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The development and use of large-scale quantum computers relies on integrating quantum error-
correcting (QEC) schemes into the quantum computing pipeline. A fundamental part of the QEC
protocol is the decoding of the syndrome to identify a recovery operation with a high success rate.
In this work, we implement a decoder that finds the recovery operation with the highest success
probability by mapping the decoding problem to a spin system and using Population Annealing to
estimate the free energy of the different error classes. We study the decoder performance on a 4.8.8
color code lattice under different noise models, including code capacity with bit-flip and depolarizing
noise, and phenomenological noise, which considers noisy measurements, with performance reaching
near-optimal thresholds. This decoding algorithm can be applied to a wide variety of stabilizer
codes, including surface codes and quantum low-density parity-check (qLDPC) codes.

I. INTRODUCTION

The development of quantum computers has experi-
enced rapid progress in the last years. These efforts
have materialized in technological and theoretical devel-
opments in multiple platforms such as superconducting
circuits [1–4], ion traps [5–10], neutral atoms [11–15] or
photonic devices [16]. While these developments con-
tinue to improve the quality of quantum processors, the
main challenge towards practical quantum advantage lies
in the fragile nature of quantum states. The realization
of reliable, universal large-scale quantum computations
thus requires the development of fault-tolerant quantum
error correction (QEC) protocols capable of detecting
and correcting the effects of noise, and unlocking the
most powerful capabilities of quantum computation [17–
20]. Stabilizer codes [21] stand as one of the most pow-
erful tools for QEC. These QEC codes encode logical in-
formation in non-local degrees of freedom of multi-qubit
states, and allow the detection and correction of errors
through the measurement of stabilizer operators (or par-
ity checks). The set of measurement results for the sta-
bilizer operators of a given QEC protocol is called syn-
drome, and the algorithm that infers a correction from
the syndrome is called decoder. Currently, the most
prominent families of codes include surface codes [22–
24], color codes [25, 26] and qLDPC codes [27–32]. The
threshold theorem [33–35] states that the logical error
rate can be arbitrarily suppressed with fault-tolerant pro-
tocols by scaling the size of the code, as long as the phys-
ical error rate remains under a critical threshold.

The error threshold of a given protocol has an upper
bound given by the properties of the code. This opti-
mal threshold can be obtained by mapping the errors on
the QEC protocol into a classical statistical-mechanical
model [24, 36–38]. However, in a practical implementa-
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tion, the threshold of a protocol is limited by our capacity
to decode the information from the syndrome to infer a
recovery operation. The problem of decoding requires a
classical algorithm that is fast enough to match the rate
at which the syndrome is generated, avoiding a backlog
problem [20]. In addition, achieving a high threshold ne-
cessitates an algorithm with high accuracy. Therefore,
there is a trade-off between decoding quality and decod-
ing time, where more accuracy can usually be obtained at
the expense of a higher computational cost. The study of
this trade-off has encouraged the development of multiple
decoding algorithms in recent years [39–54].

Recently, Simulated Annealing (SA) [55] has been
tested for the implementation of decoders for the color
code [56] and surface code [57]. This approach is used
to select a correction by finding the minimum-weight er-
ror chain compatible with the error syndrome observed.
However, it is known from the mapping of QEC codes
to spin systems that the optimal decoding process, also
known as maximum-likelihood decoding, can be achieved
by estimating free energy values [24, 36, 37, 58, 59].

In this work, we implement a modified version of the
SA algorithm, known as Population Annealing (PA) [60,
61], for the decoding problem. In PA, a resampling step
is introduced that helps to avoid local minima and, most
importantly, allows for the estimation of the free ener-
gies. Therefore, our proposed decoder can be used to
find the recovery operation with the maximum success
probability, pushing the threshold of the decoder close
to the optimal theoretical thresholds. We test the de-
coder on a triangular color code with the square-octagon
(4.8.8) lattice, reaching a threshold of 10.81% for code
capacity noise (errors happen before an ideal round of
stabilizer readout) with bit-flip noise, close to the esti-
mated optimal threshold of 10.9% found in Refs. [36, 59].
It surpasses the threshold of previous decoders, such as
the threshold of 10.36% obtained recently using SA [56],
the 10.2% obtained using the more efficient restriction de-
coder with MWPM [47] or the 9.8% obtained when imple-
menting the restriction decoder using the more scalable
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union-find algorithm [47], which scales almost-linealy
with the number of qubits used for encoding. When ap-
plied to the case of code capacity with depolarizing noise,
we achieve a threshold of 18.75%. This result is close to
the estimated optimal threshold of 18.78% [37] and im-
proves over the previous result of 18.47% obtained using
SA [56] or the 17.5% obtained using neural networks [42].
Finally, for the phenomenological noise model, which in-
cludes errors in the stabilizer measurements, we achieve
a threshold of 3.47%, improving over the 2.9% obtained
by SA [56] and the 2.08% using the more efficient graph
matching decoder [41]. While higher than the 3.3% op-
timal threshold obtained for the surface code under phe-
nomenological noise [62], the optimal threshold under
this noise model was estimated at 4.8% for the hexag-
onal color code lattice [38, 63], far from the value we
obtain.

The manuscript is structured as follows. In Sec. II, we
introduce basic concepts related to stabilizer codes, color
codes, their mapping to spin systems, and how optimal
decoding can be achieved by estimating the free energy
associated with a syndrome. In Sec. III, we explain the
population annealing algorithm and how it can be used
to estimate free energies. In Sec. IV, we explain details of
our numerical simulations and present the results of our
simulations for different error models, namely bit-flip, de-
polarizing, and phenomenological noise. Then, in Sec. V,
we provide insight on how the quality of the decoding be-
haves with the amount of computational resources used
for decoding. We also explain how these results can be
used as a guide for finding appropriate values of the hy-
perparameters that minimize the decoding time. Finally,
in Sec. VI we conclude with final remarks and ideas for
further extensions of this work.

II. BACKGROUND

A. Color codes

Stabilizer codes are a family of quantum error correct-
ing (QEC) codes characterized by sets of operators called
stabilizers. The stabilizer operators subdivide the Hilbert
space of the multiqubit system into orthogonal subspaces.
The logical information is encoded into one of these sub-
spaces, called the code space. The code space is usually
chosen as the subspace for which all stabilizer operators
simultaneously have a +1 eigenvalue. Pauli errors on
individual qubits anticommute with the stabilizers, and
bring the state out of the code space. By measuring
stabilizer operators, it is possible to detect, identify and
correct errors [21]. The result of the stabilizer measure-
ments is called syndrome.

2D Color codes (from now on referred as color codes)
are a family of stabilizer codes that can be defined on
planar three-colorable lattices [25]. Each vertex has three
incident edges (except for the vertices on the corners of
the lattice), and each face can be colored in one of three

FIG. 1. A triangular color code of distance d = 9, with the
square-octagon lattice (4.8.8). Qubits are placed on the ver-
tices of the lattice, and stabilizers SZ and SX have support on
the vertices of each colored face. The logical operators apply
to the qubits along any of the sides of the triangular lattice.
An example of the support of the logical operators XL and
ZL is shown in red.

colors, in a way that any two faces sharing an edge have
different colors (see Fig. 1). The vertices of the lattice
represent data qubits. The colored faces represent stabi-
lizer operators SZ =

∏
i∈F Zi and SX =

∏
i∈F Xi, where

Xi and Zi represent the Pauli operator Z or X applied
on qubit i, and F represents the set of qubits that belong
to that face. The logical operators XL and ZL commute
with all stabilizer operators and act on the encoded in-
formation. They can be written as a product of Pauli
operators on individual qubits; e.g., XL =

∏
i∈LX

Xi,
where LX is a subset of qubits that forms the support of
the logical XL operator (see Fig. 1). For the triangular
color code lattice, both XL and ZL can have their sup-
port over the same set of qubits. Note that the support of
the logical operators is not unique, and can be modified
by multiplying stabilizer operators.

The decoding problem consists on the interpretation
of the syndrome to infer a recovery operation that brings
the state back to the code space and preserves the logical
information encoded in the code with a high probability
of success. In the following section, we explain how the
decoding problem for color codes can be mapped to a
spin system.

B. Mapping the code to a spin system

The first step of the mapping consists of the decompo-
sition of potential error chains E compatible with a syn-
drome S. Note that, given an error chain that generates a
syndrome S, we can find alternative error chains E ′ com-
patible with that syndrome by multiplying E with a prod-
uct of stabilizer operators and logical operators. In this
section we explain the mapping for an error model where
bit-flips happen on the data qubits with probability p be-
fore a single round of ideal stabilizer measurement. This
derivation, as well as the derivation for depolarizing and
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phenomenological noise, can be found in Ref. [56]. We
consider G to be a complete set of stabilizer generators
of the code. For a stabilizer code, an error E can be de-
composed into a product of three components: the set of
destabilizers D(S) (or “pure error”) that corresponds to
the syndrome S, a subset of stabilizer generators G ∈ G
and a logical operator L [64]:

E = D(S) ·G · L. (1)

This expression can be rewritten in terms of binary vari-
ables, such that for each qubit i, ei represents if qubit i
belongs to the error configuration E :

ei = Di(S)⊕

⊕
k∈Qi

gk

⊕ (Li · l), (2)

where Di(S) represents the action of the destabilizer cor-
responding to syndrome S on qubit i, gk is a binary vari-
able that represents if the stabilizer generator k is being
applied (if gk ∈ G then gk = 1), Qi represents the set of
stabilizer generators with support on qubit i, Li repre-
sents the support of the logical operator on qubit i, and l
is a binary variable that represents if the logical operator
is being applied.

We can explore all error configurations compatible
with a syndrome S by changing the terms gk and l. No-
tably, changing E by applying a different subset of sta-
bilizer generators G′ ∈ G leads to alternative error con-
figurations E ′ with an equivalent effect on the encoded
information. Thus, when trying to find a correction for
an error, we are only concerned about finding the error
class L to which it belongs, i.e., if the effect of an error
corresponds to a logical operation on the encoded infor-
mation. Note that this mapping can be applied to any
stabilizer code, as long as we can define a destabilizer
operator D(S) for any possible syndrome S.
The second step consists on mapping E to a spin con-

figuration σ, where each spin σk ∈ {−1,+1} corresponds
to one of the stabilizer generators in G: σk = 1− 2gk. In
this way, inverting the sign of a spin would change the
error configuration by the action of a stabilizer operator,
leading to an equivalent error chain E ′. Similarly, we can
rewrite the binary terms corresponding to the destabi-
lizer and the logical operator in Eq. (2) as a coupling
Ji(l) ∈ {−1,+1}, with Ji(l) = (1 − 2Di(S))(1 − 2Li · l).
This change allows us to rewrite Eq. (2) in terms of the
spin variables:

ei =
1

2

1− Ji(l)
∏
k∈Qi

σk

 . (3)

Using this expression, the total number of errors can be
written as

N∑
i

ei =
1

2

N −
N∑
i

Ji(l)
∏
k∈Qi

σk

 , (4)

where N is the total number of qubits. Therefore, by
ignoring the constant term, we can write an Ising Hamil-
tonian for the system as

Hl = −
N∑
i

Ji(l)
∏
k∈Qi

σk. (5)

Note that for each error class l we find a Hamiltonian with
different couplings Ji(l) between the spins. By finding
the spin configuration that minimizes the Hamiltonian
for each value of l, we can then find the error configura-
tion with the minimum number of errors, which is also
the most probable error configuration.
A similar mapping can be derived for the depolarizing

noise model, where Pauli errors occur with equal proba-
bility according to:

Ed(ρ) = (1− pd)ρ+
pd
3
(XρX + Y ρY + ZρZ), (6)

where the map Ed(ρ) represents the effect of depolarizing
noise on the state ρ of a qubit. For this case, we must
consider two logical operators, XL and ZL. This leads to
four homology classes: one for the case where no logical
error happened, and one for each XL, YL, and ZL case.
The derivation of this mapping can be found in Refs. [37,
56].
The last error model that we consider in this work is

phenomenological noise, where bit-flips occur on the data
qubits with probability p, and stabilizer measurement er-
rors occur with probability q. For this error model, mul-
tiple rounds of stabilizer measurement are considered to
protect against measurement errors. The details of the
mapping for this problem are shown in Refs. [38, 56]. In
this work, we study the p = q case and for a code of dis-
tance d, with d rounds of noisy stabilizer measurement.
Finally, we note that the model can be generalized to
cases with p ̸= q [63].

C. Optimal decoding

While finding the minimum-weight error chain that ac-
counts for the observed syndrome is a valid criterion for
the selection of a correction, it is only an approximation
to the optimal decoding scheme. The optimal decoding
can be achieved in the following way: Let us consider the
probability of an error E with an associated syndrome S:

P (E|S) ∝
N∏
i=1

(1− p)1−eipei ∝
N∏
i=1

(
p

1− p

)ei

. (7)

In the following, we consider that any error chain E can
be defined by a spin configuration σ and a homology
class l, with a set of coefficients Ji(l) given by the mea-
sured syndrome S. Using the expression in Eq. (3) and
performing a change of variable given by exp(−2β) ≡
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p/(1− p), we obtain

P (E|S) = P (σ, l|S) ∝ exp

 N∑
i=1

βJi(l)
∏
k∈Qi

σk

 . (8)

Finally, this probability can be written as

P (σ, l|S) ∝ exp [−βHl(σ)] , (9)

which is proportional to a Boltzmann factor with energy
Hl(σ) at inverse temperature β.
To obtain the optimal correction, we do not need to

find the exact original error, it is enough to perform a
correction that belongs to the same homology class as
the original error. If this is not the case, then the combi-
nation of the original error and the correction introduces
a logical error. Thus, the best decoding strategy consists
of estimating the most likely homology class. This can
be obtained by performing the sum of the probabilities
of all possible errors in each homology class:

P (l|S) =
∑
σ

P (σ, l|S) ∝
∑
σ

exp [−βHl(σ)] = Zl, (10)

where Zl is the partition function of the Hamiltonian
Hl at inverse temperature β. The most likely homology
class can then be obtained by evaluating the value of
Zl=0/Zl=1, if this value is bigger (smaller) than 1, then
the homology class l = 0 (l = 1) is the most likely. This
result can be related to the free energy F since

−βFl=0 + βFl=1 = −β∆F = − log (Zl=1/Zl=0) , (11)

where ∆F is the difference in free energy between the two
homology classes. Therefore, by estimating ∆F , we can
find the most likely error class, maximizing the success
probability of the decoding operation.

This method can also be applied to other error models,
like depolarizing noise or phenomenological noise. For de-
polarizing noise, we consider Pauli errors on the physical
qubits occurring with probability pd/3 (see Eq. (6)). Us-
ing the mapping described in Ref. [56], it can be found
that the target inverse temperature for this model is given
by

β = −1

4
log

(
pd/3

1− pd

)
. (12)

To find the optimal recovery operation, one must find the
most likely homology class, given by the combinations
of the logical operators XL and ZL. Generally, for a
code with k independent logical operators, the optimal
decoder should explore the 2k different homology classes
for the bit-flip noise case (or 4k for the depolarizing noise
case) to find the optimal correction.

III. POPULATION ANNEALING

Population annealing (PA) [60, 61] is an algorithm
closely related to the Simulated Annealing (SA) algo-
rithm [55]. Both are sequential Monte Carlo algorithms

that start with a set of R replicas σ(i), i = 1, ..., R, which
in our case of interest are spin configurations. These
replicas have an energy associated with a given Hamilto-
nian and, when their spin values are initialized randomly,
they can be considered as samples from a Boltzmann dis-
tribution at a temperature T → ∞ or inverse tempera-
ture β0 = 1/T = 0. Given a replica σ with energy E, it is
possible to propose a change to it (e.g., a single spin flip)
that results in the configuration σ′ with energy E′. To
transform our replicas from thermal distribution samples
with β0 = 0 to samples corresponding to β1 > β0, we ac-
cept or reject these changes with a probability given by
the Metropolis-Hastings rule [65]:

Paccept(σ
′|σ) =

{
1 if E′ ≤ E

e−β1(E
′−E) if E′ > E.

(13)

Eventually, after proposing enough changes, the resulting
replicas will approximate the result of sampling from the
Boltzmann distribution at inverse temperature β1. This
process can be iterated for increasing inverse tempera-
ture values βt, with t = 1, ..., NT , until reaching a target
temperature βNT

. These steps constitute the simulated
annealing algorithm.

In the PA algorithm, when changing the temperature
of the system from βt to βt+1, a resampling between the
replicas is performed by associating a probability propor-
tional to the relative Boltzmann weights between each
temperature to each replica:

τi =
e−(βt+1−βt)Ei

Q(βt, βt+1)
, (14)

with the normalization factor

Q(βt, βt+1) =

R∑
i=1

e−(βt+1−βt)Ei . (15)

There are different ways of resampling using these proba-
bilities. In this work, we chose to implement the so-called
systematic resampling approach, which keeps the number
of replicas constant at all times, requires only one ran-
domly generated number for each resampling step, and
was found to introduce fewer statistical errors as com-
pared to other resampling methods [66]. To visualize
how systematic resampling works, let us consider a line
of unit length. Each replica can be positioned in this
line with a length equal to its corresponding τi value (see
Fig. 2). This resampling is implemented by generating a
random number U0 ∈ [0, 1/R) and selecting R positions
given by the values Uk = U0 + k/R with k = 0, ..., R− 1.
Each of these values will be associated with a replica.
The set of replicas associated with the R values Uk will
be the new set of resampled replicas. This completes the
resampling process.
The resampling step and the acceptance-rejection de-

fined by the Metropolis-Hastings rule are complementary
to each other. On the one hand, when applying the
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FIG. 2. Schematic representation of the systematic resam-
pling procedure for a set of R = 9 replicas with weights τi,
i = 1, ..., 9. The original replicas (top row) are assigned a
weight relative to their Boltzmann factor (middle row). Gen-
erating a random number U0 ∈ [0, 1/R), and using these
weights and the values Uk = U0 + k/R, with k = 0, ..., R− 1,
one can obtain a new set of resampled replicas (bottom row).

SA algorithm alone, the replicas can get stuck in local
minima and are less likely to escape as the temperature
decreases. This reduces the number of effective repli-
cas, resulting in a less efficient use of the computational
resources. This effect is mitigated by resampling the
replicas, which introduces a mechanism for these trapped
replicas to escape. On the other hand, while the resam-
pling step introduces correlations between replicas that
are resampled to the same configuration, this is alleviated
by the acceptance-rejection protocol, which uncorrelates
the replicas step by step.

However, the most important consequence of introduc-
ing this resampling step is that it can be used to esti-
mate the free energy, F (βNT

), at the target temperature
βNT

[61]. This can be obtained as:

−βNT
F (βNT

) =

NT−1∑
t=0

lnQ(βt, βt+1) + lnΩ, (16)

where Ω is the total number of possible configurations.
As explained in Sec. II C, estimating the values of the
free energies for different homology classes can be used
to achieve optimal decoding in QEC codes for different
error models. In the following section, we explain and
present in detail our simulations of PA as a decoder for
the color code.

IV. NUMERICAL RESULTS

A. Simulation details

We simulate the decoding process on triangular color
code lattices for different code distances d and error rates
p around the expected value of the threshold correspond-
ing to each error model. For these decoding simulations,

we use R = 1000 replicas, NT = 100 inverse temperature
steps following a linear inverse temperature schedule, and
NS = 200 sweeps over all the spin variables, where a
sweep consists of going over each of the spins (stabiliz-
ers) of the code always in the same order and accepting
or rejecting a change of its value based on Eq. (13). We
note that these values of the hyperparameters correspond
to computational resources that are far above those re-
quired for the correct behaviour of the PA decoder. We
use the additional resources to ensure that the decoder
finds the optimal correction for all the cases. The op-
timization of the hyperparameters is further discussed
in Sec. V. We also note that the PA decoder dedicates
most of the computing time on the acceptance or rejec-
tion of spin-flip candidates. A non-parallelized version of
our code using an AMD Ryzen 9 5950x 3.4GHz requires
7ns for each candidate. However, our implementation
takes advantage of CPU parallelization, which consid-
erably improves the algorithm speed, reducing the time
per candidate to approximately 0.5ns in our simulations.
Additional methods to reduce computational time are
discussed in Sec. VI.
From the simulation results, we obtain the probability

of a logical error pL for each value p and d. With these
results, we assume a critical scaling ansatz to estimate the
corresponding threshold. Using this ansatz, we expect pL
to behave as a linear function around the threshold, given
by:

pL = A+Bd1/ν(p− pth), (17)

where A and B are linear fit parameters, ν is the critical
exponent, and pth is the value of the threshold. For this
approximation to be accurate, we perform the fit consid-
ering only points close to the threshold. Also, we only
consider high enough distances so that finite-size effects
do not affect our analysis.

B. Bit-flip noise

As explained in Sec. II C, for bit-flip noise we have to
estimate the free energies associated with the two differ-
ent homology classes. We simulate the decoding process
under bit-flip noise to obtain the logical error probabili-
ties for distances d = 15, 17, 19, 21, 23. We show the re-
sults of these simulations in Fig. 3. Fitting these results
to Eq. (17) we obtain the following values:

A = 0.155± 0.002,

B = 0.709± 0.127,

ν = 1.41± 0.12,

pth = 0.1081± 0.0003.

(18)

For this case, we find that using the PA decoder to
estimate free energies improves the quality of the decod-
ing process as compared to finding the minimum-weight
error chain using SA, for which the threshold found in
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FIG. 3. Results from the simulation of the population anneal-
ing decoder applied to the 4.8.8 color code with bit-flip noise.
The dots represent the data obtained from the simulations,
with each point being obtained from 2·105 decoding instances.
The lines represent the corresponding linear fit described in
Eq. (17) for different distances.

Ref. [56] is 10.359%. Additionally, the value that we
find for the threshold is close to the optimal threshold of
10.9% estimated in Refs. [36, 51].

C. Depolarizing noise

For depolarizing noise, we have to estimate the free
energies associated with four different homology classes.
We simulate the decoding process under depolarizing
noise to obtain the logical error probabilities for distances
d = 11, 13, 15, 17, 19. We show the results of these sim-
ulations in Fig. 4. Fitting these results to Eq. (17), we
obtain the following values:

A = 0.2836± 0.0017,

B = 0.7309± 0.1034,

ν = 1.338± 0.092,

pth = 0.1875± 0.0003.

(19)

For this case, we find again that using the PA decoder
to estimate free energies improves the quality of the de-
coding process as compared to finding the minimum-
weight error chain, for which the threshold found in
Ref. [56] was 18.467%. Additionally, the value that we
find for the threshold is in close agreement with the 18.9%
optimal threshold numerically obtained for the 6.6.6 color
code and the value estimated for the 4.8.8 color code of
18.78% in Ref. [37].

FIG. 4. Results from the simulation of the population anneal-
ing decoder applied to the 4.8.8 color code with depolarizing
noise. The dots represent the data obtained from the simu-
lations, with each point being obtained from 2 · 105 decoding
instances. The lines represent the corresponding linear fit de-
scribed in Eq. (17) for different distances.

D. Phenomenological noise

For phenomenological noise, we consider only bit-flip
errors, so we need to estimate the free energies asso-
ciated with two different homology classes. We simu-
late the decoding process under phenomenological noise
to obtain the logical error probabilities for distances
d = 9, 11, 13, 15. We show the results of these simulations
in Fig. 5. For the values of p and d used in these simu-
lations, we observe a deviation from a linear fit. There-
fore, we perform a fit similar to Eq. (17) but including
a quadratic term, described by the parameter C. We
obtain the following values:

A = 0.127± 0.002,

B = 1.80± 0.16,

C = 7.07± 1.13,

ν = 1.12± 0.04,

pth = 0.0347± 0.0002.

(20)

Once again, we find that using the PA decoder to esti-
mate free energies improves the quality of the decoding
process as compared to finding the minimum-weight er-
ror chain, for which the threshold found in Ref. [56] with
SA was 2.90%. Our result sits above the optimal thresh-
old of 3.3% estimated for surface codes [62]. While the
authors are not aware of any study of the optimal thresh-
old for 4.8.8 color codes under phenomenological noise, it
does not match the optimal threshold estimated for the
hexagonal color code at 4.8% [38, 63]. The reason for
this discrepancy deserves further study, but it is beyond
the scope of this work.
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FIG. 5. Results from the simulation of the population anneal-
ing decoder applied to the 4.8.8 color code with phenomeno-
logical noise. The dots represent the data obtained from 5·104
decoding instances. The lines represent the corresponding re-
sult of the quadratic version of the fit described in Eq. (17)
for different distances.

V. RESOURCE OPTIMIZATION

The previous results were obtained by using more com-
putational resources than needed to ensure that we ob-
tained high-fidelity threshold values. However, in prac-
tice, one would want to reach a compromise between the
quality of the solutions and computational resources, i.e.,
the time required for decoding. In the following, we study
the relation between these two quantities. Although we
show the analysis applied to the bit-flip noise model, the
ideas presented here are directly applicable to other noise
models.

The population annealing decoder for the bit-flip noise
model works by estimating the free energy of the two
possible homology classes and choosing the correspond-
ing correction based on the difference between them,
β∆F . However, since population annealing uses a lim-
ited amount of computational resources (number of repli-
cas and spin flips), the estimate obtained has an associ-
ated variance Var(β∆F ). We study how this variance
increases the probability of logical error in the follow-
ing way: For a given bit-flip probability and code dis-
tance, we simulate several instances with a high num-
ber of resources to obtain an estimate of the distribution
P (|β∆F |) with sufficiently small error (see Fig. 6). We
know that some of these instances will correspond to suc-
cessful corrections, denoted as Ps(|β∆F |), while the rest
will correspond to failed corrections, Pf(|β∆F |). As pre-
viously explained, in a real implementation of the decoder
there will be an error in the estimation of |β∆F | due to
using a finite number of computational resources. The
value of |β∆F | plus this error might result in a negative
value. For these cases, the decoder finds the opposed
homology class than the one which the optimal decoder

FIG. 6. Histogram representation used to estimate the prob-
ability densities Ps(|β∆F |) (green) and Pf (|β∆F |) (red) for
values of d = 7, 9, 11, 13 and p = 10.8%. These histograms
were obtained by simulating 105 instances of PA decoding for
each distance. For each instance, the PA decoder used a high
number of resources, specifically R = 1000 replicas, NT = 100
temperature steps, and NS = 200 sweeps, to achieve a small
error in the histograms.

would find. Therefore, an error configuration that an op-
timal decoder would successfully correct, can lead to a
logical error with the finite-resource decoder due to the
error in the estimation of |β∆F |. We denote the proba-
bility of this happening as Ps→f. Similarly, the error can
transform a correction that would otherwise be a failed
correction into a successful one, Pf→s. As a consequence,
the logical error probability, pL, is increased by ∆pL:

p′L = pL +∆pL, (21)

with

∆pL = (1− pL)Ps→f − pLPf→s, (22)

where ∆pL can be obtained by using the estimated distri-
bution P (|β∆F |) and the value of Var(β∆F ) associated
to using a finite number of computational resources.
The previous derivation introduces a way to relate the

quality of the decoding process with the error in the es-
timate of ∆F . We have tested this relation on the color
code with d = 7, 9, 11, 13 and p = 10.8%. We use the
PA decoder for a fixed value of NT = 30 temperature
steps while changing the value of RNS . For each of these
values, we estimate the corresponding value of Var(β∆F )
by simulating 200 decoding instances 100 times each. We
can use the obtained value of the variance and the his-
tograms of P (|β∆F |) to obtain the estimated value of
∆pL. We then simulate 5 · 105 decoding instances for
each value of d and RNS to estimate p′L and subtract the
estimated value of pL for those values of d and p. The
results obtained from our estimation method and those
found from simulations are in close agreement and are
shown in Fig. 7.
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FIG. 7. Comparison between the values of ∆pL/pL estimated
by using the histograms in Fig. 6 and Eq. (22) (points with
error bars), and the corresponding values obtained by numer-
ical simulation (continuous lines) for codes of distances d =
7, 9, 11, 13 with p = 10.8%. We simulate eight values of RNS

where the number of replicas R and the number of sweeps
NS are increased. These values are NS = 3, 4, 5, 6, 7, 8, 9, 10
sweeps and R = 15, 20, 25, 30, 35, 40, 45, 50 replicas.

Using this approach, it is possible to set a maximum
target value of ∆pL and find the corresponding value
of Var(β∆F ). The optimization problem is then trans-
formed into finding the value of the parameters (number
of replicas, number of temperature steps, and number of
spin flips per temperature) that achieves that variance
value. Although one can simplify this three-dimensional
problem by fixing two of these parameters while scanning
different values of the remaining one (similar to what is
shown in Fig. 7), a better optimization would require a
three-dimensional scan of the parameters.

We conclude this section by noting that a similar anal-
ysis can be performed by fixing the distance of the code
and considering different values of p. An example of this
process is shown in Fig. 8 for d = 11. We can see that,
given some computational resources RNS , and for de-
creasing values of p below the threshold, the values of
|β∆F | move away from zero. Thus, it is expected for the
value ∆pL to decrease given a fixed value of Var(β∆F ).
Moreover, using the histogram analysis, we see that the
value ∆pL/pL also decreases with p (see Fig. 9), with the
case close to the threshold being the most expensive case
in terms of computational resources. This insight can be
useful for reducing the decoding times in codes with error
probabilities far from the threshold.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have shown an implementation of the
population annealing algorithm as a color code decoder.
This algorithm is based on a mapping of the color code

FIG. 8. Histogram representation used to estimate the prob-
ability densities Ps(|β∆F |) and Pf (|β∆F |) for a code with
distance d = 11 and different values of p. These histograms
were obtained by simulating 105 instances of PA decoding for
each value of p. For each instance, the PA decoder used a high
number of resources, specifically R = 1000 replicas, NT = 100
temperature steps, and NS = 200 sweeps, to achieve a small
error in the histograms. Since the number of incorrect decod-
ings for p = 0.04 is small, we include an inset with a zoom in
the relevant region.

lattice to a spin model, as shown in Ref. [56]. We in-
troduce the use of population annealing, allowing the
estimation of the free energy of the different homology
classes. This can be used to infer the most probable error
class instead of the most probable error case. As a re-
sult, we obtain improved thresholds and a higher decod-
ing success rate, which leads to lower logical error rates
for the same physical error rate. Our numerical results
show that our decoder can reach near-optimal thresholds
under code capacity noise (bit-flip and depolarizing) and
a high threshold for phenomenological noise.

We provide methods to optimize the hyperparameters
of the algorithm, thus reducing the computational re-
sources and time required for a given performance. Ad-
ditionally, considerable efforts have been made to opti-
mize the code that implements the population annealing
decoder. However, the computational runtime required
could become a limiting factor when scaling the lattice,
preventing the possibility of a real-time decoder imple-
mentation for fault-tolerant quantum computation. This
can be more challenging in platforms with very fast gates
like superconducting qubits, where a QEC cycle can be
executed in under 1µs. Nevertheless, some changes could
further increase the speed of the decoder. From the al-
gorithmic side, the PA algorithm can perform multiple
independent runs with fewer replicas each and perform a
weighted average of the results. This results in a reduc-
tion of the statistical and systematic errors as compared
to making a single PA run with all the replicas [61, 67],
which is the case for the implementation in this work.
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FIG. 9. Behaviour of the relative error, ∆pL/pL, due to finite
resources for a code distance d = 11 and for different values
of p and values of RNS chosen to be NS = 4, 5, 6, 7 sweeps
and R = 20, 25, 30, 35 replicas, with NT = 100 temperature
steps. These results are obtained using histograms such as
those shown in Fig. 8. As can be seen, given a number of
computational resources, RNS , the relative error decreases
with p. This means that for a target relative error, ∆pL/pL,
the number of computational resources can be decreased as p
decreases.

Furthermore, studying possible cluster updates applica-
ble to the color code spin model would be interesting.
Cluster updates, as opposed to the single-spin flips used
by our algorithm, could reduce the steps needed for ther-
malization [68, 69]. From the hardware side, our de-
coder, similar to the one shown in Ref. [56], is highly
parallelizable. While one could take advantage of this
by using better CPUs with more parallelization capabil-
ities, or even multiple CPUs, we believe that the most
interesting approach would be the implementation of the

code in GPUs. The PA algorithm has already been im-
plemented in GPUs, achieving impressive improvements
in the performance of the algorithm [70, 71], considerably
reducing the average time required per spin flip thanks
to the parallelization capabilities of GPUs. We leave the
study of the performance of the PA decoder using a GPU
implementation and the analysis of the scaling of compu-
tational resources for future work. Finally, similar to the
SA decoder, a trade-off exists between performance and
decoding time. Thus, one could also decrease the decod-
ing quality in exchange for a faster decoding algorithm.
From the QEC perspective, it would be interesting to

understand the discrepancy between our threshold and
the estimated optimal threshold for the phenomenolog-
ical noise model. Finally, we note that, while we have
focused on the study of the decoder applied to color
codes, the algorithm can be easily applied to other sta-
bilizer codes, like surface codes or qLDPC codes [27–32].
Furthermore, this could be adapted to better represent
circuit-level noise models by introducing additional cou-
plings in the spin model related to the possible errors in
the system, as has been shown in Ref. [72]. These appli-
cations are outside of the scope of this study and are left
for future work.
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