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The interplay between thermodynamics, general relativity and quantum mechanics has long in-
trigued researchers. Recently, important advances have been obtained in thermodynamics, mainly
regarding its application to the quantum domain through fluctuation theorems. In this letter, we
apply Fermi normal coordinates to report a fully general relativistic detailed quantum fluctuation
theorem based on the two point measurement scheme. We demonstrate how the spacetime curvature
can produce entropy in a localized quantum system moving in a general spacetime. The example
of a quantum harmonic oscillator living in an expanding universe is presented. This result implies
that entropy production is strongly observer dependent and deeply connects the arrow of time with

the causal structure of the spacetime.

Introduction. Although the fundamental laws of Na-
ture respect the time-reverse symmetry, irreversible pro-
cesses are everywhere in the natural world [I]. Irre-
versibility, marked by the production of thermodynamic
entropy [2], establishes the thermodynamic arrow of time,
pointing from low to high entropy [3]. A significant step
in this research area has been the formulation of fluctu-
ation theorems, which extend the second law of thermo-
dynamics. These theorems assert that the likelihood of
observing a negative entropy production, or a reversal of
the arrow of time, vanishes exponentially [4H8]. One im-
plication of these findings is that, on average, a positive
entropy production will be typically manifested in any
given process.

On the other hand, the intersection of relativity and
thermodynamics dates back to over a century ago, with
Einstein and Planck delving into how thermodynamic
properties, such as temperature, behaves under the
change in reference frames [9HIT]. A remarkable ad-
vance in this intersection involves the development of
black hole thermodynamics [12], which was subsequently
used to demonstrate that Einstein’s field equations can
be interpreted as a thermodynamic equation of state [13].
This approach has been further applied to investigate
the non-equilibrium properties of spacetime [14]. More-
over, attempts for building a statistical mechanical the-
ory of the gravitational field, alongside the suggestion
that time may have a thermodynamic origin, was made
in Refs. [I5HI8]. Lately, there have been advancements
in extending thermodynamic relations to Quantum Field
Theory (QFT). In particular, the Jarzynski equality was
established for QFT within a flat spacetime, employing
both direct two-point and indirect measurements [19} 20].

Here, by working in this intersection, we demonstrate
how the spacetime curvature can produce entropy in a
localized quantum system that moves in a general space-
time. Some developments in this direction have been
achieved. In the realm of linear effects, Mottola [2I]
established a fluctuation-dissipation relation in curved

spacetime. Iso et al. [22] explored the non-equilibrium
fluctuations of a black hole horizon through the ap-
plication of the Jarzynski equality [23] along with the
generalized second law of thermodynamics [24]. More-
over, a fluctuation theorem for a quantum field in a spe-
cific model of an expanding Universe was described in
Ref. [25].

Our central result goes beyond these studies, by prov-
ing a fully general relativistic quantum fluctuation the-
orem, based on the two point measurement (TPM)
scheme [7], for a localized quantum system, extending
the findings of Ref. [26] in two significant ways. Firstly,
the Tasaki-Crooks theorem entails the Jarzynski equal-
ity when integrated across the probability distribution.
Secondly, and most notably, it unveils the complete im-
pact of the gravitational field on irreversible processes by
explicitly considering the effect of spacetime curvature.
Moreover, our primary finding is illustrated by investi-
gating a quantum mechanical harmonic oscillator living
in an expanding universe. The main implications of our
result are discussed in the end of this letter.

We use natural units in which the speed of light c,
Planck’s constant A, Newton’s gravitational constant G
and Boltzmann constant kp are set to unity. The signa-
ture of the metric is (—, +, 4, +) with Greek letter run-
ning from 0 to 3, while the Latin letters runs from 1 to
3 with exception for the letters a and b that runs from 0
to 3. nap = diag(—1,1,1,1) is the Minkowski metric.

Fermi normal coordinates. We consider the stochas-
tic thermodynamics of a non-relativistic quantum system
that is localized around a time-like trajectory in an ar-
bitrary spacetime. In order to define physical quantities,
we employ Fermi normal coordinates [27]. This choice
is based on the fact that such coordinates properly de-
fine rest spaces where the Hilbert space of the quantum
system can be constructed and all the relevant quantities
can be unambiguously defined. Also, using the Fermi
transport, it is possible to follow the evolution of the sys-
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tem from one of the rest space to the others. This will
be fundamental for us to define thermodynamic variables
and processes.

Our strategy is the following. We first build the Fermi
normal coordinates around a time-like trajectory that de-
scribes the worldline of our laboratory frame. Then, we
consider the Hamiltonian formulation of the dynamics of
a localized quantum particle around this time-like tra-
jectory [28H30]. This will provide the necessary descrip-
tion of a localized quantum system in a curve spacetime,
which is the basic ingredient employed in order to prove
our main result: the quantum detailed fluctuation theo-
rem on a curved spacetime.

Technically, we consider a four-dimensional spacetime
(M, g), with M being a differentiable manifold while g
stands for a Lorentzian metric. The world-line of the
laboratory frame is a time-like curve v : I C R — M,
which can be parameterized by its proper time 7 € I.
The frame 4-velocity u* fulfils u,u* = —1.

The next step is to build the Fermi normal coordi-
nates, which are constructed as follows (see Appendix
for details). First, we define 7 as the time component
of such coordinate system. An orthonormal basis e/
is then defined at a point p = v(r = 0) € M, where
a=0,1,2,3 labels the four basis vector while e/ is iden-
tified with the tangent vector u*. Thus, at point p we
have g,.el'e,” = nq. Now we extend this frame along
the trajectory v such that the basis remains orthogonal.
This is achieved by transporting the vectors e via the
Fermi-Walker transport [31].

By considering the normal neighbourhood U, of the
point p = ~(7 = 0) we can construct the space-like
Fermi normal coordinates. From this, we define the lo-
cal rest space R, C U, of the point p as the set of
points spanned by all geodesics that start from p with
tangent vector orthogonal to u”. Therefore, the coor-
dinates (7 = 0,2, 2%, 2%) can be assigned to any point
t € Ry. Finally, the local rest space of the curve v is
defined as R = UpeyRp which can be seen as a local fo-
liation of the spacetime M around the curve - such that
any point in R is described by the Fermi normal coordi-
nates (7,2, 22, 23). See Appendix [A] for more details.

The system Hamiltonian. We need to define the Hamil-
tonian of our system, which will be constructed around
the time-like trajectory v employing the Fermi normal co-
ordinates. It is worth mentioning that Ref. [28] provides
a formal and elegant description of a localized quantum
system in a curved spacetime using the Fermi normal co-
ordinates. However, our construction is also related to
the formulation reported in Refs. [29, [30], where a struc-
tured quantum system was considered. We present here
only an overview of the calculations, while the details are
explicitly given in Appendix [B]

We consider a particle travelling along the world-line
« around the trajectory « of the laboratory frame, i.e.,

Figure 1. Sketch of the Fermi normal coordinate system. R is
the region where the local rest spaces R, for any t € M, are
defined. The Fermi normal coordinate system (7,2, z?, z%)

covers each one of these subspaces. The system world-line
a C R and the laboratory world-line v are also shown.

the time-like curve « is contained in the local rest space
R of the curve -, where the Fermi normal coordinates
are valid. See the sketch in Fig.

Considering a non-relativistic system (the particle’s in-
ternal and kinetic energies are much smaller than its rest
energy), we can write the Hamiltonian to the lowest order
as

H(1) =Hem(7) + 2(7) Hint, (1)
where
p2 ) 1 .
=1_ £ _ 4 i Ip i,.J
Z(r)=1 52 +a;(T)z" + QR”” (Mz'e?, (2)

is directly related to the time dilation factor between the
proper time 7 of the laboratory frame and the proper
time ¢’ of the system (or the comoving observer). Besides,
a;(1) and R,,.3(7) are the components, in the Fermi
normal coordinates, of the 4-acceleration and the Rie-
mann curvature tensor, respectively, evaluated at point
v(7). Finally, p?> = p'p; is the square of the momentum
of the particle. In addition, H,, is the Hamiltonian of
the centre-of-mass, which is given by

P’ ,.m »
Hcm(T) =m+ % + mai(r)x’ + ERTiTj(T)Z‘lJ?j. (3)

We can interpret the last two terms of Eq. as pertur-
bations to the (flat space-time) free Hamiltonian Hy =
m+ p?/2m.

We now have all the necessary ingredients to present
our main result, a detailed fluctuation theorem obeyed
by the described system.

Fluctuation theorem. We start by describing the pro-
tocol employed to derive the detailed fluctuation theorem



under the TPM scheme for a localized quantum system
in a curved spacetime, thus going far beyond Ref. [20] in
two important ways. First, here we provide a detailed
fluctuation theorem, while in Ref. [26] just the integral
one is presented. Secondly, and most important, here we
uncover the full role played by the gravitational field in
irreversible phenomena, by taking into account the effect
of spacetime curvature explicitly.

Let us first recall that a spacetime (M,g) is time-
orientable if a continuous designation of future-directed
and past-directed for time-like vectors can be made over
the entire manifold [32]. In our case, we only assume
that at least a portion of the spacetime (M, g) is time
orientable, i.e., that the local rest space R C M of the
curve v is time-orientable. This can be done since we
are assuming that the curve ~ is time-like and describes
the world-line of the laboratory frame. Moreover, we as-
sume that the curve -y is oriented towards the future. In
addition, from the curve v and its local rest space R,
it was possible to obtain the Hamiltonian that gov-
erns the evolution of our system and therefore defines a
notion of time flow in the sense defined by Connes and
Rovelli [I8]. This demand is necessary for defining local
thermal equilibrium states [15] [16], 18], [26].

We define two protocols, one in the forward direction
of time and the other one in the backwards direction of
time. The distinguishability of these processes will be
employed as a measure of irreversibility of the forward
process [4]. Both processes consist in preparing the sys-
tem in an equilibrium state, measuring its energy, letting
it evolve under a certain quantum map and measuring
its final energy. From the results of these measurements,
entropy production can be defined. We define both pro-
cesses in the sequence.

The forward process is defined as follows. As depicted
in Fig. I} at point p = (7 = 0) € M, the curves o and
~ intersect and the observer (in the laboratory frame)
performs the first projective measurement in the energy
eigenbasis. To do this, we first suppose that the state
of our system is given by po = |zo)Xzg| ® o9, With |zg)
representing the state of the external degrees of freedom
while the internal degrees of freedom are described by
the thermal state og = e~ 790 /Z;, with h(0) = Z(0) Hypns
and Zy = Tr{e #"®} being the initial Hamiltonian of
the internal degrees of freedom and the partition func-
tion, respectively. [ is the inverse temperature, which
can be properly defined in the present setup [26]. The
measurement is performed in the eigenbasis of §(0) at
point p € M, resulting in the energy eigenvalue € with
probability p; = e—Bel /Zo. After this measurement, the
state of our system is given by [¥o) = |z0) ® |¢}'). Then,
as the quantum system travels along its world line «, its
evolution, with respect to the laboratory frame, is gov-

erned by Hamiltonian and can be written as

[U(r)) = TeHolbon(r 2000107 30) [ )
= Tome™ o Hem™ |30y @ Tre 1 o DT D)

where T = Tem @ Ting is the time-ordering operator and
h(7) = Z(7)Hint- The last equality follows from the semi-
classical approximation, in which the motion of the quan-
tum particle along its world-line is well-defined. Hence,
the internal state evolves accordingly to U = U(r) =
ﬂntefifa h(-r)dr.

At some latter proper time, when the system intersects
again the laboratory frame at the point q =~(7 =1T) €
M, as depicted in Fig [I] the last step of the forward
process is realized by a projective measurement with
respect to the internal Hamiltonian h(T) = Z(T)Hipt,
with h(7T) |e{> = €F |e£>, Zp = Tr{e_ﬁ"(T)}. Hence,
from the definition of work as the stochastic variable
Wit = eg — e?, we can construct the work probability
distribution density of the forward process as Pryg(W) =
Zkylpkﬂlé[W—WkJ], where pr; = pipg) is the joint
probability of obtaining € in the first measurement and
e in the second one. It follows that

Be}
PreaW) = D0 (W = (ef =) =[] U]e]) "
ik

(4)

In order to define the reverse process, let us remember
that, given a time orientation in a portion of the space-
time as the region R C M, general relativity does not
forbid us to define past-directed curves in R [32]. For
instance, given that the curves v and a parameterized
by 7 in Fig[I] are directed to the future, then we can ob-
tain past-directed curves 7' and o’ by making 7 — —7.
Hence, by following Ref. [8], the reverse process is de-
fined as follows. At the point q = v(T) € M, the curves
a and 7 intersect and a first projective measurement in
the energy eigenbasis is realized in the laboratory frame.
To do this, we first suppose that the state of our sys-
tem is given by pr = O|zr)wr| ® orOT, where © is
the anti-unitary time-reversal operator [33], |zr) is the
state of the external degrees of freedom, while the inter-
nal degrees of freedom are described by the thermal state
op = e*Bh(T)/ZT. The next step of the reverse process
consists in a measurement in the eigenbasis of h(7T') at
point q € M, resulting in the energy eigenvalue € with

probability py = e—Ber /2.

The time-reversal evolution of internal degrees of free-
dom is then governed by the micro-reversibility principle,
ie,U=U(T—71)=0(Tme /a0 1Q1 which holds
under the assumption that the Hamiltonian is invari-
ant under time-reversal [§]. When the system intersects
the laboratory frame at point p = v(0) € M, the final
step of the reverse process is realized by a projective mea-

surement with respect to the internal Hamiltonian §(0).



Hence, we can compute the work probability distribution
density of the reverse process as

e—Bek

Zr

‘ 2

Prev(_W) :Zd((€£_€?) _W) <6?|ﬁ’€2>
3.k

()

By using the fact that W = W, = €] —€? and Zr/Zy =
e BAF where AF = Fr — Fy is the difference in the free
energy, we obtain

Powa(W) _ sow-ar)
Prev(_W) - ’ (6)

This is the main result of the present paper, the quan-
tum fluctuation theorem in a curved spacetime. It shows
that a positive entropy production ¥ = W — AF will be
observed, on average, every time we are able to distin-
guish between the process and its time reversal.

Moreover, by integrating Eq. @ over the probability
distributions, we obtain the integral fluctuation theorem

(W), =P, 7)

which consists in the relativistic version of the Jarzynski
equality. The subscript « in the average above remem-
bers us that the joint probability distribution depends
on the path the system follows on the spacetime, while
the subscript v remember us that Z(7) depends on the
acceleration of the curve v and the components of the cur-
vature tensor evaluated at the curve . Another point is
that the final temperature remains identical to the initial
one, since it serves merely as a reference state established
by the observer at the onset of the process. Therefore,
our inquiry revolves around the extent to which the sys-
tem deviates from this initial equilibrium state during its
travel along its path in a curved spacetime. The answer
to this question is precisely Eq. (7).

Some comments about particular realizations of our
result are needed. First, if Hj,; depends on 7, the
results given by Egs. @ and remains valid with
the difference that we also have the contribution of the
driven part of the Hamiltonian, thus modifying the en-
tropy production rate. Second, disregarding the inter-
nal degrees of freedom, we can also derive Eq. for
the centre-of-mass degrees of freedom by considering lo-
calized quantum system within the local rest space R
of the curve . This is the case of the example dis-
cussed in the following. The total Hamiltonian is given
by H(7) = Hem(7) = Ho + ma;(7)z" + 2 Reirj(T)2"a?,
where Hy = m + % + V is the non-perturbative Hamil-
tonian (or the Hamiltonian in flat space-time) with V' be-
ing the potential energy operator. Therefore, the terms
ma;(T)z® and FRrirj (1)x'z? can be treated in the con-
text of quantum mechanical perturbation theory with the
spatial Fermi normal coordinates being position opera-
tors and the projective energy measurements are realized
with regard to the Hamiltonian Hp, (7).

The expanding Universe. We illustrate our results
considering a quantum mechanical harmonic oscilla-
tor (QHO) in an expanding universe described by the
Friedmann-Robertson-Walker (FRW) metric [32]. The
detailed calculations and a more in depth discussion can
be found in Appendix [C]

By taking the worldline of our laboratory frame as the
one of the comoving observers —with the expansion of
the universe— the FRW metric takes, in the Fermi nor-
mal coordinate system, the form

ds? = —(1—gr2>d72
a? (120, — xim; i
+ oy - G () e @

with a being the scale factor.

The system is initially prepared in a thermal state
with inverse temperature 5 and associated with the ini-
tial Hamiltonian whose spectrum is €} = (k + 1/2)wo,
with k£ being a non-negative integer. After the first en-
ergy measurement, the system is let to evolve under the
Hamiltonian

H(t)=Hy+ %mRTm.,-Z(T)$2 = Hy - Z—;ﬁ. (9)
where the last term of Eq. @D plays the role of a time-
dependent external potential. Hence, we can interpret
the non-stationary spacetime as the external force driv-
ing the quantum system out of equilibrium, which is the
origin of the entropy production due to the dynamic na-
ture of the spacetime.

In particular, let us restrict ourselves to the de-Sitter
solution with the universe dominated only by a positive
cosmological constant A, which is a model both for the
primordial inflationary phase and the current exponential
expansion of our universe, i.e., the matter-energy content
of the universe is described by a vacuum with positive
energy density which is constant in space and time. In
this case we have a(t) = €' where H = a/a = \/A/3
is the Hubble parameter, and the transition probability
(for k # 1) takes the simple form

i 2] 7 )

p;u:zl( : o sin? (L*D”Ot). (10)

l€) — € 2

Since this is, in general, different from zero, we conclude
that entropy will be produced by the dynamics unless the
Hubble constant is zero. We can interpret this result as a
sort of internal friction, that takes information out of the
system due to the coupling with the gravitational field
(spacetime). For instance, if we consider initially the
system in its ground state, the only transition allowed
is for the second excited state and a direct calculation
shows that Eq. give us pg, = (H/v/2wp)* sin wot.

Given that H ~ 107%¢, 1, where ¢, = 5.391 x 10~*s is



the Planck time, and wg ~ 10_30t;1 (wo ~ 10¥3s71) for
typical molecular vibrational modes, therefore the ratio
H /wy is of order 10731, which implies that the transition
probability is very small, nevertheless it does not vanish.
The explicit form of the entropy production is given in

Appendix [C| with w, = /wi — H2.

Discussion. By considering a localized quantum sys-
tem living on a general spacetime, we proved detailed
fluctuation theorem quantum system living in a general
curved spacetime. As for the implications of this result,
we can see that entropy production is observer depen-
dent, once it depends on the world-line of the laboratory
in an arbitrary spacetime. This is a very strong result
that goes in the same direction presented in Refs. [34] [35]
regarding the subtleties of defining entropy in a curved
spacetime. More specifically, two different families of ob-
servers will not agree on the entropy production in gen-
eral. However, for two different observers in the same
family, as for the family of comoving ones with the ex-
pansion of the universe, the entropy production will be
the same. It is worth remembering that, for comparison,
each observer (or each family of observers) has to realize
the same protocol, since the measurements in the energy
basis are locally performed.

More importantly, our result connects the time-
orientability of the world-line v of the laboratory frame
—and its local rest space R, which is needed in order
to obtain the Hamiltonian that governs the evolution
of the quantum system and therefore defines a notion
of time flow and thermal equilibrium reference states—
with the production of entropy and, therefore, with the
thermodynamic arrow of time.

In addition, in order to better understand the role
of entropy production due to the curvature of space-
time, let us resort to the gravito-electromagnetic anal-
ogy discussed, for instance, in Refs. [30] B7] and define
the gravito-electric potential as ¢(7) = —%R”-Tj(T)xixj,
such that the gravito-electric field (up to linear order in
z') is given by E;(7) = Rrir;(7)2’. The contribution of
the gravito-magnetic potential in the gravito-electric field
is second order and therefore will not be considered in our
analysis. Thus, we can describe the term %3 Rr;.; (1)xiad
that appears in Eq. as mE;(7)x!, while the term
1R.irj(1T)2'2d Hypy that appears in Z(7)Hiy can be writ-
ten as Hi,FE;(7)z'. It is noteworthy the similarity of
this two terms with the electric dipole interaction with
both m and H;,; playing the role of the charge of the
gravitational field, which is reasonable since (internal)
energy also gravitates in general relativity. Therefore,
we can interpret the terms mE;(7)x? and Hin F;(7)z’ as
the gravitational analogous of a charged quantum system
interacting with a time dependent electric field.

Finally, an interesting avenue that it is worth pursuing
is the extension to this protocol for a quantum field in
curved spacetime. For instance, in [28] the author also

discusses the consequences of the acceleration and cur-
vature dynamics for the Unruh de-Witt particle detector
model and shows that term ma;(7)z? + 2Ry ;(7)x 2!
can also lead to transition probabilities in the particle
detector, which can be attribute to the effect of the ac-
celeration of the detector and the curvature of spacetime.
From the perspective of our work, the transition proba-
bilities implies the production of entropy due to the ac-
celeration of the detector and the curvature of spacetime
in these scenarios.
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Appendix A: Fermi normal coordinates

In the main text, we gave only a bird’s eye view of
what we call the laboratory coordinate system. For com-
pleteness, here provide the details on how to construct
the Fermi normal coordinate system. In this way, some
overlap with the main text is inevitable in order to keep
reading smooth.

Let (M, g) be a four-dimensional spacetime with M
being a differential manifold and g a Lorentzian metric.
Let us also consider a time-like curve v : I C R — M
parameterized by its proper time 7 € I. This curve rep-
resents the world-line of the laboratory frame whose 4-
velocity u* fulfils u,ut = —1.

To construct the Fermi normal coordinates, we start
by defining the proper time 7 of the curve « as the time
component of such coordinate system. Then we define
an orthonormal basis e at a point p = (7 = 0) € M,
where a = 0,1, 2,3 labels the four basis vector and e/ is
identified with the tangent vector u*. Thus, at point p,
we have

Guved e’ = N, (A1)
where n,, = diag(—1,1,1,1) is the Minkowski metric.
The next step consists in extending this frame along the
trajectory v such that the basis remains orthogonal. To
do this, let us first note that the parallel transport along
the curve v does not guarantee that the vectors in the set
{e*}3_, remain orthogonal to each other, except in the
case of v being a geodesic. Therefore, in order to extend
the orthonormal frame defined by the set {e/}3_, such
that the set remains orthonormal along the curve v, it
is necessary to transport the vectors e via the Fermi-
Walker transport, which is defined by the following set



of differential equations [31]:

(e)" + 2alHy”] (eq), =0, (A2)

where D/d7 = u#V, is the covariant derivative along the
curve v, a* = (D/dr) u* = u’V, u* is the 4-acceleration
of the curve v while 2al*u"] = a#u” — a’u*. Therefore,
if Eq. holds we say that the vectors e are Fermi
transported. It is worth noticing that the Fermi-Walker
transport obeys the following properties: (i) it reduces to
the parallel transport when the curve v is a geodesic; (ii)
the tangent vector u* is always Fermi transported along
the curve ~; (iii) if any two vectors v* and w* are Fermi
transported along the curve v, then the inner product
v,w* is constant along . This is the laboratory frame
employed in the main text.

In order to define the space-like Fermi normal coordi-
nates (ml,xQ,x3), it is necessary to consider the normal
neighbourhood of the point p = v(7 = 0), which is set of
all points that can be connected to p by a single geodesic
and it is denoted by ;. Then we can define the local rest
space Ry, C U, of the point p as the set of points spanned
by all geodesics that start from p with tangent vector
orthogonal to u*. Therefore, we can ascribe the coor-
dinates (7 = 0,2', 2% 23) to any point v € R, through
the exponential map such that v = exp,(z®e,), where
exp,, : Ty(M) — M is the exponential map at the point
p, Ty (M) is the tangent space of p and e, € T,(M). Fi-
nally, the local rest space of the curve 7 is defined as
R = UpeyRyp, which can be seen as a local foliation
of the spacetime M around the curve « such that any
point in R is described by the Fermi normal coordinates
(1,21, 22, 2%). As a consequence of the definition of the
Fermi normal coordinates and the decomposition of the
metric along the curve v as g, = —u,u, +5ijeiueju, the
spatial distance of a point v € R to the curve « is given
by r? = ;227 [27].

Finally, the Fermi normal coordinates (7, z!, 22, 23) al-
low us to express the components of the metric around
the curve v as

grr = —(1 4 a;(1)2")? = Rrirj(T)2'a? + O(r?),

2 i
Gri = —gRTjik(T)l‘J,CEk + O(’I’3)7 (Ag)
1
9ij = (Sij — gRikﬂ(T)xka?l + O(’l‘3),

where a#(7) and R,,,.3(7T) represent, respectively, the 4-
acceleration and components of Riemann curvature ten-
sor in the Fermi normal coordinates evaluated at the
point (7). If the curve 7 is a geodesic, the Fermi-Walker
transport reduces to the parallel transport and the Fermi
normal coordinates reduce to the Riemann normal coor-
dinates.

Appendix B: Hamiltonian dynamics of a localized
quantum system in curved spacetimes

We start by giving the classical description of the
Hamiltonian of a particle with some internal structure,
which we latter quantize.

Let us consider a particle with some internal structure
travelling along its world-line o around the trajectory ~
of the laboratory frame, i.e., the time-like curve « is con-
tained in the local rest space R of the curve ~, where the
Fermi normal coordinates (7, z', 22, 2®) are valid. See the
sketch in Fig. [I] of the main text. In this coordinate sys-
tem, we describe the 4-momentum of the particle along
the world-line o as p*. Whereas, in the particle rest
frame, denoted by primed coordinates :1:“/, it is easy to
see that pi’ = (8xj//8x“)p“ = 0 (with j labeling only
the spatial coordinates), which implies that the total en-
ergy, as measured by the comoving observer, is given by
py (2% = ¢'). It comprises not only the energy stemming
from the rest mass of the system but also any binding
or kinetic energies of the internal degrees of freedom and
thus also the particle’s internal Hamiltonian Hi,;. There-
fore

py =m+ Hing = Hrest- (Bl)

In contrast, p” describes the dynamics of the particle
with respect to the laboratory frame associated with the
Fermi normal coordinate system, which includes the en-
ergy of both internal and external degrees of freedom.
Therefore, it constitutes the total Hamiltonian of the
system relative to (7, 2!, 22, 23) and will be denoted by
H = p,. Given that p,p" = p,tlp“/ is a coordinate in-
variant quantity, we have the following relation between
H and Het:

H — \/gtlt/Hr%)St B pjp] ) (BQ)
gTT
Taking the component 29 = ¢ associated with the co-
moving observer to be the proper time along the particle’s
world line implies that g** = —1, and therefore
H2 . +pjp’ :
H =[P o) [, (39)
where we notice that z(7) = (—g™)~ V2 = |¢7| 7% is

the red-shift factor.

Now, in the non-relativistic limit, we can expand the

red-shift factor as
1 o
2(1) = 1+ ai(1)z" + iRTiTj(T)a:Zx], (B4)
since the main contribution of the red-shift factor stems
from the terms Hyestai(7)z' and %RTZ-T]-(T)QJ%J, as
discussed in Ref. [28]. It is worth mentioning that, in



Ref. [28], the authors only consider the contribution due
to the rest mass such that Hyest = m. In this limit, we

also have \/HZ + p;p’ ~ HregtJrQH where p? = p;p’.
Therefore, using Eq. (| ., at the lowest order, we have

H(7) =Hew (1) + Z(7)Hint, (B5)
where Z(7) is given in Eq. (2] of the main text, while He,,
stands for the Hamiltonian of the centre-of-mass (Eq.
of the main text).

The quantity Z(7) is directly related to the time dila-
tion factor between the proper time 7 of the laboratory
frame and the proper time ¢’ of the system of interest (or
the comoving observer). To see this, we remember that
—dt"? = —g,,dz"dz”, where z* are the Fermi normal
coordinates, thus implying

dat dai 1 P2

ar \/ )
dr grr = 94 dr dr ~ 2m?

. 1 .
+ ai(T)l'l + §R”'Tj (T):L’zxj = Z(T)

(B6)

Now, if the system in question is described by quan-
tum mechanics with some internal degree of freedom, we
can canonically quantize this classical framework by con-
sidering that this system is associated with the Hilbert
space Hem ® Hing, encompassing both the centre-of-mass
and internal degrees of freedom. The total Hamiltonian
H, as defined in Eq. , becomes a Hermitian oper-
ator acting in this composite Hilbert space. Here, Hcp,
governs the particle’s external dynamics, while the addi-
tional term in Eq. addresses its internal dynamics.

With this construction, we can write the Schrédinger’s
equation that governs the unitary evolution of our quan-
tum system, whose state is denoted by |¢) € H @ Hine,
where H) ~ L2(R,) with L2(R,) being the space of
square integrable functions in the rest space R, and 7 is
the proper time of the world-line of the laboratory frame
~v which we use here to label a given point p of such
world-line. Hence, the Schrédinger’s equation reads

. d
i W) =H(T)[Y), (B7)
-
with H(7) being the Hamiltonian operator given in the
main text. From Eq. we can define the global uni-
tary evolution operator U by U(7) |[v(7 = 0)) = |¢(7))
such that U : Hg)r)l R Hint — HE}J ® Hint (for more details
see Ref. [28]).

Moreover, let us notice that, in our case, the Hamil-
tonian obtained in this procedure is self-adjoint since it
is quadratic in the momentum p. However, in a more
general context, this may not be true and the procedure
does not necessarily lead to a self-adjoint Hamiltonian.
Therefore, in order to obtain a self-adjoint Hamiltonian,
one can postulate a new Hamiltonian via symmetrization

as H = 1(2(7)H +t.c.) with t.c. being the transpose con-
jugate and H = H¢y, + Hipt. Then we expand z(7) to
obtain the first order corrections, as discussed in Ref. [28§].

Another point worth mentioning is that the red shift
factor z(7) is a function of the space-like Fermi coordi-
nates, while the time dilation factor Z(7) is a function
of the space-like Fermi coordinates and the momentum
of the centre of mass, as one can see from Egs. (B4)
and Eq. of the main text, respectively. This fact im-
plies that the quantization procedure promotes the space
dependence of z(7) to a function of the position opera-
tor and Z(7) to a function of the position and momen-
tum operators that act on the composite Hilbert space
Hcm ® Hint~

Appendix C: The expanding Universe

We illustrate our results by considering a quantum me-
chanical harmonic oscillator (QHO) in an expanding uni-
verse as depicted in Fig. 2] This example was chosen to
show that our protocol also works for the centre-of-mass
degrees of freedom, disregarding the internal degrees of
freedom. Alternatively, we could also consider that the
QHO can model the vibrational modes of a diatomic
molecule, which plays the role of the internal degrees of
freedom, whose centre of mass is treated classically and
follows the same world-line of the laboratory frame ~.

More specifically, let us first consider an isotropic and
homogeneous expanding universe with zero spatial cur-
vature [32]. In the Friedmann-Robertson-Walker (FRW)
coordinates, the metric can be written as

ds? = —dt? + a%(1) (dX2 Fay? d22), (C1)
where a(t) is the scale factor. The world-line of our
laboratory frame will coincide with the world-line of
the comoving observers with the expansion of the uni-
verse which follows the geodesic v given by 7 = X\ and
X =Y = Z =0, implying that the acceleration of our
laboratory frame is zero. In the Fermi normal coordinates
{7, x,y, 2}, the metric on the curve v is the Minskowski
metric 1., = diag(—1,1,1,1) and the Fermi propagated
orthonormal tetrad is given by

eo—(lOOO) el =
r=1(0,0,1,0), el =

(0’ 1707 O)’

(0,0,0,1), (C2)

which in this case is parallel propagated given that ~ is
a geodesic. The transformation from FRW coordinates
{t,X,Y,Z} to the Fermi normal coordinates {7, x,y, z}
is given by [38]

8y 4

t=r1 5" + O(r?), (C3)
i_“i @ o, 4

Xi= a(1—|—3u2r)—|—0(r ), (C4)



(M, g) with ds? = —dt* + a®(t)6;;dx'dx?

world-line of the ¢y
harmonic oscilator

world-line
of the lab frame

Figure 2. Harmonic oscillator in an expanding universe.

where r = §;;2°27 and @ = da/dt. It is worth noticing
that, at lowest order, we have t = 7 and X* = z'/a.
Therefore, in the Fermi normal coordinates, the metric
takes the form

ds? = —(1—%T2)d7'2
+ [&jfi:fz(wﬂdxidxj. (C5)

By comparing with Eq. (A3]), it follows that the compo-

nents of the curvature in the Fermi normal coordinates

are given by [38]
Rrx‘rw =

i
= RTZTZ = C6
o)

Rryry
ﬁZ
Rwywy =Ryzez = Ryzyz = g (C7)

Given that the spacetime scenario is set, let us con-
sider a one-dimensional QHO whose energy eigenvalues
are given by €2 = (n+1/2)wp regarding the unperturbed
Hamiltonian Hy = % + imwdz?. Here, we ignore the
rest mass energy term, since the only effect is a shift on
the energy levels. Let us also notice that, in this case,
the Fermi normal coordinate z is a position operator on
the Hilbert space of the system.

Our protocol starts with the quantum system in ther-
mal equilibrium at some the point p = v(0) of the world-
line of the laboratory frame, where a projective mea-
surement in the eigenbasis |e?n> of Hy is realized. The
probability of measuring the eigenvalue ¢!, is given by
Pm = € Pm | Zy with Zo = 2/ sinh(3Awo). The next step
consists in letting the quantum system evolve with the
Hamiltonian, according to the laboratory frame, given by

H(t)=Hy+ %mRmm(T)z2 = Hy — ma 2.

5a (C8)

From Eq. @ of the main text, we can see that a
non-stationary gravitational field influences the non-
relativistic quantum system such that the frequencies be-
come time-dependent, i.e.,

(C9)

Hence, the energy of such oscillator is not conserved and,
consequently, there are non-null transition probabilities
between the initial and the final energy states. It is note-
worthy that this situation is analogous to a quantum field
in an expanding universe, which lead to the well-known
result of particle creation [39].

Thus, we can use time-dependent perturbation theory
or the interaction picture [33] in order to obtain the tran-
sition probabilities. In the interaction picture, we have
i0; ), = Vi(7) [¢); with Vi (1) = eHoTV (7)e~ 0T and
1), = e'Ho7 |yh). By expanding [1); = >, cx(7) |€D), it

gives us
() = =i [ (V) ) " e
. Jo
(C10)

Given that the initial state of our system is |e?>, we ob-
tain

m

o) =~ Q| 0, (o
where
1
(er]2?|ef) = Iy (\/ Il = 1)0k,1—2 + (2L + 1)0k
+ VI DT+ 20h042) (C12)
and
f(r) = / Rmm(T’)ei(kfl)“’oT'dT’
0
_ Té i(k—l)wg‘r/d / C13
= | € Tl (C13)

Above we used the fact that = /53 —(A + AT) with
mwo

A and A' being the annihilation and the creation oper-
ators, respectively. The transition probability to a state
|€2>, with k # [, is given by Pry = |Ck7gl(7')|2. From the
equations above, we can see that the transition probabil-
ity depends on the curvature of the expanding universe,
which implies in the production of entropy, once it is di-
rectly related to the change in the populations.
Moreover, we can calculate the dissipated work,
Waiss = (W) — AF, in this irreversible process, where
(W)Y = Tr{H(7)p,} — Tr{Hopo} is the average work of
this process with py = e #H0 /7, being the initial ther-
mal state while p, = e‘ﬁHT/ZT is the final thermal



state. Therefore, the average entropy production asso-
ciated with the irreversible work is given by 3 = SWyjgs-
A straight forward calculation shows that

_ Bw, Bwo 1 — e Pur
Z_GBwal_eﬁwofl_ln [y (C14)

where w; is given by Eq. .

In particular, let us consider the de-Sitter solution with
the universe dominated only by a positive cosmological
constant A. By writing the Einstein field equation as
R, — %Rg,“, = —Ag,v, the energy-momentum tensor
can be written as T, = —8%9,“,, which corresponds
to the energy-momentum tensor of a perfect fluid such
that pp = —pa = —%, where py is the isotropic pres-
sure and pp is the positive energy density. In this case
we have that a(t) = € where H = & = \/A/3 is the
Hubble parameter. Hence % = H? and the perturbation
corresponds to a constant external potential such that
V(r) = —imH?2? for 7 > 0, which implies that the
transition probability for n # m is the one given in the
main text.
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