
Quantum sensing in the fractional Fourier domain

Swastik Hegde,1, 2 David J. Durden,1, 3 Lakshmy Priya

Ajayakumar,1, 3 Rishi Sivakumar,4 and Mikael P. Backlund1, 2, 3, ∗

1Illinois Quantum Information Science and Technology Center (IQUIST),
University of Illinois at Urbana-Champaign, Urbana, IL 61801

2Center for Biophysics and Quantitative Biology,
University of Illinois at Urbana-Champaign, Urbana, IL 61801

3Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
4Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

(Dated: May 8, 2024)

Certain quantum sensing protocols rely on qubits that are initialized, coherently driven in the
presence of a stimulus to be measured, then read out. Most widely employed pulse sequences used to
drive sensing qubits act locally in either the time or frequency domain. We introduce a generalized
set of sequences that effect a measurement in any fractional Fourier domain, i.e. along a linear
trajectory of arbitrary angle through the time-frequency plane. Using an ensemble of nitrogen-
vacancy centers we experimentally demonstrate advantages in sensing signals with time-varying
spectra.

INTRODUCTION

Exciting progress has been made in the deployment of
quantum technologies to sense physical phenomena with
improved resolution, sensitivity, and/or robustness [1–
5]. An important subset of these techniques operate by
coherently driving a sensing qubit in the presence of a
stimulating (deterministic or stochastic) waveform, then
inferring the effect of the stimulus on the coherence [1]. In
most implementations to date the qubit is driven periodi-
cally, and consequently the measurement of the waveform
is localized in the frequency domain. Time-varying spec-
tra abound in nature and technology, however, and so the
most pertinent information about a signal might not be
neatly extracted in the frequency domain. In this work
we adapt concepts from classical time-frequency analysis
[6] for this context by introducing a set of driving proto-
cols that correspond to measurements in any fractional
Fourier domain [7], of which the ordinary frequency do-
main is a special case.

We consider a sensing qubit subject to a Hamiltonian
of the general form

H =
ℏ
2
(ω0 + g(t))σz + Hc(t), (1)

where ℏω0 is some initial energy separation of the two
qubit levels, g(t) includes both the stimulus to be sensed
and possibly background, and σz is the Pauli-z operator.
For now let us assume that g(t) is deterministic, though
we will consider stochastic processes later. Coherent ma-
nipulation of the qubit with a carefully selected control
Hamiltonian Hc(t) allows one to tunably couple to a fea-
ture of interest while simultaneously decoupling from un-
wanted background. We let Hc(t) take the form of a
driving field polarized perpendicular to z, at resonance
frequency ω0, and with time-dependent amplitude pro-
portional to Ω(t). After invoking the rotating-wave ap-

proximation and applying the appropriate unitary trans-
formations [8], one can appreciate that allowing the sys-
tem to evolve for a time T results in a phase acquired by
the qubit given by:

Φ =

∫
g(t)h(t)dt, (2)

where we’ve defined

h(t) ≡ rect

(
t− T/2

T

)
cos

[∫ t

0

Ω(t′)dt′
]
. (3)

Thus we may regard the accumulated phase as the output
of a linear system, with input g(t) filtered by the kernel
h(t) [9].
An especially useful and well-studied scenario is that of

dynamical decoupling (DD) in the “bang-bang” regime
[10–13], in which Ω(t) is taken to be a sequence of scaled
Dirac delta functions chosen such that the cosine term in
Eq. (3) alternates between±1. This is physically realized
by a train of π pulses applied to the qubit in the limit of
fast Rabi nutation. In the present study we will constrain
ourselves to this template, allotting the freedom to choose
the points in time at which h(t) changes sign. The most
commonly employed choice has the form:

hj,ϕ(t) = rect

(
t− T/2

T

)
sgn [cos (2πtfj − ϕ)] , (4)

with modulation frequency fj and phase ϕ. This basic
DD unit has long been used to prolong qubit coherence
by decoupling from low-frequency noise [14–22]. If a sig-
nal of interest is also modulated at frequency fj then
lock-in amplification is enabled [8, 23]. Information on
the spectrum of g can be recovered via a sequence of
measurements with different fj [24–33]. If the phase of g
is unknown then a pair of measurements corresponding
to ϕ = 0 and ϕ = π/2 for each fj suffices. With this in
mind we will drop the ϕ subscript for simplicity.
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FIG. 1. Three examples of ordinary DD filters defined in Eq.
(3), as represented in the (a) time domain, (b), frequency do-
main, (c) and FRFT domain of order α = π/4. (d) Filled
blobs are bounded by the half-max contours of the Wigner
representations of these same three filters. Black line is par-
allel to the uα=π/4-axis. Units are arbitrary.

Such a sequence of filters is depicted in the time do-
main in Fig. 1(a). The abrupt sign changes mean that
in the frequency domain these idealized filters possess
nonzero energy near the odd harmonics of fj . However,
if g is sufficiently narrow-band around some frequency
f0, and if fj is not too far from f0, then the phase Φj ac-
cumulated under application of the filter hj is essentially
proportional to the Fourier transform of g evaluated at
fj in the limit of large T (Fig. S1 [34]). More precisely,

|Φj | →
4

π

∣∣∣F [g](fj)
∣∣∣ (5)

under such conditions. Equivalently, |F [hj ](f)| ap-
proaches a Dirac delta centered on fj in the immediate
vicinity of fj when T is large [Fig. 1(b)]. If g is broad
in the frequency domain such that its overlap with the
odd harmonics of fj must be considered, a sequence of
measurements followed by inversion of a matrix equation
can decompose the spectrum [25].

The fractional Fourier transform (FRFT) is a general-
ization of the ordinary Fourier transform that has found
applications in optics and signal processing [7]. We define
the FRFT of order α of some G (t) via:

Fα[G ](uα) =
√

1− i cot (α)eiπ cot (α)u2
α × (6)∫

G (t)e−2πi(csc (α)uαt− cot (α)
2 t2)dt.

The ordinary Fourier transform is a special case of the
FRFT for which α = π/2. When α = 0, the FRFT ker-
nel behaves like a delta function and so leaves the input

in the time domain. For other values of α the FRFT
effects a transformation of G into an intermediate time-
frequency domain. Square moduli of the (α = π/4)-order
FRFTs of the same filters considered in Fig. 1(a-b) are
illustrated in Fig. 1(c). Some nice geometrical proper-
ties of the FRFT can be appreciated if we first introduce
some concepts from time-frequency analysis [6, 7]. The
Wigner distribution representation of G is defined by:

WG (t, f) ≡
∫

G (t+ t′/2)G ∗(t− t′/2)e−2πift′dt′. (7)

Readers familiar with phase-space approaches to quan-
tum mechanics will recognize Eq. (7) from its original
context [35]; its use was later adapted for signal process-
ing [36]. The Wigner function represents something like
the energy density of G in the time-frequency plane, with
the caveat that the energy near a particular point (t, f)
can only be determined to within a window of dimensions
limited by the uncertainty principle ∆t∆f ≳ 1. The in-
tegral projection of WG onto an axis making an angle α
with the time axis yields |Fα[G ](uα)|2, the power spec-
trum in the α-order FRFT domain. Figure 1(d) depicts
contours of the (smoothed) Wigner representations of the
filters described in Fig. 1(a-c) and defined by Eq. (4).
The diagonal black line in Fig. 1(d) is oriented at an
angle α = π/4 from the time axis. From this diagram
we can appreciate that the widths of these filters repre-
sented in the uα domain will be intermediate to those in
the time and frequency domains. Having introduced the
Wigner distribution, we can rewrite the magnitude of the
accumulated phase defined in Eq. (2) as [6, 7]:

|Φ| =
(∫∫

Wg(t, f)Wh(t, f) dtdf

)1/2

, (8)

where we’ve made use of the assumption that g(t) and
h(t) are both real. By inspection of Eq. (8), large |Φ|
requires significant overlap of the Wigner functions.

RESULTS AND DISCUSSION

Here we introduce a generalized set of linearly chirped
DD filters that produces a measurement in the FRFT
domain of order α. We define:

h
(α)
j,ϕ (t) = rect

(
t− T/2

T

)
× (9)

sgn
{
cos

[
2πt

(
−q

2
t+ fj

)
− ϕ

]}
,

where q ≡ cotα. We will henceforth suppress the sub-
script ϕ by the same reasoning as before. Examples of
filters of this form are shown in the time domain in Fig.
2(a). Since the frequency changes over time, the power
spectrum in the frequency domain is understandably
broadened [Fig. 2(b)]. By contrast, the power spectrum
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FIG. 2. Same explanation as for Fig. 1, except for filters with
α = π/4.

is narrow in the FRFT domain of order α = arccot(q) in
the vicinity immediately surrounding uα,j ≡ fj sinα for
sufficiently large T [Fig. 2c]. Evidently some care must
be taken in considering units, as the numerical value of
α depends on the units in which we choose to enumerate
t, f and q. For the illustration in Fig. 2 we’ve chosen
units such that the FRFT order of interest is α = π/4.
Contours of the (smoothed) Wigner representations of
these filters are shown in Fig. 2(d). Similar to the pre-
vious case, the abrupt sign changes in the time domain
translate to nonzero energy near the odd harmonics of
uα,j . The peaks centered on odd harmonics become in-
creasingly broad as one moves out from the fundamental
as the chirp rate increases in magnitude [34]. In effect,
one must be slightly more careful in establishing condi-

tions under which {h(α)
j } produces a measurement of g

in the FRFT domain. If Fα[g](uα) is sufficiently narrow-
band around some uα,0 = f0 sinα, and if uα,j is not too
far from uα,0, then∣∣∣Φ(α)

j

∣∣∣ → 4
√
| sinα|
π

∣∣∣Fα[g](fj sinα)
∣∣∣ (10)

in the limit of large T , with the additional caveat that
|f0 − qt| should remain large enough that the signal does
not intersect the chirped harmonics or the time axis for
t ∈ [0, T ] (Fig. S2-S3 [34]).

With the basic theory now established, we next de-
scribe experiments using an NV ensemble that demon-
strate an advantage to measurement in the FRFT do-
main. Signals of the form

g(t) = A cos

[
2πt

(
−q1
2

t+ f1

)]
rect

(
t− T/2

T

)
, (11)

FIG. 3. Experimental spectra of AC magnetic field synthe-
sized according to Eq. (11) for various q1 and f1 ∈ {1.2, 1.3}
MHz, as recorded by an NV ensemble driven with either (a)
q-matched FRFT sequences, or (b) ordinary unchirped DD
sequences. Both show good agreement with calculated spec-
tra in (c) and (d), respectively.

(where T = 9.6µs was fixed, f1 ∈ {1.2, 1.3} MHz, and q1
was varied over the interval [−0.125, 0] MHz2 from exper-
iment to experiment) were synthesized using an arbitrary
waveform generator (AWG) and delivered to the NVs via
a loop placed near the diamond. Here A = γNVB1, where
γNV = 2π × 2.8 MHz/G is the NV electron’s gyromag-
netic ratio and B1 is the AC magnetic field amplitude felt
by the NVs. Across all experiments, an average field am-
plitude of B1 = 1.38µT was delivered to the NVs. The
sign of q1 specifies up-chirped waveforms according to our
definitions. For each pair (q1, f1), we performed NV mea-
surements with DD sequences of the form in Eq. (9) with
matched chirp rate q = q1, and again with conventional
DD sequences (i.e. q = 0). These sequences were nested
between initialization and readout pulses such that the
resulting contrast in NV photoluminescence was propor-
tional to cosΦ. Background-corrected spectra obtained
by averaging together results for the two choices of f1
in post-processing are shown in Fig. 3(a-b). For com-
parison, spectra predicted from calculations are shown in
Fig. 3(c-d). Figure 3(b) and (d) corresponds to measure-
ment with ordinary unchirped filters. As |q1| increases,
these spectra broaden and recede into the noise. By con-
trast, Fig. 3(a) and (c) corresponds to the case in which
the chirp rate of the filter is matched to that of the sig-
nal. The two peaks corresponding to f1 = 1.2 and 1.3
MHz are clearly identifiable above the noise and resolv-
able from one another in each case. Some geometrical
intuition can be gleaned upon inspection of the relevant
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FIG. 4. Statistical analysis of experimental data based on q-
matched FRFT (solid) and unchirped DD (dashed) measure-
ments. (a) Mean-squared error of least-squares estimates of
f1 (black). For each q1, 10 measurements were recorded with
ground truth f1 = 1.2 MHz and 10 with f1 = 1.3 MHz. Black
dots and error bars mark the means and standard deviations,
respectively, of 1000 bootstrapped resamples. Red lines de-
pict Bayesian CRBs as described in the text. Blue lines depict
the CRBs of the sampling-frequency-adapted measurement
described in the text. (b) Experimentally realized MAP error
rates (black) for tests of binary hypotheses f1 = 1.2 MHz and
f1 = 1.3 MHz. If no errors were recorded across the 20 trials
the data point is plotted at 10−31. Red lines depict the Bayes
error rates for this binary hypothesis test.

Wigner distributions in the t-f plane (Fig. S4).

More quantitative assessments can be made by con-
sidering some illustrative estimation and detection tasks.
The spectra depicted in Fig. 3(a-b) contain merged data
recorded separately with f1 = 1.2 and 1.3 MHz for the
sake of visualization. Below we analyze the individual
data sets. Moreover, each row in Fig. 3(a-b) depicts the
mean of 10 independently measured spectra for both f1
values (i.e. 2 × 10 = 20 in total). To generate statistics
we now treat each independent measurement separately.

We acquired least-squares fits for each realization to a
model of the form in Eq. (11), with A and f1 treated
as free parameters. Figure 4(a) shows the experimen-
tal mean-squared error (MSE) in our estimates of f1 as
a function of q1. At large |q1|, the MSEs of the esti-
mates produced from q-matched measurements are ap-
proximately two orders-of-magnitude smaller than those
generated from conventional DD measurements. We next
compare these results to limits set by different forms
of the Cramér-Rao bound (CRB) [37, 38]. We empiri-
cally determined that the contrast produced by a par-

ticular filter h
(α)
j is approximately normally distributed

with mean cosΦ
(α)
j and constant variance of 0.1493. The

least-squares estimator of f1 displays significant biases
at large |q1| for the measurement using unchirped filters,
likely due to the fact that the signal energy moves toward
and through the edge of our sampling range. As the or-
dinary CRB guarantees a lower bound to the variance of
unbiased estimators, it is not necessarily appropriate to
compare to this entity. A Bayesian CRB can instead be
computed that bounds the MSE for any estimator, biased
or unbiased [38]. Taking a Gaussian prior for f1 and nu-
merically extremizing the BCRB vs. the variance of the
prior produces the values plotted in red in Fig. 4(a).
These bounds recapitulate an improvement in MSE of
roughly two orders-of-magnitude at high absolute chirp
rates. The BCRB for the unchirped filters could be made
tighter by treating A as a nuisance parameter with a prior
distribution of its own in our calculation, but the dashed
red line serves as a useful aid to the eye nonetheless.

An adaptive measurement scheme in which the sample
frequencies are redrawn to match the distribution of sig-
nal energy in a given domain would improve sensitivity in
both cases. We computed the CRB for estimation of f1
according to a scheme in which a fixed number of sample
frequencies were evenly redistributed over a range con-
taining 95% of the signal energy, effectively making the
sample range for matched-chirp measurements narrower
and that for unchirped filters broader. The results are
plotted in blue in Fig. 4(a). Compared in this way, the
gap in performance at high |q1| is somewhat smaller, but
still close to two orders-of-magnitude.

We next analyze our experimental data from the van-
tage of a binary hypothesis test in which a signal of the
form in Eq. (11) is assumed, and given an observation
realized with one set of filters or the other, the observer
is to determine whether the signal was generated with
parameter f1 = 1.2 or 1.3 MHz. We implemented a
maximum a posteriori (MAP) hypothesis test to make
this decision given our empirically-determined Gaussian
noise model. Results of this test are shown in Fig. 4(b)
in black. Since only n = 20 samples were included at
each q1, it is impossible to realize an experimental error
rate on the open interval (0, 0.05). In cases where no
errors were recorded among the 20 trials, the data has
been plotted at 10−31 in Fig. 4(b) for the sake of visu-
alization. No errors were recorded in discriminating the
two models when sensing was performed in the correct
FRFT domain. In the frequency domain case no errors
were recorded for q1 between 0.02 and 0.04 MHz2, after
which errors became increasingly frequent. To contex-
tualize these results derived from limited statistics we
computed the Bayes error, i.e. the minimum probability
of error for the test (red lines), which for our noise model
has a simple analytical form in terms of the complemen-
tary error function [34, 38].
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To this point in our discussion we have considered
only deterministic signals, but extension to stochastic g
is straightforward. In that case the accumulated phase
Φ defined by Eq. (2) is itself a random variable. It can
easily be shown that [34]:

〈
Φ2

〉
=

∫∫
Wg(t, f)Wh(t, f) dtdf, (12)

where for stochastic, real-valued g the Wigner function
is defined [6, 7]:

Wg(t, f) ≡
∫

⟨g (t+ t′/2) g (t− t′/2)⟩ e−2πift′dt′. (13)

Note that Wg is independent of t if g is wide-sense sta-
tionary. Therefore we only expect sensing of stochastic
signals in the FRFT domain to be possibly of interest for
non-stationary processes.

CONCLUSION

We have presented a set of filters and an accompanying
theoretical framework to facilitate quantum sensing in
the fractional Fourier domain of order α. This generalizes
conventional approaches to sensing in the time and fre-
quency domains. Our filters are distinct from previously
reported aperiodic sequences [39–53], most of which were
specifically engineered to decouple from noise of certain
characteristics, though some have been applied [54, 55]
or proposed [56–59] for sensing as well. Using an NV en-
semble, we experimentally implemented measurements in
the fractional Fourier domain and demonstrated signifi-
cant metrological advantages for some proof-of-principle
inference tasks. These filters may find utility in quantum
adaptations of classical applications that employ chirped
waveforms, such as radar [60] and spread-spectrum com-
munication protocols [61].

For NVs specifically, these pulse sequences could en-
gender new capabilities in nanoscale nuclear magnetic
resonance (NMR) studies [4, 62, 63]. The magnetic field
at the NV due to the precession of nuclei confined to
a nanoscale volume can often be treated as a mean-
zero classical stochastic process with correlation func-
tions proportional to those of the total nuclear spin quan-
tum operator [33, 64, 65]. If the Zeeman term dominates
the nuclear Hamiltonian and the bias field, B0, is swept
linearly in synchrony with the NV measurement proto-
col (with the frequency of the NV drive modulated to
compensate for this sweep), then the Wigner distribution
corresponding to the stochastic field generated by the
precessing nuclei will exhibit a linear chirp. A procedure
commonly employed in NV-detected NMR for confirming
the presence of nuclei of a particular gyromagnetic ratio
is to slowly and discretely vary B0 between independent
measurements, then perform a linear regression on the

extracted Larmor frequencies of each trial [66–69]. In-
stead, by sweeping B0 quickly during each measurement
and sensing in the FRFT domain, this procedure could be
performed with lock-in amplification. If B0 is sufficiently
small such that the nuclear Zeeman term competes with
internuclear couplings, then the sweep in B0 might ac-
company a level crossing or avoided crossing, and the
shape of the stochastic signal in the time-frequency plane
would depend on the adiabaticity of this process. Per-
haps this effect could be mined for chemical and physical
information.
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[13] A. M. Souza, G. A. Álvarez, and D. Suter, Robust dy-
namical decoupling, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 370, 4748 (2012).

[14] G. Falci, A. D’Arrigo, A. Mastellone, and E. Paladino,
Dynamical suppression of telegraph and 1/f noise due to
quantum bistable fluctuators, Phys. Rev. A 70, 040101
(2004).

[15] W. M. Witzel and S. D. Sarma, Multiple-pulse coherence
enhancement of solid state spin qubits, Phys. Rev. Lett.
98, 077601 (2007).

[16] C. A. Ryan, J. S. Hodges, and D. G. Cory, Robust de-
coupling techniques to extend quantum coherence in di-
amond, Phys. Rev. Lett. 105, 200402 (2010).

[17] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski,
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[22] A. Ajoy, G. A. Álvarez, and D. Suter, Optimal pulse spac-
ing for dynamical decoupling in the presence of a purely
dephasing spin bath, Phys. Rev. A 83, 032303 (2011).

[23] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang,
D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and
M. Lukin, High-sensitivity diamond magnetometer with
nanoscale resolution, Nature Physics 4, 810 (2008).

[24] I. Almog, Y. Sagi, G. Gordon, G. Bensky, G. Kurizki,
and N. Davidson, Direct measurement of the system–
environment coupling as a tool for understanding deco-
herence and dynamical decoupling, Journal of Physics
B: Atomic, Molecular and Optical Physics 44, 154006
(2011).
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