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Abstract

Quantum steganography is a powerful method for infor-
mation security where communications between a sender
and receiver are disguised as naturally occurring noise
in a channel. We encoded the phase and amplitude of
weak coherent laser states such that a third party mon-
itoring the communications channel, measuring the flow
of optical states through the channel, would see an amal-
gamation of states indistinguishable from thermal noise
light. Using quantum state tomography, we experimen-
tally reconstructed the density matrices for artificially
engineered thermal states and spontaneous emission from
an optical amplifier and verified a state fidelity F > 0.98
when compared with theoretical thermal states.

1 Introduction

High fidelity quantum states are essential resources for
quantum computing, communications, and sensing, as
the performance of any quantum protocol or algorithm
relies heavily on the capability to prepare the quantum
state required for the protocol with high precision. An
exciting topic in the field of optical communications has
emerged understanding the fundamental quantum limits
to the covertness of a communications or sensing chan-
nel when a third-party eavesdropper possesses the capa-
bilities of quantum measurement and uses them as re-
sources to discover whether or not communications or
sensing is occurring on channel[4, 2]. Low Probability
of Detect (LPD) communications involve a transmitter
and receiver communicating over a channel monitored
by a third party tasked with identifying the presence of
communications. The objective of the transmitter and

receiver is to mask the physical encoding of the com-
munications signal such that it appears innocuous on
the channel, mimicking as closely as possible the orig-
inal channel statistics presented to the passive channel
monitor by the noise in the channel. Key results from
quantum-based analyses of LPD communications have
shown two distinct operating cases. When the sender
and receiver are communicating through a channel with
naturally occurring noise, equally random to all three
parties, N uses of a channel with additive white Gaus-
sian noise (AWGN) results in a number of bits propor-
tional to

√
N that can be communicated covertly. This

result was proven theoretically in [4] and validated exper-
imentally in [3]. In this case a finite number of bits can
be successfully transmitted with a bounded covertness,
while hte asymptotic communication rate is 0. Alterna-
tively, when the sender and receiver are communicating
through a channel with noise that can either be modu-
lated by the sender, or the statistics of which are well
known to the sender and receiver, then provably covert
positive-rate communications can occur[11].

As steganography is a technique to achieve covert
communications by hiding messages within seemingly be-
nign larger messages [10], quantum steganography was
originally proposed for disguising communication sym-
bols as incoherent errors on qubits on a quantum channel
[9]. Congruent with the analyses in [4] and [11] analyses
for quantum steganography were conducted in a chan-
nel with and without environmental noise [12, 13]. Re-
cently, these results were adapted to implementations us-
ing quantum states in an optical channel [1].

Lasers and optical amplifiers are essential ingredi-
ents in optical communications transmitters but bring
the burden of broadband, amplified spontaneous emis-
sion (ASE) noise to the channel. A quantum steganog-
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Figure 1: A channel with amplified spontaneous emission (ASE) contains sideband, thermal state noise represented
by a thermal quantum density matrix ρth. A phase and intensity modulated weak coherent source (WCS) generates
the quantum density matrix ρart which mimics a quantum thermal states. Either ρth or ρart is then selected by an
electro-optic switch (EO-SW). A channel monitor would be expecting to measure quantum thermal states due to the
amplified spontaneous emission. Since ρart ∼ ρth the channel monitor would not be able to detect communications.
However, since the desired receiver shares information with the transmitter, they could measure data from the
coherent encoded parts of the signal.

raphy protocol for covert communications can leverage
this ever-present noise by hiding a communication trans-
mission in the noise so that, to a third-party monitoring
the channel, the ASE and the communications signal are
indistinguishable. In [14] authors demonstrate an optical
steganography experiment where ASE noise is used as a
carrier for covert information. Instead of adding a small
amount of additional noise on top of already occuring
noise, we propose taking a narrow band of ASE noise and
fully mimicking its quantum state using coherent encod-
ing; this process is shown in Fig. 1. This method would
prevent even eavesdropper with quantum measurement
capabilities from detecting communications. This band
can be selected out of band from strong active laser sig-
nals, and when communications commence this narrow
band ASE is filtered out of the channel and replaced
with information-carrying coherent state light with cod-
ing in amplitude and phase such that the third party
monitor is not alerted to any disruption in the channel,
but a receiver, aware of the codebook and the arrival
time of the message, can successfully decoded the infor-
mation from the transmitter. The third-party channel
monitor can make quantum measurements on the states
passing through the channel. As these are low intensity
states, however, quantum mechanics limits the amount
of information that can be extracted with a single mea-
surement or measurements over many copies of a quan-
tum state, quantified by the Helstrom bound and the
quantum Chernoff bound, respectively. In the follow-
ing sections we describe our approach to tailoring opti-
cal communications symbols in coherent state amplitude
and phase, following the prescription in [1], such that a
sequence of measurements on the states is indistinguish-
able from measurements on thermal states.

In this paper, using optical fiber-based components,
we report a demonstration creating a statistical mixture
of weak coherent laser states closely mimicking a quan-
tum mechanical thermal state: a maximally mixed state
with Bose-Einstein distributed photon number statistics.

These states were engineered to match quantum ther-
mal states with a mean photon number n̄ ∼ 1 photon
per temporal mode from a narrow-band selection of ASE
from an erbium-doped fiber amplifier. To quantitatively
measure the quantum state fidelity (F ) between our ar-
tificial thermal state (ρart) and the naturally generated
thermal state (ρth) we implemented a quantum state to-
mography measurement system to experimentally recon-
struct the density matrices (ρ̂art and ρ̂th) from our quan-
tum state generator. The measurements resulted in re-
construction fidelity F (ρ̂art, ρth) > 0.98.

2 Theory and Numerical Results

Lasers emit quantum mechanical pure coherent states
|α⟩, α = |α|eiθ, that can be encoded with a prescribed
distribution of amplitudes |α| and phases θ. As shown
in [1], the thermal state can be described in this phase
space as in the Glauber P Representation. Additionally,
the coherent state basis is over-complete, so the existence
of a coherent-state representation is guaranteed [7]. This
is shown by the following representation of the thermal
state:

ρth =

∞∑
n=0

n̄n

(n̄+ 1)
n+1 |n⟩⟨n| =

1

πn̄

∫
d2αe−c|α|2 |α⟩⟨α|.

(1)
In eq. 1 |n⟩ is the Fock basis, n̄ is the mean photon

number in a single mode of the field and c = 1/n̄. This
representation shows the thermal state can be mimicked
by a coherent state with uniformly distributed θ, and
Rayleigh distributed |α|:

Rayleigh(|α|,
√

n̄

2
) =

2

n̄
|α|e−

|α|2
n̄ . (2)

In practice we will be developing this mixture via a
set of coherent states. These states will be sent in a
filtered out section of bandwidth, previously containing
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Figure 2: Experimental setup. Diagram for generating real thermal states is highlighted in a red box (ρth). Diagram
for creating artificial thermal states, generated by coherent state encoding, is highlighted in a back box(ρart).
Quantum State Tomography optics and electronics are highlighted in a blue box.

real thermal states caused by spontaneous emission from
a laser carrying an innocent cover message. The coherent
states that make up this mixture, will have a discrete set
of M randomly chosen combinations of amplitudes and
phases. The set of amplitudes:{|α|l} have L elements and
phases:{θq} have Q elements. The total discrete set will
have M = L ·Q elements. In this case our artificial quan-
tum thermal state for each element will be represented
as follows in the fock basis:

|αl,q⟩ =
∑
n

|α|nl eiθqn
e−|α|2l /2
√
n!

|n⟩. (3)

This leads to the resulting, mixed density matrix:

ρart =

L∑
l

Q∑
q

pq,l|αl,q⟩⟨αl,q|. (4)

where pq,l is the probability of each state. In our case any
combination of states will be equally probable. Meaning
pq,l =

1
Q·L .

To calculate how accurately this mixture represents
a thermal state we can calculate the Fidelity:

F (ρth, ρart) = Tr

(√√
ρartρth

√
ρart

)2

(5)

where Tr(·) denotes the trace operator and ρ̂art and ρ̂th
are the reconstructed density matrices for the artificial
thermal state and the actual thermal state, respectively.
This number quantifies the closeness of the two matrices,
with F = 1 indicating the matrices are identical.

Another measure of closeness between two density
matrices is given by the trace distance. The trace dis-
tance provides a quantitative measure of the distinguisha-
bility of quantum states:

T (ρth, ρart) = 1/2||ρth − ρart||1 (6)

where || · ||1 denotes the trace norm. The trace norm
is also used to calculate the Helstrom Bound. The Hel-
strom Bound defines an upper bound on the minimum
probability of error achievable with any measurement
strategy:

Pe ≥
1

2
− 1

4
||ρth − ρart||1. (7)

In order to decide how many samples, M , is necessary for
a high fidelity reconstruction we numerically calculated
Eq. 5 for different values of M . In these calculations we
assumed the number of discrete intensity samples, L, and
phase samples, Q, were equal. This leads to the following
relationship: L = Q =

√
M .

Figure 3: Calculated fidelity (F ) from Eq. 5 plotted for
different number of samples (M)

As shown in Fig. 3, a number of samples greater than
50 will yield a ρart which has a F ≥ 0.99. For this ex-
periment we selected a number far above this. Different
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levels of covertness, and different communication scenar-
ios could call for a different number of samples.

3 Experimental Design

To generate the artificial thermal states, we must gener-
ate then engineer the photostatistics of coherent states.
To generate the coherent states, we use a shot noise
limited, low linewidth laser, the RIO Orion module at
1560.625 nm. We attenuate the laser using a manual vari-
able optical attenuator (VOA) from Agiltron so that the
mean photon number mimics the mean photon number of
the desired thermal state. To engineer the photostatistics
of the coherent states, electro-optic modulators (EOM)
are used to impose an intensity and phase. Both EOMs
are purchased from Thorlabs. The intensity EOM, part
number LN81S-FC has a bandwidth of 10 GHz. This in-
tensity EOM has a measured optical extinction ratio of ∼
25 dB. To ensure this was enough dynamic range, we con-
verted the discretized photon number values(n̄m) shown
in Fig. 3 to desired output power, Pm, values within a
13 ns temporal mode (τ) using Planck’s constant (h) and
the optical frequency (f):

Pm =
n̄mhf

τ
. (8)

We found the range of powers was well within the 25 dB
dynamic range of the intensity EOM. The phase EOM,
part number, LNP4216 has an operational bandwidth
up to 40 GHz. This phase EOM has a low Vπ value so
that within the specifications of the EOM we can take
advantage of the entire 0 to 2π dynamic range. Both
modulators are driven by an Arbitrary Function Gener-
ator, the Siglent SDG6052X, with a maximum operable
bandwidth of 500 MHz. The phase and intensity are
modulated well within these specifications. In practice,
we modulate the phase and intensity at the same band-
width of our detector, 75 MHz, in order to remain in
one temporal mode. This setup is highlighted in a black
box and depicted in Fig. 2. Ultimately, these intensity
and phase values will be used to create a communications
codebook.

To generate real thermal states, another laser with a
slightly different center wavelength, also in the C-Band
(1530-1565nm), is amplified by an EDFA. The laser is a
diode laser from Thorlabs, part number LPS-1550-FC,
and the EDFA is single mode booster from Agiltron,
part number EDFA-1C2111333. A tunable bandpass fil-
ter from Newport, part number TBF-1550-1.0-FCAPC,
carves out 100 GHz of thermal noise caused by ASE
around the center frequency of the local oscillator as
shown in Fig.2.

To perform quantum state tomography on either the
real or artificial thermal states, the phase of a strong
local oscillator is swept from 0 to 2π and is used to per-
form balanced homodyne detection. The local oscillator

is generated by the same laser as the artificial thermal
state. When measuring the artificial thermal state, a
small portion of this laser is split off via a beamsplitter
to use as the signal source. The signal source is approx-
imately 8 orders of magnitude smaller than the local os-
cillator at the detector. The phase of the local oscillator
is then modulated via another LNP4216, low Vπ, phase
EOM. A Tektronix AFG1062 drives the phase EOM to 50
different phases between 0 and 2π for 1 ms at each phase.
Quantum state tomography is implemented experimen-
tally when the signal (real or artificial) and phase mod-
ulated local oscillator is ported through a 50/50 beam-
splitter, the light is detected by two photodiodes and
the resultant difference current from these photodiodes
is amplified and detected by a Thorlabs PDB425C bal-
anced detector.

The balanced detectors radio frequency output is mea-
sured at a Tektronix MDO34 oscilloscope, leading to a
dataset of voltages and the corresponding phase of the lo-
cal oscillator when that voltage was measured: (Vk, θk).
These measurements are transformed into the measured
state’s quadrature probability function by normalizing
the detected variance and amplitude to a measured vac-
uum state, as introduced in [6]:

xθ,k = (Vk − VV ac)
√
1/(4 · σ2

V ac) (9)

where VV ac and σV ac are the measured voltage and stan-
dard deviation when the signal input is a vacuum state.
The variance of a vacuum state in balanced homodyne
detection operating at the shot noise limit is 1/4, leading
to the scaling factor in Eq. 9. Using the Maximum Likeli-
hood Estimator shown in [5], we recreate the Fock basis
density matrices from the measured quadrature proba-
bility functions.The likelihood function to maximize is
the product of the probability density functions for each
quadrature measurement given the input local oscillator
phase:

L(ρ) =

K∏
k=1

nc∑
m=0

nc∑
n=0

ρmn
ei(n−m)θk

√
πm!n!2m+n

e−x2
kHm(xk)Hn(xk).

(10)
Where Hn(x) is the hermite polynomial of variable x of
the nth order and nc is the cutoff photon number.

4 Results and Discussion

We reconstructed the coherent states(Fig. 4A), the arti-
ficially generated thermal states(Fig. 4C ) and the actual
thermal states from the EDFA (Fig. 4B). Using Eq. 9
we calculated 1500 quadrature elements. Then, we av-
eraged over 10 density matrices and plotted the resul-
tant estimated density matrix with error bars equal to
one standard deviation from these 10 density matrices.
Then, we calculated the fidelity of each density matrix
vs. the theoretical thermal state density matrix. The
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Figure 4: Graphical representations of density matrices reconstructed from measurements by Quantum State To-
mography. Graphs presented for the coherent states (A) used to mimic the naturally occurring thermal states (B)
to create artificial thermal states (C). The x axis and y axis represent the row and column respectively of the
reconstructed density matrix

measured thermal noise and artificial thermal noise both
yielded a high Fidelity:

F (ρth, ρ̂th) > 0.98, F (ρth, ρ̂art) > 0.98. (11)

We do not calculate the fidelity between the mea-
sured thermal and artificial noise states; fidelity between
two reconstructed states is not reliable, since statistical
noise in the measurements can produce unphysical re-
sults. Trace distance (discussed below) is more robust
to such imperfections. While one can calculate a lower
bound on fidelity from the trace distance, this bound is
loose and hence not very informative.

Environmental fluctuations such as temperature af-
fect the absorption and scattering of light in single mode
silica based fiber optics. This can cause small fluctu-
ations in attenuation. We measured the mean photon
number within 50 microseconds for both real and artifi-
cial thermal states. We found this fluctuates for states
by up to ± 0.5 photons. We calculated an eavesdropper
ability to discriminate between two ideal thermal states
when there are these small mean photon number devi-
ations, which are expected in real world scenarios. Our
measured thermal (ρ̂th) and artificial thermal state(ρ̂art)
had a mean photon number∼ 1.02 and 1.26 photons re-
spectively. We calculated a trace distance T = .056
and Helstrom Bound Pe = 0.472 for discriminating be-
tween two ideal thermal states with the given photon
numbers. We then calculated the trace distance from
T (ρ̂th, ρ̂art) = 0.067 and Pe = 0.467 for discriminat-
ing between our two measured density matrices: ρ̂th and
ρ̂art. Our measured trace distance is only .011 higher for
the measured density matrix vs. two ideal density ma-
trices, and the Helstrom Probability of Errors are within
.5%. This probability of error far exceeds the reported
Pe=0.14 in [8] for discriminating between thermal and
laser states and is equivalent to the theoretical proba-
bility of error for discriminating between ideal thermal
states with this mean photon number detuning. By in-
terleaving real noise and engineering a feedback loop to

ensure matched mean photon numbers we can approach
perfect indistinguishability (Pe = 0.5).
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