal w.r.t. P in the sense that the measure-
ment sets Mi, 1 ≤ i ≤ n, are the same for P and S,
and the space cost is minimal.
Proof. First, we need to show that S is a valid schedule.
The only non-trivial condition is Ii ⊆ V \

⋃
1≤j<i Mj ,

for all 1 ≤ i ≤ n, but this follows easily by induction.
The relative space optimality now simply follows

from the fact that Ii is obviously the minimum set that
satisfies conditions (a) and (d) for all 1 ≤ i ≤ n.

3.2 Algorithm
Our algorithm chooses different measurement pat-
terns P , i.e., a sequence of parallel measurement steps
that are allowed by the time order, and then creates
a measurement schedule S according to Prop. 9. For
this schedule it calculates then the space and time
costs. The hardness of the problem lies in the sheer
number of possible choices for P . Again, considering
the extreme case that there is no time order, the pos-
sible choices for P are the ordered partitions of the
set V , and the number of those partitions is given
by the ordered Bell number, which is approximately
|V |!/

(
2(log 2)|V |+1)

, asymptotically in |V | [29].
However, not all patterns have to be considered ne-

cessarily. In our algorithm, the measurement patterns
are dynamically created, sketched out in the follow-
ing (for more details, please refer to the source code;
it is essentially a depth-first-search): Let us assume
we already calculated the space and time costs for
some schedules. Now when choosing a new pattern,
we first choose a first measurement set M1. For this
set, we construct I1 and the calculate the space and
time costs so far (i.e., |I1| and 1, respectively). If these
costs are worse than the costs for the best schedules
we found so far, we directly discard the pattern and
try a new set M ′

1. If the costs are better, we continue
and choose a second set M2. Again, we calculate the

costs so far and either discard the second set or con-
tinue. We do this until we finally have a complete pat-
tern and then repeat the process for a new pattern
(in reality, we are not actually always starting with a
first set M1, but rather go a few steps back and then
forward again with different measurement sets). This
technique allows us to potentially skip many possible
patterns, however, it highly depends on the structure
of the graph and the time order. The scaling is in
general still expensive though. We tried to calculate
the complexity of this implementation, but failed to
derive a simple expression; Fig. 4 shows the run-times
for some calculations, however, note that this is not a
benchmark but only qualitative information.

The algorithm described so far, covers only an exact
optimisation, i.e., finding the minimum costs, however,
often approximations are sufficient. We implement an
approximative version of the algorithm by putting a
probabilistic condition on the acceptance of a next
measurement set for a pattern, that is, if we choose
some set Mi and the costs are better than the best
costs so far, the set is still only accepted with a cer-
tain probability. The probability function depends on
appropriate parameters and can be specified by the
user. This allows us to reduce the run-time, however,
the final results are not guaranteed to be optimal, but
only approximate the minimum costs, since some op-
timal patterns might be discarded (and depending on
how aggressively measurement sets are discarded it
might still not be scalable).

To get a time-optimal measurement schedule, how-
ever, is trivial, given a time order. For the next meas-
urement set, one simply chooses all vertices that are
allowed to be measured. Given some Pauli frames, the
Pauli tracking library provides a method to calculate
the according time order in O

(
|V |3

)
time, represent-

ing it as a reduced directed acyclic graph. In this
graph, the qubits are sorted into layers (Mi)i that
describe when they can be measured the earliest, i.e.,
the layers define the measurement pattern P = (Mi)i

for the trivial time-optimal schedule (cf. Def. 8). Ob-
taining the Pauli frames via Pauli tracking from the
MBQC circuit is bounded by O

(
|V |2

)
, i.e., the sched-

ule is obtained in O
(

|V |3
)

time during compilation.

3.3 Numerical Results

In Figs. 2 and 3 we show some numerical results of
the space and time costs for random graphs and time
orders. The results are not directly based on quantum
circuits but rather on random graphs and random
time orders. The graphs are randomly generated by
uniformly creating edges with a certain density pe. In-
stead of directly drawing a random time order, we
draw random Pauli frames and then calculate the time
order from them using the Pauli tracking library. We

6

Ed
ge

de
ns
ity

p
e

(a)

0.0

0.5

1.0

Time cost tc(S) (b)

Ti
me
-op
tim

al,

tri
via
l s
che

du
le

S t
riv
ial
,ti
me

Space cost sc(S)

Correction density pc

Ed
ge

de
ns
ity

p
e

(c)

0.0 0.5 1.0
0.0

0.5

1.0

Correction density pc

(d)

0.0 0.5 1.0

Sp
ace
-op
tim

al,

ap
pro

x.
sch
ed
ule

Sa
pp
ro
x,s
pa
ce

4 6 8 10 12 14 16 18 20
Time cost & space cost (cf. Def. 7)

Figure 2: Time and space costs (cf. Def. 7) for the trivial time-optimal schedule and the approximated space-optimal schedule,
for |V | = 20 vertices. (a) shows the time cost tc for the time-optimal schedule Strivial,time directly obtained from the time order
induced by the Pauli frames. Up to numerical errors, the time cost is independent of the edge density pe and increases with the
correction density pc. (b) shows the space cost sc for the same schedule Strivial,time. (c) and (d) show the according costs for the
approximated space-optimal schedules Sapprox,space, respectively. For details about the probabilistic approximated search , look at
App. A.

do this, to create a closer connection to the underly-
ing MBQC scheduling problem: First, we randomly
pick one vertex, which represents a vertex/qubit in
a teleportation protocol that is going to be “meas-
ured” (cf. Fig. 1). Then, we randomly induce Pauli
corrections on the other vertices (which have not been
“measured” yet), dependent on the picked vertex, with

a certain probability pc. These corrections form a ran-
dom Pauli frame that represents the correction in-
duced by the picked vertex, which would have been
tracked through a hypothetical circuit. This way, one
might argue that the correction density pc resembles
the spreading of the induced Pauli corrections because
of entanglement.

7

Alternatively, to have a closer relation to quantum
algorithms, we could have directly drawn random cir-
cuits, or maybe specific circuits, and then use different
MBQC protocols to transform them into graphs and
time orders. However, this compilation is not trivial
to implement and not part of this project.

Keeping this in mind, the shown results should be
viewed as qualitative indications whether it might be
worth to invest in this optimisation technique. They
are definitely not benchmarks, since sampling enough
data in a stable environment would require extremely
long calculations due to the hardness of the problem.
Furthermore, in an application, it will also heavily de-
pend on the specific quantum algorithm, the MBQC
protocol, and the underlying hardware which puts ad-
ditional constraints on the scheduling.

Figure 2 shows the time cost for the trivial time-
optimal schedule and the space cost for an approx-
imated space-optimal schedule, for a fixed number
of vertices, |V | = 20, but different edge densities
pe and correction densities pc. The time cost for the
time-optimal path (Fig. 2 (a)) is completely independ-
ent of the edge density pe; this is clear, since it is
directly calculated from the time order, without any
reference to the graph. The lower the correction dens-
ity pc is, the lower is the time cost. This is because the
time order has less order relations, implying less layers
in the directed time order graph, on average. Regard-
ing the space cost for the approximated space-optimal
schedule, (Fig. 2 (d)) we see that it increases rather
fast with the edge density pe. The reason for that is
that more vertices have to be initialised when we want
to measure a vertex, according to Def. 6 (a), since the
vertex has more neighbours. With increasing correc-
tion density pc, there are less choices to measure first
a vertex with less neighbours (Def. 6 (b)), and there-
fore the cost increases. The other two plots, Fig. 2 (b)
and (c), show mainly artefacts of how the algorithm
is implemented: For low correction densities the space
cost of the trivial time-optimal schedule is high be-
cause this schedule greedily measures as many ver-
tices as possible. The time cost for the approximated
space-optimal schedule decreases with the correction
density, because the algorithm always first tries the
more time-optimal schedules.

While these plots are not based on real quantum
circuits, they confirm the expected behaviour of the
costs and maybe provide some qualitative intuition for
when it is worth to search for a more space-optimal
schedule, if this is wanted. For example, if the edge
density is relatively high, e.g., pe > 0.8, and the cor-
rection density is not too low, e.g., pc > 0.6, it might
not be worth searching for a space-optimal schedule
because the space cost probably cannot be reduced
significantly. On the other hand, if the edge density
is low, the space cost can probably be significantly
reduced.

In Fig. 3 we can see analogue costs, but now
for a varying number of vertices |V |. The edge and
correction densities scale via pe(|V |) = pc(|V |) =
0.5/

√
|V | − 1. This is equivalent to the vertex degree

scaling with
√

|V | − 1. Importantly, in the asymptotic
limit |V | → ∞, it is pe(|V |) > ln(|V |)/|V |, which en-
sures that the graph is connected almost surely (cf.,
e.g., [30], more specifically see 2). Notably, we see that
the space costs for the approximated space-optimal
schedule are close to the exact space-optimal sched-
ule, at least up to the number of vertices for which we
performed the exact optimisation (with much faster
run-times, cf. Fig. 4). For larger graphs, however, this
deviation would of course increase. Furthermore, the
space cost of the time-optimal schedule obtained from
the exact optimisation is lower than the space cost of
the trivial time-optimal schedule. This is because the
trivial time-optimal schedule does not try to measure
first vertices with less neighbours.

For additional information about the numerical
data, e.g., which probabilistic acceptance function is
chosen or for recorded run-times, see App. A.

In general, the results show that appropriate
scheduling of qubit initialisation and measurement
can potentially greatly reduce the space and time cost,
depending on the system parameters (especially com-
pared to just naively initialising the whole graph).
Finding optimal schedules, however, is a hard prob-
lem, and will require optimised algorithms for lar-
ger scales. The trivial time-optimal schedule, however,
can be obtained in polynomial time from appropri-
ately tracked Pauli frames. In an application, one can
imagine starting with the trivial order and then try-
ing to optimise it with respect to space, until a certain
space cost is reached or stop the optimisation after a
certain timeout.

4 Conclusion

We presented a software library that provides the
functionality to track Pauli gates through a (Clifford)
quantum circuit. The library is designed to be low
level and generic, allowing easy integration into other
projects. The library is based on the isomorphism
between the Clifford group and the symplectic group.
Tracking Pauli gates allows to reduce the number of
Pauli gates to the number of qubits or less. Further-
more, when tracking Pauli corrections in MBQC, the
information can be used to calculate the strict partial
(time) order of the measurements. This allows us to
perform scheduling optimisations, which we tackled in

2Let n ∈ N be the number of vertices, i.e., n = |V |. In [30],
it is proven that, if pe(n) = (c + ln n)/n, then the graph G

is connected with probability e−e−c in the asymptotic limit
n → ∞ (a result by Erdös and Rényi).

8

10 20 30 40
Number of vertices |V |

2

4

6

8

10

12

14

16

18
T
im

e
co
st

tc
(a)

Strivial,time
Sapprox,space
Sexact,time
Sexact,space

10 20 30 40
Number of vertices |V |

5

10

15

20

25

30

Sp
ac
e
co
st

sc

(b)

Figure 3: The time and space costs depending on the number of vertices |V |. The edge and correction densities scale with |V |:
pe = pc = 0.5/

√
|V | − 1. (a) shows the time cost tc and (b) the space cost sc for different schedules. Strivial,time and Sapprox,space

are the trivial time-optimal schedule and approximated space-optimal schedule as in Fig. 2. Sexact,time and Sexact,space are the
according data of a full search for exact optimality, that is, Sexact,time is a time-optimal schedule with the lowest possible space
cost and Sexact,space is a space-optimal schedule with the lowest possible time cost. These exact data points are only calculated
for |V | ≤ 20 since the run-time becomes very long. It is tc(Sexact,time) = tc(Strivial,time) and the costs for Sapprox,space are close to
the costs of Sexact,space, however, sc(Sexact,time) is fairly lower than sc(Strivial,time).

the second part of the paper. We presented a frame-
work that covers the scheduling problem on an ab-
stract level reduced to the underlying graph and the
time order. The numerical results we showed give in-
dications on how much can be gained with this optim-
isation technique, however, one has to keep in mind
that the optimisation is a computational hard prob-
lem, which is how we calculated the data for the ap-
proximated space-optimal schedules.

5 Software Availability
The source code of the Pauli tracking library can be
found in the taeruh/pauli_tracker repository on Git-
Hub [16]. The Rust library is published on crates.io
and the Python wrapper on pypi.org where you
can also find links to the documentation. For the
source code of the MBQC scheduling project, see
taeruh/mbqc_scheduling [28].

Acknowledgments
We thank Samuel Elman, Thinh Le and Ryan Mann
for helpful discussions. Jannis Ruh was supported by

the Sydney Quantum Academy, Sydney, NSW, Aus-
tralia. The views, opinions, and/or findings expressed
are those of the author(s) and should not be inter-
preted as representing the official views or policies
of the Department of Defense or the U.S. Govern-
ment. This research was developed with funding from
the Defense Advanced Research Projects Agency [un-
der the Quantum Benchmarking (QB) program under
Awards No. HR00112230007 and No. HR001121S0026
contracts].

A More on the numerical results
The code for the data generation and the numer-
ical data can be found at the commits 6aaa4d8 and
040e289 in taeruh/mbqc_scheduling/results [28], re-
spectively. The data capture all the information that
is needed to reproduce the data. However, an exact re-
production for the approximated results is impossible.
This is because the algorithm is multi-threaded and
the tasks that are sent to the threads communicate in-
termediate results between each other, which change
how the tasks continue their execution. While this is
in theory deterministic, in practice it depends on how

9

https://github.com/taeruh/pauli_tracker
https://crates.io/crates/pauli_tracker
https://pypi.org/project/pauli-tracker/
https://github.com/taeruh/mbqc_scheduling
https://github.com/taeruh/mbqc_scheduling/tree/6aaa4d8bf867075c3d90c91df87962e9e6c29377
https://github.com/taeruh/mbqc_scheduling/tree/040e28959cb87bba7b0ab64e97d2ad5b4fe1bebb
https://github.com/taeruh/mbqc_scheduling/tree/main/results

10 20 30 40
Number of vertices |V |

107

108

109

1010

R
un

-t
im

e
[n
an

os
ec
on

ds
]

(a)

Approx. search
Exact optimization

Correction density pc

Ed
ge

de
ns
ity

p
e

0.0 0.5 1.0
0.0

0.5

1.0
(b) Run-time [nanoseconds] (approx. search)

106

107

108

109

Figure 4: Recorded run-times of the calculations. This is not a benchmark. In both plots the run-time is the average time it took
to perform the optimisation, given a graph and a time order. (a) shows how the approximate algorithm performs compared to
the exact algorithm, w.r.t. the number of vertices |V |. Considering the logarithmic scale, it is magnitudes faster. Starting at
approximately 30 vertices, the timeout that scales quadratically with the number of vertices is reached, and the search returns
early. (b) shows how the run-time depends on the edge density pe and the correction density pc. It drastically increases for low
correction densities. Vertically, for different edge densities, there are discontinuities. This is because for each selected edge
density, the according data points, w.r.t. the correction density, were calculated on a different cluster node which were under
different load (running the simulations on smaller grids locally on a single laptop does not show these discontinuities).

the operating system schedules the threads and what
the CPU is doing.

The probabilistic acceptance function that we used
for the approximated space-optimal schedules is given
by

paccept(∆, V, M) = Θ(|∆|)|V |2e− |V ||V \M|
|∆|3(|M|) (4)

where V are the vertices in the graph, M are the ver-
tices that have been measured so far (including the
ones in the currently picked measurement set), ∆ the
difference between the best memory and the required
memory so far, and Θ is the Heaviside step function
(being 1 for positive elements). The step function en-
sures that we only focus on space-optimal schedules.
For finding schedules somewhere between space op-
timal and time optimal, i.e., a full space-time optim-
isation, one can choose a smoother function. The expo-
nential decay ensures that the run-time is sufficiently
small for our experiments, focusing on schedules with
a rather large space improvement. In a real applic-
ation, e.g., a real quantum compiler toolchain, one
may choose a more optimised function, fitting to the
required needs, and optimise its parameters.

The probabilistic searches have a timeout which in-
creases quadratically with the number of qubits, i.e.,
we stop the search after O

(
|V |2

)
time and return the

best results that have been found so far. The effect

of that can be seen in Fig. 4 (b), where the run-time
drops down onto a quadratic curve for larger num-
ber of qubits, however, note that the behaviour of the
according curves in Fig. 3 indicate that the implied
penalty on the costs is not too high.

The standard deviations, which we do not show for
simplicity, on the plotted results are relatively high.
This is an artefact of combinatorics: For small number
of vertices, the standard deviation is just relatively
high, and for larger number of vertices it becomes a
sampling issue. Because of that, we emphasise again
that the results are rather qualitative indications than
quantitative benchmarks.

In Fig. 4 we see the average run-time for the cal-
culations. This is not a benchmark, but only shows
the recorded run-times for our calculations. The cal-
culations were performed on a cluster where the ver-
tices were under different loads; therefore, these plots
are only qualitative indications. We see that the ap-
proximate optimisation runs much faster than the ex-
act search for larger graphs. In general, the run-time
heavily depends on the chosen acceptance function
Eq. (4). For small correction densities, the run-time
drastically increases, because the number of possible
measurement steps, per step, scales according to the
ordered Bell numbers.

10

References
[1] Robert Raussendorf and Hans J. Briegel. “A one-

way quantum computer”. Phys. Rev. Lett. 86,
5188–5191 (2001).

[2] Vincent Danos, Elham Kashefi, and Prakash
Panangaden. “The measurement calculus”. J.
ACM 54, 8–es (2007). arXiv:0704.1263.

[3] E. Knill. “Quantum computing with realistic-
ally noisy devices”. Nature 434, 39–44 (2005).
arXiv:quant-ph/0410199.

[4] Alexandru Paler, Simon Devitt, Kae Nemoto,
and Ilia Polian. “Software-based Pauli tracking
in fault-tolerant quantum circuits”. Design, Auto-
mation & Test in Europe Conference & Exhibi-
tionPages 1–4 (2014). arXiv:1401.5872.

[5] L. Riesebos, X. Fu, S. Varsamopoulos, C. G.
Almudever, and K. Bertels. “Pauli frames for
quantum computer architectures”. Proceedings
of the 54th Annual Design Automation Confer-
ence 76, 1–6 (2017).

[6] Jin-Ho On, Chei-Yol Kim, Soo-Cheol Oh, Sang-
Min Lee, and Gyu-Il Cha. “A multilayered Pauli
tracking architecture for lattice surgery-based lo-
gical qubits”. ETRI Journal 45, 462–478 (2023).

[7] S. B. Bravyi and A. Yu. Kitaev. “Quantum codes
on a lattice with boundary” (1998).

[8] Austin G. Fowler, Matteo Mariantoni, John M.
Martinis, and Andrew N. Cleland. “Surface codes:
Towards practical large-scale quantum computa-
tion”. Physical Review A 86, 032324 (2012).
arXiv:1208.0928.

[9] Daniel Gottesman and Isaac L. Chuang. “Demon-
strating the viability of universal quantum com-
putation using teleportation and single-qubit
operations”. Nature 402, 390–393 (1999).
arXiv:quant-ph/9908010.

[10] Xinlan Zhou, Debbie W. Leung, and Isaac L.
Chuang. “Methodology for quantum logic gate
construction”. Phys. Rev. A 62, 052316 (2000).
arXiv:quant-ph/0002039.

[11] Beverley Bolt, T. G. Room, and G. E. Wall. “On
the Clifford collineation, transform and similarity
groups. i.”. Journal of the Australian Mathemat-
ical Society 2, 60–79 (1961).

[12] Beverley Bolt, T. G. Room, and G. E. Wall. “On
the Clifford collineation, transform and similarity
groups. ii.”. Journal of the Australian Mathem-
atical Society 2, 80–96 (1961).

[13] Beverley Bolt. “On the Clifford collineation,
transform and similarity groups. (iii) generators
and involutions”. Journal of the Australian Math-
ematical Society 2, 334–344 (1962).

[14] Daniel Gottesman. “The Heisenberg representa-
tion of quantum computers” (1998).

[15] Craig Gidney. “Stim: a fast stabilizer cir-
cuit simulator”. Quantum 5, 497 (2021).
arXiv:2103.02202.

[16] Pauli-Tracker contributors. “Pauli tracker:
A library to track Pauli gates through
Clifford circuits” (2024). avalaible at ht-
tps://github.com/taeruh/pauli_tracker.

[17] Madhav Krishnan Vijayan, Alexandru Paler,
Jason Gavriel, Casey R Myers, Peter P Ro-
hde, and Simon J Devitt. “Compilation of
algorithm-specific graph states for quantum cir-
cuits”. Quantum Science and Technology 9,
025005 (2024). arXiv:2209.07345.

[18] T. Le et al. “BenchQ project” (2024). In prepar-
ation.

[19] Samuel J. Elman, Jason Gavriel, and Ryan L.
Mann. “Optimal scheduling of graph states via
path decompositions” (2024). arXiv:2403.04126.

[20] Earl T. Campbell and Mark Howard. “Unified
framework for magic state distillation and mul-
tiqubit gate synthesis with reduced resource cost”.
Phys. Rev. A 95, 022316 (2017).

[21] Peter Selinger. “Generators and relations for
n-qubit Clifford operators”. Logical Methods in
Computer Science 11, 2 (2015). arXiv:1310.6813.

[22] Pauli-Tracker contributors. “Supported Clifford
gates in the library at the time of writing” (2024).
taeruh/pauli_tracker/docs/conjugation_rules.

[23] D. Gross. “Hudson’s theorem for finite-
dimensional quantum systems”. Journal of
Mathematical Physics47 (2006). arXiv:quant-
ph/0602001.

[24] Maurice R Kibler. “Variations on a theme of Heis-
enberg, Pauli and Weyl”. Journal of Physics A:
Mathematical and Theoretical 41, 375302 (2008).
arXiv:0807.2837.

[25] J Tolar. “On Clifford groups in quantum comput-
ing”. Journal of Physics: Conference Series 1071,
012022 (2018). arXiv:1810.10259.

[26] Circ contributors. “Circ: An open source
framework for programming quantum com-
puters” (2023).

[27] Qiskit contributors. “Qiskit: An open-source
framework for quantum computing” (2023).

[28] MBQC-Scheduling contributors. “MBQC
scheduling: Scheduling in measurement-based
quantum computing” (2024). available at
https://github.com/taeruh/mbqc_scheduling.

[29] Ralph W. Bailey. “The number of weak orderings
of a finite set”. Social Choice and Welfare 15,
559–562 (1998).

[30] Joel Spencer. “Ten lectures on the probabil-
istic method”. Society for Industrial and Applied
Mathematics. (1994). 2nd edition edition.

11

https://dx.doi.org/10.1103/PhysRevLett.86.5188
https://dx.doi.org/10.1103/PhysRevLett.86.5188
https://dx.doi.org/10.1145/1219092.1219096
https://dx.doi.org/10.1145/1219092.1219096
http://arxiv.org/abs/0704.1263
https://dx.doi.org/10.1038/nature03350
http://arxiv.org/abs/quant-ph/0410199
https://dx.doi.org/10.7873/DATE.2014.137
https://dx.doi.org/10.7873/DATE.2014.137
https://dx.doi.org/10.7873/DATE.2014.137
http://arxiv.org/abs/1401.5872
https://dx.doi.org/10.1145/3061639.3062300
https://dx.doi.org/10.1145/3061639.3062300
https://dx.doi.org/10.1145/3061639.3062300
https://dx.doi.org/10.4218/etrij.2022-0037
https://dx.doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1208.0928
https://dx.doi.org/10.1038/46503
http://arxiv.org/abs/quant-ph/9908010
https://dx.doi.org/10.1103/PhysRevA.62.052316
http://arxiv.org/abs/quant-ph/0002039
https://dx.doi.org/10.1017/S1446788700026379
https://dx.doi.org/10.1017/S1446788700026379
https://dx.doi.org/10.1017/S1446788700026380
https://dx.doi.org/10.1017/S1446788700026380
https://dx.doi.org/10.1017/S1446788700026926
https://dx.doi.org/10.1017/S1446788700026926
https://dx.doi.org/10.22331/q-2021-07-06-497
http://arxiv.org/abs/2103.02202
https://https://github.com/taeruh/pauli_tracker
https://https://github.com/taeruh/pauli_tracker
https://dx.doi.org/10.1088/2058-9565/ad1f39
https://dx.doi.org/10.1088/2058-9565/ad1f39
http://arxiv.org/abs/2209.07345
http://arxiv.org/abs/2403.04126
https://dx.doi.org/10.1103/PhysRevA.95.022316
https://dx.doi.org/10.2168/lmcs-11(2:10)2015
https://dx.doi.org/10.2168/lmcs-11(2:10)2015
http://arxiv.org/abs/1310.6813
 https://github.com/taeruh/pauli_tracker/blob/372c536d2dab68e2a884e1e1a8a5cfc597245018/docs/conjugation_rules.pdf
https://dx.doi.org/10.1063/1.2393152
https://dx.doi.org/10.1063/1.2393152
http://arxiv.org/abs/quant-ph/0602001
http://arxiv.org/abs/quant-ph/0602001
https://dx.doi.org/10.1088/1751-8113/41/37/375302
https://dx.doi.org/10.1088/1751-8113/41/37/375302
http://arxiv.org/abs/0807.2837
https://dx.doi.org/10.1088/1742-6596/1071/1/012022
https://dx.doi.org/10.1088/1742-6596/1071/1/012022
http://arxiv.org/abs/1810.10259
https://https://github.com/taeruh/mbqc_scheduling
https://dx.doi.org/10.1007/s003550050123
https://dx.doi.org/10.1007/s003550050123
https://dx.doi.org/10.1137/1.9781611970074
https://dx.doi.org/10.1137/1.9781611970074

	Introduction
	The Pauli Tracking Library
	Mathematical Formulation
	Library Features

	MBQC scheduling
	Framework
	Algorithm
	Numerical Results

	Conclusion
	Software Availability
	Acknowledgments
	More on the numerical results
	References

